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Abstract: Arundo donax L. is a plant with great potential as lignocellulosic biomass, being a
promising source for the development of biodegradable materials. This study evaluated
the effects of different chemical pretreatments (H2SO4, NaOH, and NaClO) combined with
dry milling on the physicochemical properties of biomass. Pretreatment with NaClO was
the most effective in removing lignin, reducing its content to 0.2%, while increasing the
cellulose content to 67%. Pretreatment with H2SO4, although retaining a higher lignin
content (24%), resulted in the greatest reduction in particle size, reaching a mean diameter
(Dm) of 44.31 µm after 20 h of milling. Density analysis revealed that the raw samples
reached a maximum density of 0.218 g/cm3 after 20 h of milling, with the pretreated
samples showing lower densities due to the removal of structural components. Thermal
analysis showed mass losses of up to 66.4% for samples pretreated with NaClO after 10 h of
milling, indicating significant structural changes and improved thermal stability. Morpho-
logical analysis via SEM demonstrated elongated and fine particles, with acid pretreatment
resulting in the most pronounced structural changes. These findings highlight the efficiency
of combining chemical and physical pretreatments to modify the structure of A. donax L.,
optimizing its properties for the production of high-performance biodegradable materials.

Keywords: biomass; lignocellulosic; Arundo donax L.; chemical delignification; ball mill;
particle size distribution

1. Introduction
The plant Arundo donax L., known for its extreme adaptability and proliferation in

tropical, subtropical, and temperate climates, is an invasive species that occupies vast
areas, causing significant environmental impacts in several regions around the world [1,2].
However, its abundance and rapid biomass accumulation make it a promising source
of renewable raw materials, especially in the field of lignocellulosic materials [3]. Its
biomass is mainly composed of cellulose, hemicellulose, lignin, and biopolymers that can
be transformed into high value-added products for various applications [4,5].

The growing demand for sustainable materials, especially from agricultural and
forestry residues and invasive plant species, has encouraged the search for alternative raw
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materials that promote environmental sustainability and reduce dependence on petroleum-
derived materials. In this scenario, the comparison between different lignocellulosic
biomasses reveals valuable information about the potential of Arundo donax L. as a re-
newable source of materials.

Switchgrass, known for its high biomass yield and adaptability, stands out in the
production of bioenergy and biofuels due to its lignocellulosic composition, which favors
fermentation processes—the same characteristic observed in Arundo donax L. [3]. Bamboo,
widely valued for its rapid growth and high tensile strength, has consolidated applications
in sustainable construction materials, with fibers that present properties similar to those of
Arundo donax L., which also demonstrate high potential in the production of high-quality
cellulose [6].

These comparisons reinforce the position of Arundo donax L. as a prominent biomass,
capable of meeting the growing demand for renewable materials in sectors such as sustain-
able construction, bioenergy, and biorefineries, offering competitive and environmentally
responsible solutions. Furthermore, the lignocellulosic biomass of Arundo donax L. has
stood out for its wide availability and benefits, gaining both scientific and industrial
relevance [7–9]. This natural resource is used in several applications, including paper
manufacturing [4], civil construction [5], phytoremediation of soils contaminated by heavy
metals [10], production of bioenergy and biofuels [7,11,12], and also in the development of
sustainable packaging [13].

The appreciation of Arundo donax L. reinforces the importance of exploring its struc-
tural components and transforming them into products with greater added value. However,
to add value, it is essential to deconstruct this lignocellulosic biomass and, sometimes, also
reduce the size of the particles through pre-treatments (mechanical, chemical, physical–
chemical, and biological) [14,15].

The transformation of lignocellulosic biomass requires the application of effective
pretreatments to defibrillate its complex structure and release the desired components,
such as cellulose and hemicellulose. Among the main pretreatment methods are chemical
processes, which include the use of acids, bases, and oxidizing agents, each with a different
purpose. Acid pretreatment, for example, is widely used to hydrolyze hemicellulose and
partially decompose cellulose, facilitating the extraction of these fractions [16–19]. The
alkaline pretreatment, using sodium hydroxide (NaOH), is a highly recalcitrant biopolymer,
resulting in a solid fraction rich in cellulose and hemicellulose, presenting changes in the
surface area, porosity and degree of crystallinity [14,20,21]. Finally, bleaching, usually
performed with sodium hypochlorite (NaClO), is used to improve the purity and color of
the cellulose by removing residual lignin [22,23].

