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Abstract: Artificial intelligence (AI) based on convolutional neural networks (CNNs) has recently
made great advances in dermatology with respect to the classification and malignancy prediction of
skin diseases. In this article, we demonstrate how we have used a similar technique to build a mobile
application to classify skin diseases captured by patients with their personal smartphone cameras. We
used a CNN classifier to distinguish four subtypes of dermatological diseases the patients might have
(“pigmentation changes and superficial infections”, “inflammatory diseases and eczemas”, “benign
tumors, cysts, scars and callous”, and “suspected lesions”) and their severity in terms of morbidity
and mortality risks, as well as the kind of medical consultation the patient should seek. The dataset
used in this research was collected by the Department of Telemedicine of Albert Einstein Hospital
in Sao Paulo and consisted of 146.277 skin images. In this paper, we show that our CNN models
with an overall average classification accuracy of 79% and a sensibility of above 80% implemented
in personal smartphones have the potential to lower the frequency of skin diseases and serve as an
advanced tracking tool for a patient’s skin-lesion history.

Keywords: artificial intelligence; dermatology; machine learning; deep learning

1. Introduction

The average waiting time for a consultation with a dermatologist in Brazil is around
108 days [1]. Out of 5.565 Brazilian cities, only 504 have a dermatologist; that corresponds
to merely 9.1%. However, dermatology is the second most referred specialty from national
primary health care. Besides waiting, patients also need to travel long distances to reach
specialized centers. Such obstacles result in negative impacts on the patients, such as
delayed diagnosis, higher mortality, or higher costs during investigation and treatments.
Moreover, there exist indirect costs, such as function loss in body members due to more
invasive surgeries or complications from treatment, and indirect consequences, such as
absenteeism at work [2].

Melanoma, the most lethal skin cancer, represents less than 3% of all skin cancers in
Brazil. However, the survival of patients is directly related to the time of diagnosis [3,4].
When melanoma is discovered in the early stage, within up to 5 years, a simple resection
surgery increases the patient’s survival rate to about 98.4%. On the other hand, melanoma
discovered at an advanced stage (or metastasis) gives a patient (only) a 22.5% chance
of survival [5]. In the treatment of advanced melanoma, according to clinical studies,
immunotherapy is the preferred first-line therapy due to its ability to increase overall
survival by 8 to 23 months [6–8]. However, this kind of therapy, which usually involves
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tomography, sentinel lymph node biopsy, and other medical procedures, is much more
expensive when compared with resection surgery, as mentioned earlier.

Between 2000 and 2007, in the São Paulo state of Brazil, 2740 cases of melanoma
occurred, costing USD 6.33 million, where 95.8% of this amount refers to the treatment of
advanced stages of melanoma (stages III and IV) [9]. From 2021, the actual cost is even
higher because immunotherapy and targeted therapy can cost up to USD 77,000 per patient
per year (those therapies are not reimbursed by the Brazilian Public Health System (SUS)
and hence cannot be registered in this survey).

Since August 2020, the Ministry of Health of Brazil has included two immunotherapy
medications (nivolumab and pembrolizumab) for unresectable and metastatic melanomas
to be reimbursed for patients [10]. Some countries, like Australia, also reimburse for this
type of treatment and know the risks of its economic impact if cases of advanced melanoma
keep growing [11–13]. This is why many public and private initiatives have focused on the
prevention and early diagnosis of this type of cancer [11–13].

Because of its economic burden, melanoma is the most explored dermatologic con-
dition for which techniques such as machine learning and pattern recognition have been
used. Several studies have reported high accuracies of around 90% in classifying skin
images [14–17], demonstrating the potential for these models to assist in early diagnosis.
One notable initiative in this field is the international skin imaging collaboration (ISIC),
which hosts an annual challenge to design AI models for skin-lesion classification [18].
However, it is important to note that these models are based on binary classification (benign
versus malignant) with the images taken by a dermoscope. Dermoscopes use polarized
light and a magnifying lens that helps with seeing structures of the lesion that are not
visible to the naked eye. Such equipment is expensive and usually not available for all
patients or GPs (general practitioners). This is why we propose to develop an algorithm
to classify lesions based on ordinary images captured by smartphones without the use
of dermoscopes.

