Hot Topics in 2022 and Future Perspectives of Macromolecular Science
Conflicts of Interest
References
- Díez-Pascual, A.M. Carbon-Based Polymer Nanocomposites for High-Performance Applications II. Polymers 2022, 14, 870. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Wu, J.; Wang, Y.; Cui, B.; An, S.; Su, B.; Wang, Y. Influence of Surface Texture on Sealing Performance of PTFE Materials. Macromol 2022, 2, 225–235. [Google Scholar] [CrossRef]
- Muhammad Imran, S.; Go, G.-M.; Hussain, M.; Al-Harthi, M.A. Multiwalled Carbon Nanotube-Coated Poly-Methyl Methacrylate Dispersed Thermoplastic Polyurethane Composites for Pressure-Sensitive Applications. Macromol 2022, 2, 211–224. [Google Scholar] [CrossRef]
- Didaskalou, P.; Kafetzi, M.; Pispas, S. Cationic Polyelectrolytes Containing Perfluorinated Groups: Synthesis and Self-Assembly Properties in Aqueous Solutions. Macromol 2022, 2, 194–210. [Google Scholar] [CrossRef]
- D’Auria, I.; Saki, Z.; Liu, M.; Sun, W.-H.; Pellecchia, C. Copolymerization of Ethylene and Methyl Acrylate by Dibenzocycloheptyl-Substituted Aryliminopyridyl Ni(II) Catalysts. Macromol 2022, 2, 500–508. [Google Scholar] [CrossRef]
- Vladimirov, N.G.; Gitsov, I. Polymerization Initiated by Graphite Intercalation Compounds Revisited: One-Pot Synthesis of Amphiphilic Pentablock Copolymers. Macromol 2022, 2, 184–193. [Google Scholar] [CrossRef]
- Galgali, G.; Kaliappan, S.K.; Pandit, T. Influence of Ethylene-1-Alkene Copolymers Microstructure on Thermo-Rheological Behavior of Model Blends for Enhanced Recycling. Macromol 2022, 2, 168–183. [Google Scholar] [CrossRef]
- Rouhana, R.; Stommel, M.; Stanko, M.; Muth, M. Novel Method of Carbon Precursor Masking to Generate Controlled Perforations in a Carbon Film. Macromol 2022, 2, 554–561. [Google Scholar] [CrossRef]
- Cook, E.; Johnson, Q.; Longia, G.; Longia, G.; Chauhan, B.P.S. Long-Chain Hydrosilanes Mediated Phase Transfer of Aqueous Metal Nanoparticles. Macromol 2022, 2, 141–153. [Google Scholar] [CrossRef]
- Arciniegas Vaca, M.L.; Gonzalez, J.S.; Hoppe, C.E. Soft Elastomers Based on the Epoxy–Amine Chemistry and Their Use for the Design of Adsorbent Amphiphilic Magnetic Nanocomposites. Macromol 2022, 2, 426–439. [Google Scholar] [CrossRef]
- Almeida, S.D.; Silva, J.C.; Borges, J.P.M.R.; Lança, M.C. Characterization of a Biocomposite of Electrospun PVDF Membranes with Embedded BaTiO3 Micro- and Nanoparticles. Macromol 2022, 2, 531–542. [Google Scholar] [CrossRef]
- Trikkaliotis, D.G.; Ainali, N.M.; Tolkou, A.K.; Mitropoulos, A.C.; Lambropoulou, D.A.; Bikiaris, D.N.; Kyzas, G.Z. Removal of Heavy Metal Ions from Wastewaters by Using Chitosan/Poly(Vinyl Alcohol) Adsorbents: A Review. Macromol 2022, 2, 403–425. [Google Scholar] [CrossRef]
- Urinov, E.; Hanstein, S.; Weidenkaff, A. Enzymatic Degradation of Fiber-Reinforced PLA Composite Material. Macromol 2022, 2, 522–530. [Google Scholar] [CrossRef]
- Gigante, V.; Aliotta, L.; Coltelli, M.-B.; Lazzeri, A. Mechanical Response of Reactive Extruded Biocomposites Based on Recycled Poly(lactic Acid) (R-PLA)/Recycled Polycarbonate (R-PC) and Cellulosic Fibers with Different Aspect Ratios. Macromol 2022, 2, 509–521. [Google Scholar] [CrossRef]
- Lekube, B.M.; Burgstaller, C. Partially Compacted Commingled PLA-Flax Biocomposites. Macromol 2022, 2, 247–257. [Google Scholar] [CrossRef]