In addition to chemical pretreatments, reducing the particle size of biomass by grinding
is a critical step to improve the efficiency of conversion processes. Ball milling, in particular,
has emerged as an effective technique for obtaining ultrafine particles with high surface
area and improved reactivity [24]. This mechanical method offers significant advantages
compared to other techniques, allowing controlled grinding that alters the physical and
chemical properties of the biomass [25]. When applied to lignocellulosic materials, ball
milling not only increases the surface area of the biomass, but also facilitates the interaction
between the components and promotes a more homogeneous distribution of the cellulose,
hemicellulose, and lignin fractions, which is crucial for the production of films with ideal
characteristics [26].

Ball milling also plays an important role in the preparation of biodegradable films,
especially when combined with chemical pretreatments. By reducing particle size and
improving particle dispersion, this process results in more homogeneous and cohesive
films with attractive mechanical and thermal properties [27]. This is particularly relevant
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for the manufacture of biodegradable packaging, where the uniformity and strength of the
films are essential factors in ensuring the quality and durability of the products [27].

Although Arundo donax L. biomass has been extensively investigated in previous
studies for applications in biofuels [28], biocomposites [29], and sustainable materials [3],
the literature presents a significant gap regarding the integrated assessment of the effects
of chemical pretreatments and dry milling on its chemical, thermal, morphological, and
structural properties. Existing studies tend to address the impact of a single chemical pre-
treatment or physical processing step in isolation, without exploring how these approaches
can interact synergistically to efficiently modify the lignocellulosic structure.

This paper is a pioneer in investigating, in an integrated manner, the effects of differ-
ent chemical pretreatments (acid, alkaline, and bleaching) combined with varying milling
times on the structure and properties of Arundo donax L. biomass. The mechanistic ap-
proach employed allows for a detailed characterization of the changes in the lignocellulosic
structure, with the aim of optimizing essential properties for the future development of
high-performance biodegradable materials. In addition, this study contributes significantly
to the valorization of agro-industrial waste by implementing sustainable practices aligned
with the principles of a circular economy.

The valorization of Arundo donax L. as lignocellulosic biomass is directly related to
the reduction in the ecological footprint of the materials sector, as it encourages the use of
renewable resources and minimizes waste. In this context, the study demonstrates that the
choice of optimized chemical pretreatment strategies and sustainable waste management is
crucial to balance technical efficiency and environmental impacts. For urban development
and the reduction in the ecological footprint, it is crucial to implement the Sustainable De-
velopment Goals, SDG SDG 12 (Responsible Consumption and Production), by providing
more sustainable solutions for the use of biomass and chemicals; SDG 13 (Climate Action),
by mitigating carbon emissions through the substitution of non-renewable materials; and
SDG 15 (Life on Land), by promoting the control of invasive species and the conservation
of ecosystems [30].

2. Materials and Methods
2.1. Materials

The Arundo donax L. (A. donax L.) plants were supplied by Embrapa Clima Temperado
at the Cascata Experimental Station, located in the rural area of the municipality of Pelotas
in Rio Grande do Sul (latitude 31◦42′ S, longitude 52◦24′ W). The reagents used in this
study were sulfuric acid (H2SO4, technical grade 98%, Labsynth-Diadema/SP, Brazil),
sodium hydroxide (NaOH, technical grade 98%, Dinâmica-Tatuapé/SP, Brazil), and sodium
hypochlorite (NaClO, technical grade 6%, Dinâmica).

2.2. Chemical Pretreatment

The entire plant (stem, leaf) underwent prior conditioning in a greenhouse with air
circulation at 60 ◦C for 7 days and was then ground in a knife mill (Marconi, MA 340).
Subsequently, it was subjected to different chemical pretreatments (H2SO4, NaOH, and
NaClO) to separate the majority of the constituents, such as cellulose, hemicellulose, lignin,
and others. For acid pretreatment, 40 g of sample was combined with a 2% H2SO4 solution
in a 1:10 (w/v) ratio in a glass vial with a lid and then autoclaved at 121 ◦C and 1 atm for
60 min. It was then vacuum-filtered and washed with hot water until a neutral pH was
reached, followed by drying in an oven at 50 ◦C for 24 h [31]. The alkaline pretreatment
with 7% NaOH was carried out under identical conditions, but lasting 30 min [32]. The
bleaching pretreatment occurred in two stages. The first stage involved delignification as
described in the alkaline pretreatment, but using 120 g of sample. The second stage was
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based on the methodology described by [33]. For this purpose, a 2% NaClO solution was
added to the sample, in a proportion of 1:10 (w/v), for 20 h at room temperature. It was
then vacuum-filtered and washed with hot water until it reached a neutral pH before being
placed in an oven at 50 ◦C for 24 h.