Although our research was primarily focused on melanoma skin cancer, we expanded
the model to include multi-class benign lesions (Table 1). Despite not being lethal, these
chronic skin diseases may have a great negative impact on patients’ quality of life; skin
lesions can affect body aesthetic causing psychological problems, long-term hospitalization,
and high economic costs for treatment [19].

Table 1. Most relevant ICDs corresponding to each disease cluster (complete table is available in the
Supplementary Material).

Benign Tumors,
Cysts, Scars and

Callous

Pigmentation
Changes and

Superficial Infections

Inflammatory
Diseases and

Eczemas
Suspected Lesions

D18 L57 L40 C44

D21.9 L80 L41 C44.3

D22.9 L81 L43 C44.4

D23 L99.0 L44 C44.5

D36.1 L83 L50 C44.6

H02.6 E70.3 L42 C44.9

I78.1 L56.8 L52 C80

I781 A63 L53 C84.0

L91.0 B00 L74 D04

L82 B02 L75.2 L57.0

L98.0 B07 L85 L41.2
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Table 1. Cont.

Benign Tumors,
Cysts, Scars and

Callous

Pigmentation
Changes and

Superficial Infections

Inflammatory
Diseases and

Eczemas
Suspected Lesions

Q82.5 B08.1 L11.0 L41.4

D17.3 B35 L70 C43

L72.8 B36.0 L71 C43.0

D225 B37.9 L73 C43.1

D23.9 B85 L81.7 C43.2

L72.0 B86 L88 C43.3

L72.9 L00 L95 C43.4

L90.5 L01.0 L97 C43.5

L84 L02 L90.0 C43.6

L90.6 L03 L93 C43.7

L05.0 L04.9 E80.1 C43.8

L08.0 K13.0 C43.9

L08.1 L66.0

L30.3 L10.0

L05.9 L12.0

B00.1 L92

L51

L13.0

L27

L57

L94

M33

L08.8

N48.1

L98

L55

I83.1

L20.9

L21.9

L22

L23.9

L24.9

L28

L29.9

L30

L56

L83.1

L58

L59.0
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Finally, we developed an AI-based application that allows the patients to take pictures
of their own lesions and receive immediate feedback of the classification with a color guide
to facilitate understanding of the severity of the lesion.

2. Material and Methods

This is a retrospective study, performed at the “Hospital Israelita Albert Einstein”
(HIAE) in São Paulo, Brazil, during the period between January and October 2021. The
collected data were used according to Brazilian general personal data protection law and
the research was approved by ethics committees (CAAE 45310521.5.0000.0071).

2.1. Data Acquisition

The data were provided by the “Teledermato Project” at the Department of Telemedicine
of HIAE [20].

The Teledermato project applies to patients on the waiting list for a dermatologist in
the city of São Paulo. Those patients were treated at a health unit, and their skin lesions
were photographed by a nurse or health technician using a mobile application developed
specifically for this data collection. This application allowed the inclusion of more than one
lesion for each patient. Moreover, at least three images were made of each lesion: a photo
from a distance of 50 cm, a photo from a distance of 15 cm, and a photo with a lateral view
of the lesion. In total, the dataset comprised 146,277 skin images.

The images were evaluated by thirteen board-certified teledermatologists (TDs). The
members of the board would indicate the most probable diagnosis from a list of 212 diseases
using ICD codes and would recommend one of three actions: (1) referral directly to
biopsy, (2) referral to an in-person dermatologist, or (3) referral back to the GP for further
orientations. Patients whose lesions were not easily evaluable (for example, due to poor
image quality) would be sent back to an in-person dermatologist.

To ensure representativeness, we omitted ICD codes that had fewer than 3 cases falling
into a single disease category, for example, bullous diseases or genodermatoses. We also
removed from the dataset skin conditions that could not be evaluated through photographs,
such as hair and nail disorders (Table 1).

The analysis resulted in 118 ICD codes, which we grouped into four clusters based on
their common visual characteristics (please see Figure 1). These clusters are as follows:

1. Pigmentation changes and superficial infections. This cluster comprises skin diseases
that cause changes in skin color, such as darkening, whitening, or the appearance
of black, brown, white, or red spots. Examples of skin diseases in which there are
color changes are vitiligo, melasma, lentigo, ecchymosis, and other lesions caused by
bacteria, viruses, and fungi. Treatment of these conditions can be provided by both
dermatologists and GPs.