- Naffakh, M.; Díez-Pascual, A.M.; Marco, C. Polymer blend nanocomposites based on poly(L-lactic acid), polypropylene and WS2 inorganic nanotubes. RSC Adv. 2016, 6, 40033–40044. [Google Scholar] [CrossRef] [Green Version]
- Naffakh, M.; Díez-Pascual, A.M. WS2 Inorganic Nanotubes Reinforced Poly(L-lactic acid)/Hydroxyapatite Hybrid Composite Biomaterials. RSC Adv. 2015, 5, 65514–65525. [Google Scholar] [CrossRef]
- Makwakwa, D.; Motloung, M.P.; Ojijo, V.; Bandyopadhyay, J.; Ray, S.S. Influencing the Shape Recovery and Thermomechanical Properties of 3DP PLA Using Smart Textile and Boehmite Alumina and Thermochromic Dye Modifiers. Macromol 2022, 2, 485–499. [Google Scholar] [CrossRef]
- Maruthapandi, M.; Saravanan, A.; Gupta, A.; Luong, J.H.T.; Gedanken, A. Antimicrobial Activities of Conducting Polymers and Their Composites. Macromol 2022, 2, 78–99. [Google Scholar] [CrossRef]
- Mahmudzade, R.; Depan, D. Fabrication and Characterization of Free-Standing and Flexible Polyaniline Membranes: Role of Graphene Nanoscrolls. Macromol 2022, 2, 543–553. [Google Scholar] [CrossRef]
- Luceño-Sánchez, J.A.; Díez-Pascual, A.M.; Peña-Capilla, R.; Garcia-Diaz, P. The effect of Hexamethylene Diisocyanate-Modified Graphene Oxide as a Nanofiller Material on the Properties of Conductive Polyaniline. Polymers 2019, 11, 1032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luceño-Sánchez, J.A.; Díez-Pascual, A.M. Grafting of Polypyrrole-3-carboxylic Acid to the Surface of Hexamethylene Diisocyanate-Functionalized Graphene Oxide. Nanomaterials 2019, 9, 1095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díez-Pascual, A.M. Antibacterial Action of Nanoparticle Loaded Nanocomposites Based on Graphene and Its Derivatives: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 3563. [Google Scholar] [CrossRef] [PubMed]
- Díez-Pascual, A.M.; Luceño-Sánchez, J.A. Antibacterial Activity of Polymer Nanocomposites Incorporating Graphene and Its Derivatives: A State of Art. Polymers 2021, 13, 2105. [Google Scholar] [CrossRef] [PubMed]
- Sargazi, S.; Laraib, U.; Er, S.; Rahdar, A.; Hassanisaadi, M.; Zafar, M.N.; Díez-Pascual, A.M.; Bilal, M. Application of Green Gold Nanoparticles in Cancer Therapy and Diagnosis. Nanomaterials 2022, 12, 1102. [Google Scholar] [CrossRef] [PubMed]
- Gkountela, C.I.; Vouyiouka, S.N. Enzymatic Polymerization as a Green Approach to Synthesizing Bio-Based Polyesters. Macromol 2022, 2, 30–57. [Google Scholar] [CrossRef]
- Meimoun, J.; Favrelle-Huret, A.; Winter, J.D.; Zinck, P. Poly(L-lactide) Epimerization and Chain Scission in the Presence of Organic Bases. Macromol 2022, 2, 236–246. [Google Scholar] [CrossRef]
- Zaharescu, T.; Borbath, T.; Mariș, M.; Borbath, I.; Mariș, M. The Stability Consequences Promoted by Doping Metallic Atoms on the Degradation of Poly (ε-Caprolactone). Macromol 2022, 2, 391–402. [Google Scholar] [CrossRef]
- Díez-Pascual, A.M. Synthesis and Applications of Biopolymer Composites. Int. J. Mol. Sci. 2019, 20, 2321. [Google Scholar] [CrossRef] [Green Version]
- Bustamante-Torres, M.; Arcentales-Vera, B.; Estrella-Nuñez, J.; Yánez-Vega, H.; Bucio, E. Antimicrobial Activity of Composites-Based on Biopolymers. Macromol 2022, 2, 258–283. [Google Scholar] [CrossRef]