2.3. Physical Treatment in Ball Mill

After chemical pretreatment, the samples were sieved to obtain standardized particles
with a 45 mesh sieve size (0.354 mm), which were called the control group [34]. In total,
20 g of sample from each chemical pretreatment was subjected to dry grinding in a ball mill
(Quimis brand), with a capacity of 1 L, with porcelain balls of varying sizes, maintaining
a material-to-ball ratio of 1:10, as illustrated in Figure 1. Grinding occurred at a rotation
speed of 150 rpm for various grinding times (5, 10, and 20 h), followed again by sieving.

Macromol 2025, 5, x FOR PEER REVIEW 4 of 22 
 

 

OFFICIAL 

nification as described in the alkaline pretreatment, but using 120 g of sample. The sec-
ond stage was based on the methodology described by [33]. For this purpose, a 2% 
NaClO solution was added to the sample, in a proportion of 1:10 (w/v), for 20 h at room 
temperature. It was then vacuum-filtered and washed with hot water until it reached a 
neutral pH before being placed in an oven at 50 °C for 24 h. 

2.3. Physical Treatment in Ball Mill 

After chemical pretreatment, the samples were sieved to obtain standardized parti-
cles with a 45 mesh sieve size (0.354 mm), which were called the control group [34]. In 
total, 20 g of sample from each chemical pretreatment was subjected to dry grinding in a 
ball mill (Quimis brand), with a capacity of 1 L, with porcelain balls of varying sizes, 
maintaining a material-to-ball ratio of 1:10, as illustrated in Figure 1. Grinding occurred 
at a rotation speed of 150 rpm for various grinding times (5, 10, and 20 h), followed again 
by sieving. 

 

Figure 1. Photograph of the (a) ball mill, (b) porcelain jar, and (c) porcelain spheres of different 
sizes. 

2.4. Characterization Techniques 

2.4.1. Chemical Analysis 

The chemical analysis was carried out in accordance with Technical Association of 
the Pulp and Paper Industry (TAPPI standards) [35], using the samples in powder form, 
after chemical pre-treatments. The following determinations were performed: etha-
nol-toluene extractive content, Klason lignin content, cellulose content, and holocellulose 
(remaining mass up to 100%), for quantification of inorganic materials. The results, pre-
sent-ed as mean ± SD, were analyzed with analysis of variance ANOVA and teste de 
significância de Fisher (least significant difference—LSD) to identify significant differ-
ences, using a significance level of 5% to compare the means between treatments and the 
control. 

2.4.2. Colorimetric Analysis 

To determine the colorimetric parameters, the CIELab system (L*, a*, b*) was used, 
which consists of the following coordinates: luminosity (L*), green-red axis (a*), 
blue-yellow axis (b*) [36,37]. A CR-400 colorimeter (Konica Minolta, Tokyo, Japan) was 
used, with an observation angle of 10°, calibrated with the porcelain calibrator and con-
figured with D65 light, to determine the color of the powders. 

The following colorimetric parameters were analyzed: luminosity (L*) (the closer to 
100, the lighter the color and the closer to 0, the darker), green-red coordinate (a*) (nega-
tive markings indicate green colors, positive markings indicate red colors), and 
blue-yellow coordinate (b*) (negative markings indicate blue colors, positive markings 
indicate yellow colors). For the analysis of color changes (ΔE), Equation (1) [36] was used: 

Figure 1. Photograph of the (a) ball mill, (b) porcelain jar, and (c) porcelain spheres of different sizes.

2.4. Characterization Techniques
2.4.1. Chemical Analysis

The chemical analysis was carried out in accordance with Technical Association of the
Pulp and Paper Industry (TAPPI standards) [35], using the samples in powder form, after
chemical pre-treatments. The following determinations were performed: ethanol-toluene
extractive content, Klason lignin content, cellulose content, and holocellulose (remaining
mass up to 100%), for quantification of inorganic materials. The results, present-ed as
mean ± SD, were analyzed with analysis of variance ANOVA and teste de significância
de Fisher (least significant difference—LSD) to identify significant differences, using a
significance level of 5% to compare the means between treatments and the control.