2. Inflammatory diseases and eczemas. This cluster comprises disorders that can be
acute or chronic. In the case of acute symptoms, such as fever, intense pruritus, and
malaise, prompt evaluation in an emergency service may be necessary. For chronic
cases, evaluation and treatment by a dermatologist are recommended, but there is
no urgency. This cluster comprises skin diseases with multiple inflammatory causes,
such as psoriasis, lichen planus, pityriasis rosea, and others.

3. Benign tumors, cysts, scars, and calluses. This cluster includes seborrheic kerato-
sis, keloids, nevi, and other benign skin conditions that do not require specialized
evaluation or treatment.

4. Suspicious lesions (lesions that are suspicious in terms of malignancy). This cluster
comprises lesions that cannot be certainly diagnosed as benign, for example, carcino-
mas, melanomas, actinic keratosis, and atypical nevi. Urgent additional evaluation
and treatment by a dermatologist are recommended in this case.
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After retrieving images corresponding to the selected ICD codes, we excluded lesions 
(images) without diagnosis or lesions (images) that had more than one hypothesis. This 
resulted in the dataset that we used for further analysis (Table 1). 

As an example of the visual difference between clinical and dermoscopic images, Fig-
ure 2 shows them side by side. 
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Figure 2. Dermoscopic and clinical image examples, shown side by side for visual comparison. Fig-
ure obtained from [21]; (a) Dermoscopic Images; (b) Clinical Images. 

2.2. Development of the Mobile Application 
The mobile application has different features. Its main structure was built to capture 

skin-lesion images and classify them with an AI model. The React Native library was used 
to develop an application that supports two types of platform (Android and iOS). The 
prototype of the application included features such as user registration, login, skin-lesion 
image history, AI image classification, guidance on further medical orientations, and a 
report containing the data analysis. 

On the capture step, there was an image-quality evaluation related to the focus. The 
image focus verification was performed in the application itself using the TensorflowJS 
library [22]. The procedure involved calculation of the blur score, using the Laplacian filter 
[23] applied to the grayscale image, followed by the calculation of the variance of the 

Figure 1. Initial dataset grouped into four clusters based on the specialist’s definition.

After retrieving images corresponding to the selected ICD codes, we excluded lesions
(images) without diagnosis or lesions (images) that had more than one hypothesis. This
resulted in the dataset that we used for further analysis (Table 1).

As an example of the visual difference between clinical and dermoscopic images,
Figure 2 shows them side by side.
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Figure 2. Dermoscopic and clinical image examples, shown side by side for visual comparison. Figure
obtained from [21]; (a) Dermoscopic Images; (b) Clinical Images.

2.2. Development of the Mobile Application

The mobile application has different features. Its main structure was built to capture
skin-lesion images and classify them with an AI model. The React Native library was used
to develop an application that supports two types of platform (Android and iOS). The
prototype of the application included features such as user registration, login, skin-lesion
image history, AI image classification, guidance on further medical orientations, and a
report containing the data analysis.

On the capture step, there was an image-quality evaluation related to the focus. The
image focus verification was performed in the application itself using the TensorflowJS
library [22]. The procedure involved calculation of the blur score, using the Laplacian
filter [23] applied to the grayscale image, followed by the calculation of the variance of the
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resulting image. This score was an indication of how sharp the image was. The threshold
levels for this score were defined by a healthcare professional.

The AI for skin-lesion analysis was integrated with the blur detector and the interface
of the mobile application. After several tests, it was discovered that this functionality was
performing better on Android than on iOS, since the Teledermato dataset contained mostly
images taken by Android phones.

It is worth mentioning that the application developed has the functionality of request-
ing acceptance of terms for use of the application.

2.3. Artificial Intelligence (AI) Model Development

Developing the AI model, involved the following steps: (i) selecting and preprocessing
the most representative dataset; (ii) data augmentation of the training dataset; (iii) fine-
tuning of the convolutional neural network (CNN) architecture of pretrained models; and
(iv) an evaluation of the models.