- Mishra, S.M.; Sauer, A. Effect of Physical Properties and Chemical Substitution of Excipient on Compaction and Disintegration Behavior of Tablet: A Case Study of Low-Substituted Hydroxypropyl Cellulose (L-HPC). Macromol 2022, 2, 113–130. [Google Scholar] [CrossRef]
- Batra, A.; Yang, F.; Kogan, M.; Sosnowik, A.; Usher, C.; Oldham, E.W.; Chen, N.; Lawal, K.; Bi, Y.; Dürig, T. Comparison of Hydroxypropylcellulose and Hot-Melt Extrudable Hypromellose in Twin-Screw Melt Granulation of Metformin Hydrochloride: Effect of Rheological Properties of Polymer on Melt Granulation and Granule Properties. Macromol 2022, 2, 1–19. [Google Scholar] [CrossRef]
- Niknam, R.; Soudi, M.R.; Mousavi, M. Rheological and Stability Evaluation of Emulsions Containing Fenugreek Galactomannan—Xanthan Gum Mixtures: Effect of Microwave and Ultrasound Treatments. Macromol 2022, 2, 361–373. [Google Scholar] [CrossRef]
- Bikiaris, R.D.; Ainali, N.M.; Christodoulou, E.; Nikolaidis, N.; Lambropoulou, D.A.; Papageorgiou, G.Z. Thermal Stability and Decomposition Mechanism of Poly(alkylene succinate)s. Macromol 2022, 2, 58–77. [Google Scholar] [CrossRef]
- Sergi, C.; Vitiello, L.; Russo, P.; Tirillò, J.; Sarasini, F. Toughened Bio-Polyamide 11 for Impact-Resistant Intraply Basalt/Flax Hybrid Composites. Macromol 2022, 2, 154–167. [Google Scholar] [CrossRef]
- Pourmadadi, M.; Rahmani, E.; Shamsabadipour, A.; Mahtabian, S.; Ahmadi, M.; Rahdar, A.; Díez-Pascual, A.M. Role of Iron Oxide (Fe2O3) Nanocomposites in Advanced Biomedical Applications: A State-of-the-Art Review. Nanomaterials 2022, 12, 3873. [Google Scholar] [CrossRef]
- Flores-Rojas, G.G.; López-Saucedo, F.; Vera-Graziano, R.; Mendizabal, E.; Bucio, E. Magnetic Nanoparticles for Medical Applications: Updated Review. Macromol 2022, 2, 374–390. [Google Scholar] [CrossRef]
- Jin, H.; Wang, Z. Advances in Alkylated Chitosan and Its Applications for Hemostasis. Macromol 2022, 2, 346–360. [Google Scholar] [CrossRef]
- Ajalli, N.; Pourmadadi, M.; Yazdian, F.; Rashedi, H.; Navaei-Nigjeh, M.; Díez-Pascual, A.M. Chitosan/Gamma- Alumina/Fe3O4@5-FU Nanostructures as Promising Nanocarriers: Physiochemical Characterization and Toxicity Activity. Molecules 2022, 27, 5369. [Google Scholar] [CrossRef]
- Rajput, I.B.; Tareen, F.K.; Khan, A.U.; Ahmed, N.; Ali Khan, M.F.; Shah, K.U.; Rahdar, A.; Díez-Pascual, A.M. Fabrication and in vitro evaluation of chitosan-gelatin based aceclofenac loaded scaffold. Int. J. Biol. Macromol. 2023, 224, 223–232. [Google Scholar] [CrossRef]
- Foroushani, P.H.; Rahmani, E.; Alemzadeh, I.; Vossoughi, M.; Pourmadadi, M.; Rahdar, A.; Díez-Pascual, A.M. Curcumin Sustained Release with a Hybrid Chitosan-Silk Fibroin Nanofiber Containing Silver Nanoparticles as a Novel Highly Efficient Antibacterial Wound Dressing. Nanomaterials 2022, 12, 3426. [Google Scholar] [CrossRef] [PubMed]
- Díez-Pascual, A.M.; Díez-Vicente, A.L. Antimicrobial and Sustainable Food Packaging Based on Poly(butylene adipate-co-terephthalate) and Electrospun Chitosan Nanofibers. RSC Adv. 2015, 5, 93095–93107. [Google Scholar] [CrossRef]
- Shakeel, M.; Kiani, M.H.; Sarwar, H.S.; Akhtar, S.; Rauf, A.; Ibrahim, I.M.; Ajalli, N.; Shahnaz, G.; Rahdar, A.; Díez-Pascual, A.M. Emulgel-loaded mannosylated thiolated chitosan-coated silver nanoparticles for the treatment of cutaneous leishmaniasis. Int. J. Biol. Macromol. 2023, 227, 1293–1304. [Google Scholar] [CrossRef] [PubMed]