2.4.2. Colorimetric Analysis

To determine the colorimetric parameters, the CIELab system (L*, a*, b*) was used,
which consists of the following coordinates: luminosity (L*), green-red axis (a*), blue-yellow
axis (b*) [36,37]. A CR-400 colorimeter (Konica Minolta, Tokyo, Japan) was used, with an
observation angle of 10◦, calibrated with the porcelain calibrator and configured with D65
light, to determine the color of the powders.

The following colorimetric parameters were analyzed: luminosity (L*) (the closer to
100, the lighter the color and the closer to 0, the darker), green-red coordinate (a*) (negative
markings indicate green colors, positive markings indicate red colors), and blue-yellow
coordinate (b*) (negative markings indicate blue colors, positive markings indicate yellow
colors). For the analysis of color changes (∆E), Equation (1) [36] was used:

∆E=
√

(∆L2 + ∆a2 +∆b2) (1)
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where ∆E is the variation of all colors, ∆L is the variation of lightness, ∆a is the variation of
the red-green coordinate, and ∆b is the variation of the blue-yellow coordinate.

2.4.3. Density Analysis

Density is determined by the relationship between the mass (m) and volume (V) of the
material. Mass is measured in grams (g) and volume in cubic centimeters (cm3), according
to Equation (2) [38]. For particulate materials, volume is calculated using a cylindrical
container, considering the radius (r) of the container and the height (h) of the sample.

ρ =
m
V

e V = r2 ∗ h (2)

2.4.4. Granulometric Distribution Analysis

The particle size distribution analysis was conducted using a laser diffraction analyzer
(CILAS 1064 model, Vila Cruzeiro/SP, Brazil), designed to measure particles within the
range of 0.04 to 500 µm. The methodology followed the manufacturer’s guidelines to
ensure precision and reliability. Samples were dispersed in deionized water and subjected
to 60 s of ultrasound prior to measurements, which effectively minimized particle agglom-
eration. The results were reported in terms of mean particle diameter (Dm) and cumulative
distribution values (D10, D50, and D90), providing a comprehensive characterization of
the particle size distribution. Each sample underwent five independent measurements
to enhance accuracy and reproducibility. The selection of five measurements aligns with
established analytical best practices and meets the specific requirements for the granu-
lometric characterization of lignocellulosic materials. This approach ensures robust and
representative data for subsequent analyses.

2.4.5. Morphological Analysis

The morphological analysis of the samples was performed using a scanning electron
microscope (SEM, model JOEL JSM-6610LV), operating at a beam current of 1 pA and a
voltage of 15 kV. Images were obtained at magnification up to ×100, allowing detailed
observation of the particle surface and providing information on the morphology and
structure of the samples at the microscopic level. Sample preparation included gold
metallization to improve electrical conductivity and allow high-resolution analyses, based
on the study carried out by Ribeiro et al. (2023) [39].

2.4.6. Thermal Analysis

The thermal stability of the samples was analyzed by thermogravimetric (TG) analysis
using a Shimadzu DTG-60 thermogravimetric analyzer. The method followed the ASTM
E1131-08 standard [40] for determining the thermal properties of solid materials. The
samples were heated from 25 to 800 ◦C at a heating rate of 10 ◦C/min, under an inert
nitrogen (N2) atmosphere, with a flow rate of 50 mL/min. This approach was adopted
to ensure controlled and reproducible experimental conditions, allowing the accurate
characterization of the thermal decomposition and stability of the biomass components.

2.4.7. FTIR Analysis

The chemical properties of the samples were evaluated by Fourier transform in-
frared spectroscopy (FTIR) coupled to an attenuated total reflection (ATR) device, us-
ing a Shimadzu Prestige-21 spectrometer. The analysis was performed in the range of
400–4000 cm−1, with a spectral resolution of 4 cm−1, according to the guidelines estab-
lished by the ASTM E1252-13 standard [41] for infrared spectroscopy. This methodology
allows the identification of the main functional groups present in the samples and the
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evaluation of the structural modifications caused by the different treatments applied to
the biomass.

2.4.8. XRD Analysis

X-ray diffraction (XRD) allowed the crystallinity of the different samples to be charac-
terized, using a Bruker D8 Advance diffractometer with CuKα radiation (λ = 1.54 Å) with
Bragg–Brentano geometry and operated at 40 kV and 20 mA. The crystallinity index (IC%)
was determined based on the reflected intensity data following the method of Segal et al.,
1959 [42], according to Equation (3):

IC% =
I200 − Iam

I200
× 100 (3)

where I002 corresponds to the crystalline portion of the sample located at a diffraction angle
around 2θ = 22◦, and Iam is the peak intensity of the amorphous part measured as the
lowest intensity at a diffraction angle around 2θ = 15◦.