2.3.1. Selection of the Dataset and Data Preprocessing

The initial dataset consisted of a total of 146,277 images. After analysis of the char-
acteristics of the data collection process, the need for preprocessing and preparation was
identified to mitigate the following problems: variation in distances between the camera
and the lesion, lighting, blurred lesion images, noisy lesion images, and images with larger
background areas. To minimize the variations between the distances, we used the image-
similarity AI model based on the deep neural network MobileNet architecture [24] and
the KNN (K—nearest neighbors) [25] technique. Those two algorithms were applied in
sequence, and the resulting model was used to automatically segment the images by type
of lesion. In that way, the ideal group of images was selected.

Afterwards, the dataset was further cleaned up by removing low-quality and blurry
images. To detect blurred images, we used a technique based on the fast Fourier trans-
form [26], which returned a quality score in the range between (−∞, ∞). Images with a
score below “–10” were considered blurry and removed from the dataset.

The final dataset, after the cleaning procedure, consisted of 5267 images that were used
for the training of the models. This dataset was divided into two parts: 80% for training
and 20% for model validation and testing (resulting in 4213 for training, 527 for validation,
and 527 for test). The following diagram briefly describes the dataset preprocessing.

2.3.2. Data Augmentation

In order to improve the generalization ability of our model and to avoid overfitting, we
applied a data augmentation technique [27]. It is important to mention that this technique
was applied only to the training data subset [28]. This approach ensured that the deep
neural network architecture saw new variations of the data in each training iteration,
including the following transformations: resizing, rotation, width and height shifting,
shearing, zooming, and horizontal flipping.

2.3.3. Transfer-Learning and Fine-Tuned CNN Architectures of Pretrained Models

In this step, we used the transfer-learning and fine-tuning techniques applied to the
convolutional neural networks. In the fine-tuning process, we froze the weights in specific
layers (pretrained using ImageNet weights) and retrained the remaining ones using our
data. In this way we were able to develop a model specialized in the classification of skin
lesions [27,29,30].

The model was trained using both the multi-classification and binary approaches
to classifying skin diseases, including suspicious lesions, benign lesions, pigmentation
disorder, superficial infection, inflammatory diseases, and eczema. We selected the follow-
ing deep-learning architectures to perform the training: InceptionV3 [31], InceptionRes-
NetV2 [32], NASNetMobile [33], DenseNet201 [34], DenseNet169 [34], DenseNet121 [34],
and Xception [35].
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For the multi-classification training approach, a model was trained to predict 4 classes
in the same classifier. We used the following training hyperparameters: softmax func-
tion [36] for classification in the final node; focal loss [37] as the model’s loss function to
aid performance due to class imbalance; cross-validation with early stop if the prediction
error stopped decreasing after some training epochs; reduction in the learning rate if the
prediction error stopped decreasing after some training iterations; and finally, the class
weight as a weighting factor to fix the class-imbalance problem during training.

In the one-versus-all binary training approach, the models ran through a sequence
of binary classifiers, training each of them to answer a separate ranking question. In this
approach, we used the same training hyperparameters as for multi-classification except for
the activation function; here, we used the sigmoid function [38] for the final classification
node (Figure 3). It will be explained in the next section that the final ensemble model was
developed solely with the binary training models and was chosen as our final model to
integrate with the mobile application.
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the relevant data, and then split them into training, validation, and test sets, to perform image
classification training with deep learning.

2.3.4. Evaluation of the Models

We evaluated the models using standard metrics used by computer vision classifiers,
including recall, precision, sensibility, specificity, and AUC (area under the ROC—receiver
operating characteristic curve) values [39]. In addition, we utilized the Grad-Cam algo-
rithm [40] during validation to obtain a heatmap of the image features that the model
considers when making its classification, with a red color indicating more important fea-
tures and a bluer color indicating less important features (Figure 4). Furthermore, we
explored the possibility of using a fair gender and race validation method when predicting
the validation dataset [41]. We examined the distribution of the predictions by gender and
race both before and after the models were used.



Dermato 2024, 4 104

Dermato 2024, 4, FOR PEER REVIEW 8 
 

 

 
Figure 4. Workflow of the modeling process for classification of the disease groups. 