- Díez-Pascual, A.M.; Díez-Vicente, A.L. Electrospun fibers of chitosan-grafted polycaprolactone/poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) blends. J. Mater. Chem. B 2016, 4, 600–612. [Google Scholar] [CrossRef]
- Exarhopoulos, S.; Goulas, A.; Dimitreli, G. Biodegradable Films from Kefiran-Based Cryogel Systems. Macromol 2022, 2, 324–345. [Google Scholar] [CrossRef]
- Kaur, R.; Singh, P.; Tanwar, S.; Varshney, G.; Yadav, S. Assessment of Bio-Based Polyurethanes: Perspective on Applications and Bio-Degradation. Macromol 2022, 2, 284–314. [Google Scholar] [CrossRef]
- Díez-Pascual, A.M.; Díez-Vicente, A.L. Epoxidized soybean oil/ZnO biocomposites for soft tissue applications: Preparation and characterization. ACS Appl. Mater. Interfaces 2014, 6, 17277–17288. [Google Scholar] [CrossRef]
- Díez-Pascual, A.M.; Díez-Vicente, A.L. Wound Healing Bionanocomposites Based on Castor Oil Polymeric Films Reinforced with Chitosan-Modified ZnO Nanoparticles. Biomacromolecules 2015, 16, 2631–2644. [Google Scholar] [CrossRef]
- Díez-Pascual, A.M.; Díez-Vicente, A.L. Development of linseed oil–TiO2 green nanocomposites as antimicrobial coatings. J. Mater. Chem. B 2015, 3, 4458–4471. [Google Scholar] [CrossRef]
- Díez-Pascual, A.M.; Shuttleworth, P.S. Layer-by-Layer Assembly of Biopolyelectrolytes onto Thermo/pH-Responsive Micro/Nano-Gels. Materials 2014, 7, 7472–7512. [Google Scholar] [CrossRef]
- Díez-Pascual, A.M.; Wong, J.E. Effect of layer-by-layer confinement of polypeptides and polysaccharides onto thermoresponsive microgels: A comparative study. J. Colloid Interface Sci. 2010, 347, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Barbero, C.A.; Martínez, M.V.; Acevedo, D.F.; Molina, M.A.; Rivarola, C.R. Cross-Linked Polymeric Gels and Nanocomposites: New Materials and Phenomena Enabling Technological Applications. Macromol 2022, 2, 440–475. [Google Scholar] [CrossRef]
- Díez-Pascual, A.M.; Wong, J.E.; Richtering, W. Layer-by-layer assembly of polyelectrolyte multilayers onto thremoresponsive P(NiPAM-co-MAA) microgel: Effect of ionic strength and molecular weight. Macromolecules 2009, 42, 1229–1238. [Google Scholar] [CrossRef]
- Esquena-Moret, J. A Review of Xyloglucan: Self-Aggregation, Hydrogel Formation, Mucoadhesion and Uses in Medical Devices. Macromol 2022, 2, 562–590. [Google Scholar] [CrossRef]
- Aubry, B.; Dumur, F.; Lansalot, M.; Bourgeat-Lami, E.; Lacôte, E.; Lalevée, J. Development of Water-Soluble Type I Photoinitiators for Hydrogel Synthesis. Macromol 2022, 2, 131–140. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díez-Pascual, A.M. Hot Topics in 2022 and Future Perspectives of Macromolecular Science. Macromol 2023, 3, 28-33. https://doi.org/10.3390/macromol3010002
Díez-Pascual AM. Hot Topics in 2022 and Future Perspectives of Macromolecular Science. Macromol. 2023; 3(1):28-33. https://doi.org/10.3390/macromol3010002
Chicago/Turabian StyleDíez-Pascual, Ana M. 2023. "Hot Topics in 2022 and Future Perspectives of Macromolecular Science" Macromol 3, no. 1: 28-33. https://doi.org/10.3390/macromol3010002
APA StyleDíez-Pascual, A. M. (2023). Hot Topics in 2022 and Future Perspectives of Macromolecular Science. Macromol, 3(1), 28-33. https://doi.org/10.3390/macromol3010002