3. Results and Discussion
3.1. Chemical Analysis

Figure 2 shows the chemical characterization of A. donax L. samples after different
chemical pretreatments: in natura, H2SO4, NaOH, and NaClO, highlight the extractive
fractions, lignin, hemicellulose, and cellulose. Chemical characterization analyses of the
samples in natura and after chemical pretreatments revealed significant changes in the
composition of non-cellulosic materials.

The extractive contents obtained were 6% for the in natura sample, 5% for that treated
with H2SO4, 7% for NaOH, and 1% for NaClO. Pretreatment with NaClO proved to be
highly efficient in removing compounds from the extractive fraction when compared to the
in natura biomass. This effect is due to the removal of lipids, non-structural sugars, and the
process of volatilization and degradation of extractives [42,43].

Regarding lignin, the sample treated with H2SO4 presented a content of 24%, higher
than the other pre-treatments: in natura (14%), NaOH (12%), and NaClO (0.2%). The high
lignin content in the acid pretreatment is attributed to the depolymerization of the cellulosic
and hemicellulosic structures, in addition to the removal of extractive compounds, although
it has shown low efficiency in lignin hydrolysis [44,45]. On the other hand, pretreatment
with NaClO completely degraded lignin, showing efficiency in bleaching, with less impact
on hemicellulose and cellulose [46].

The hemicellulose content was 29% for the in natura sample, while the values for
H2SO4, NaOH, and NaClO were 24%, 21%, and 17%, respectively. This reduction is
attributed to the hydrolysis of hemicelluloses into sugars and degradation products, a
characteristic of pretreatments [45]. Studies report that the reduction in hemicellulose
improves the efficiency of enzymatic conversion processes, being relevant for biofuel and
biochemical industries [47].

All pretreatments presented high cellulose contents due to the resistance of the crys-
talline structure of cellulose to degradation [48]. The highest content was observed in the
pretreatment with NaClO (67%), followed by NaOH (39%), in natura (32%), and H2SO4

(28%). The bleaching process aims to remove unwanted components, such as lignin and
hemicellulose, making the cellulose more accessible for further processing [49]. These treat-
ments are promising for the production of cellulose-rich films, with potential for application
in biodegradable materials [50].
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These results highlight the fundamental role of pretreatments in modifying the macro-
molecules of lignocellulosic biomass, directly influencing the mechanical and structural
properties of the material.
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3.2. Colorimetric Analysis

Figure 3 illustrates photographic images of samples subjected to different chemical
pretreatments before and after grinding for 20 h. Overall, there is a noticeable change to the
naked eye in tones and colors. Arundo in natura (Figure 3a,e) and those pretreated with
NaOH (Figure 3c,g) exhibited brown coloration, although of a lighter tone compared to
those subjected to pretreatment with H2SO4 (Figure 3b,f). This is attributed to the chro-
mophoric groups present in lignin [51]. In this regard, as expected, the samples pretreated
with NaClO (Figure 3d,h) presented a white coloration, indicative of lignin removal.
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Colorimetric analysis (Figure 4) was performed using the CIELab method to accu-
rately determine the effect of colors. When comparing the luminosity results in Figure 4a
(0 = black and 100 = white), it is observed that the samples pre-treated with H2SO4 pre-
sented the lowest luminosity, as this chemical pre-treatment is used to remove the holo-
cellulose present in the biomass, mainly those with lower molecular weight, leaving only
lignin [32,52]. The samples pretreated with NaOH also presented low luminosity due to
only partial removal of lignin. In contrast, those pretreated with NaClO presented higher
luminosity. These results corroborate the images observed in Figure 3. Figure 4b,c show
the variations in chromaticity of the samples subjected to 20 h of milling in relation to their
respective controls. These variations after long milling times can be attributed to changes in
the chromophore groups belonging to lignin and extractives [53,54] due to friction during
milling. However, due to the human eye’s difficulty in distinguishing certain colors, the
calculation of the color variation is shown in Figure 4d, and allows determination that there
was color variation both between the pretreatments and between the sample subjected to
20 h of milling and its respective control.
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3.3. Density Analysis