3. Experimental Results 
All models were trained on the Amazon AWS cloud platform, using a g4dn.xlarge 

NVIDIA T4 Tensor machine with 4vCPUs and 16GiB RAM. The best-performing model 
in the multi-classification training stage was the InceptionResnetV2 architecture, with a 
maximum accuracy of 0.75, sensitivity above 0.70, and a ROC curve above 0.90 for all 
clusters. In Figure 5, we present the respective values of the confusion matrix and the ac-
curacy and recall for each cluster. 

Figure 4. Workflow of the modeling process for classification of the disease groups.

3. Experimental Results

All models were trained on the Amazon AWS cloud platform, using a g4dn.xlarge
NVIDIA T4 Tensor machine with 4vCPUs and 16GiB RAM. The best-performing model
in the multi-classification training stage was the InceptionResnetV2 architecture, with a
maximum accuracy of 0.75, sensitivity above 0.70, and a ROC curve above 0.90 for all
clusters. In Figure 5, we present the respective values of the confusion matrix and the
accuracy and recall for each cluster.
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Figure 5. Results for multi-classification validation. In the figure, PC stands for pigmentation changes
and superficial infections, ID for inflammatory diseases and eczemas, SL for suspicious lesions, and
BT for benign tumors, cysts, scars, and calluses.

For the binary classification, the best performance was achieved by DenseNets models
(Table 2).

Table 2. Results for binary classification validation; all AUC curves can be seen in Figure S1.

Disease Cluster Architecture Accuracy Recall/Sensibility Specificity Auc-Roc Macro
Precision

Macro
F1-Score

Suspicious lesions DenseNet169 0.82 0.88 0.81 0.91 0.70 0.73

Inflammatory
diseases and

eczemas
DenseNet121 0.83 0.87 0.82 0.93 0.75 0.78

Pigmentation
changes and

superficial infections
DenseNet169 0.81 0.87 0.79 0.92 0.75 0.77

Benign tumors, cysts,
scars, and calluses DenseNet169 0.82 0.85 0.78 0.89 0.82 0.82

The creation of model ensembles in the literature has shown good results in competi-
tions, including challenges in the identification of skin diseases and cancer, as demonstrated
in [42]. With the results obtained from the binary models, we developed an ensemble of the
best architectures for classifying our disease groups. Our prediction workflow prioritizes
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suspicious (malignant) lesions when generating results from the ensemble model, with
a threshold of 0.5. If the result falls below the threshold, the model will use the higher
probability from the other models to make the final classification (Figure 6).
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Through visual explanations using the Grad-Cam algorithm, we were able to observe
both the strengths and the weaknesses of the model. We were able to correctly analyze a
lesion occupying more than one spot; moreover, any distinct object (for example, a ruler or
clothing) that was close to the lesion did not seem to affect the result of the classification.
However, dense hair areas, other skin injuries, parts of the body, and lesion illumination
could affect the classification outcome (Figure 9).

We also attempted to validate the distribution of model predictions by gender and race
both before and after training our model. Tables 3 and 4 show that there is no significant
class bias present towards gender or any particular race.

Table 3. Distribution of model predictions separated by gender, both for the prediction and target
variables. In the table, PC stands for pigmentation changes and superficial infections, ID for in-
flammatory diseases and eczemas, SL for suspicious lesions, and BT for benign tumors, cysts, scars,
and calluses.

Gender BT ID PC SL Total

Predict
Male 20.36% 11.84% 18.83% 18.75% 64.77%

Female 9.85% 8.43% 9.00% 7.95% 35.23%

Target
Male 31.16% 10.98% 12.97% 9.66% 64.77%

Female 13.83% 8.81% 8.52% 4.07% 35.23%
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Figure 9. Visual explanation of the Grad-Cam algorithm. In (A), we observe how the model correctly
classifies skin injuries occupying more than one spot. In (B), we observe that the model ignores
objects that are distinct from the human body. In (C), we observe that the model has more difficulty
dealing with hair and certain regions of the body such as the nose.

Table 4. Distribution of model predictions separated by gender, both for the prediction and target
variables. The ethnic names are used according to IBGE (Instituto Brasileiro de Geografia e Estatística)
nomenclature [43].

Race BT ID PC SL Total

Predict

yellow 1.20% 0.53% 0.80% 0.50% 3.03%

white 23.55% 9.97% 9.31% 6.65% 49.58%

n/a 5.13% 1.46% 4.00% 1.38% 11.97%

brown 12.82% 8.81% 8.52% 4.07% 30.20%

black 2.12% 0.64% 1.72% 0.52% 5.22%

Target

yellow 0.84% 0.75% 0.66% 0.78% 3.03%

white 16.14% 9.78% 9.21% 14.34% 49.58%

n/a 3.23% 2.67% 3.13% 2.94% 11.97%

brown 8.74% 6.27% 7.69% 7.50% 30.20%

black 1.68% 1.13% 1.94% 0.47% 5.22%

4. Discussion

Before using our AI-powered application, patients are obliged to read and accept the
terms of use. Those terms explain that the application is not 100% accurate and it cannot
replace a physician’s evaluation. Diagnosis can only be confirmed by a physician. We
recommend that patients seek medical attention if they have doubts about the results or if
they experience fever, pain, or intense itching, or if they are undergoing oncology treatment
or have other chronic diseases.

We also explain that lesions covered by hair or tattoo pigmentation, or those located
on the nails, in the genital area, inside the mouth, and on other body parts that are difficult
to visualize, may be misclassified.

After analyzing the skin image using the artificial intelligence model, the application
delivers the result by naming the predicted class with a color code: green, yellow, or
red, along with a brief orientation on the suggested conduct for the patient. The GREEN
color is related to the cluster of “Benign lesions, cysts, scars and callous”, indicating
that the person should follow up with general medical attention. The YELLOW color is
related to “pigmentation changes and superficial infections” and “Inflammatory diseases
and eczemas”, indicating that the person should seek assistance from a dermatologist,
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but should not consider the case as urgent. The RED color is related to the cluster of
“Suspected lesions”, indicating that the patient should prioritize assistance with a specialist
dermatologist. The app will also permit multiple evaluations of the same lesion over a
longer period of time.

The usage of “extra-equipment’s” for obtaining skin images to analyze skin conditions
represents the next level in achieving more promising results. As an example, we have [44],
who used an otoscope to classify 11 diagnostic classes. They obtained a sensitivity of 99%
on their test set, using deep-learning techniques.

Besides equipment and extra information, other associated data also play an important
role in the field of development. High-frequency ultrasound was used by [45] to retrieve
internal skin information that was used in a multimodal fusion network combined with
clinical close-up images.

In order to avoid the risk of some details that are not part of the skin lesion being used
as a factor for classifying lesions, complementary techniques, such as the prior segmentation
of lesions, can also be applied, as demonstrated by [46]. Doing so, they obtained an accuracy
of 87%.

5. Conclusions

In this project, we developed an AI model capable of analyzing skin images captured
by mobile phone cameras. Our developed models achieved an overall accuracy of 0.79,
sensitivities above 0.80, and a ROC curve of 0.90. We also developed a mobile phone
application with the following functionalities: user registration, the capturing of skin
images, real-time lesion classification, and reporting of the result of the classification with
suggested clinical orientation.

The project’s ultimate goal is to have a positive impact on the population by facilitating
the early diagnosis and treatment of suspicious skin lesions, as well as guiding patients
on the type of medical care they should seek regarding their skin diseases. By reducing
waiting times for benign cases and prioritizing those with suspicious lesions, the project
aims to optimize the population’s skin health in the long term.

6. Limitations

• The AI model does not diagnose specific diseases; instead, it classifies the lesion into
one of the specific groups.

• The model does not distinguish whether the image is a skin lesion or not; it assumes
that a photo of the lesioned skin is presented.

• Depending on the distance from the lesion in the image, lesions may not be detected
or can be misclassified.

• The model is not designed to estimate the size of the lesion in the image.
• Lesions in areas such as the eyes, nose, mouth, ear, navel, nipples, and genitals can

make classification difficult, or these areas may be mistakenly confused with the lesion.
Raised lesions may go undetected, and background objects may be confused with
the lesion.

• Poorly lit, obstructed lesions, or blurred images of the lesions may not be classified cor-
rectly.

• The model developed is only capable of dealing with images (some additional meta-
data may enhance the classification).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/dermato4030011/s1. Table S1. Most relevant ICDs corresponding
to each disease cluster. Figure S1. AUC-ROC Curves for all binary models.
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