Figure 5 presents the density results for the A. donax L. samples. In an overall context,
the results of this investigation revealed a consistent pattern of increasing biomass density
as milling time was prolonged. This observation is consistent with a general trend in
many particulate materials, where particle compaction leads to an increase in density. The
rationale for this behavior can be attributed to the reduction in particle size during the
milling process. As the particles are reduced in size, they have a larger surface area relative
to their volume. Therefore, this leads to greater efficiency in packing the particles due to
decreased space between them, consequently resulting in increased density [55]. Further-
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more, it is observed that the in natura sample reached a higher density of 0.218 g/cm3

after 20 h of milling compared to the pre-treated samples. Pretreatments can significantly
influence the characteristics of the material, including its density, as they aim to extract
specific components of the biomass, such as lignin, hemicellulose, and other undesirable
compounds, thus affecting the density through mass reduction.
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3.4. Particle Size Distribution

The particle size distribution obtained by laser diffraction is presented by the his-
tograms in Figure 6 and Table 1. In general, the histograms present monomodal behavior,
indicating a more uniform particle size distribution. However, in the samples pre-treated
with NaClO for 10 h and 20 h of milling, two peaks appeared, indicating bimodal behavior,
suggesting that milling under these conditions led to the formation of two distinct granu-
lometric populations. Depending on the pretreatment conditions, intermediate products
may form that affect the grinding and breakage of the particles, leading to the formation of
two peaks. In some cases, during the grinding process, the particles may agglomerate or
aggregate due to attractive forces between them [56–58]. In addition, moisture can play an
important role in the grinding of materials. Variations in sample moisture content over the
milling time can affect the particle size distribution, creating distinct peaks. Considerable
variation in the mean particle diameter (Dm) was observed for the different pretreatments
over the milling time.

The analysis of the particle size distribution of the In natura samples demonstrated
a typical behavior of untreated lignocellulosic materials, with an initial Dm of 242.03 µm
(control), characterized by a coarser structure. This broader particle size distribution can
be attributed to the presence of lignin, cellulose and hemicellulose in their natural form,
where lignin acts as a structural and reinforcing agent, limiting the physical manipulation
of the fibers and, consequently, hindering fragmentation during the milling process. After
5 h of milling, a significant reduction in particle size was observed, resulting in a Dm of
96.73 µm. This behavior can be explained by the partial defibrillation of lignin and hemicel-
lulose during the mechanical process, which weakens the fibrous structure of the biomass.
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Pretreatment with H2SO4 after 10 h of milling showed a smaller particle size of
49.92 µm compared to the in natura samples and the other chemical pretreatments. Al-
though this pretreatment presents a higher lignin composition, which could act as a reinforc-
ing agent, the chemical modification of the matrix occurs due to the chemical process with
H2SO4, causing a de-structuring of the biomass, making it more fragile and susceptible to
fracture. Acid pretreatment can produce oxygenated functional groups, such as carbonyls
and carboxyls, which contribute to lignin oxidation [59]. These new groups make lignin
more reactive, facilitating the fragmentation of macromolecules. Therefore, acid treatment
not only reduces lignin’s resistance to particle breakage, which is relevant for subsequent
processes such as communition. This can be attributed to the fact that, although less lignin
is removed in this process, sulfuric acid causes a destructuring of the biomass, making
it more fragile and susceptible to fracture. This same behavior was reported by Sun and
Cheng, 2005 [31].

In contrast, the samples pretreated with NaOH and NaClO presented a Dm of 79.01 µm
and 76.74 µm, respectively, evidencing a larger particle diameter after 20 h of milling. This
behavior can be explained by changes in the chemical and physical properties resulting
from the high concentration of cellulose and hemicellulose preserved in pretreatments
with NaOH and NaClO. This composition provides greater resistance to particle breakage
through the mechanical process. Siqueira et al. (2013) [46], who used NaOH as a pretreat-
ment agent, showed that although sodium hydroxide is efficient in removing lignin, it
better preserves cellulose structures, which can result in greater resistance to mobility.

Therefore, this study highlights the efficiency of milling, which depends not only
on the removal of constituents, but also on the structural changes caused by the type of
chemical pretreatment and milling time applied. The combination of chemical and physical
pretreatment may enhance the dispersion of biomass constituents in the polymer matrix, a
crucial factor for the development of high-performance films and composite materials.
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Table 1. Particle size distribution.

Pretreatments Grinding Time (h)
Particle Diameter (µm)

D10 D50 D90 Dm

in natura

control 38.33 241.59 432.43 242.03
5 15.91 77.12 198.15 96.73

10 18.07 69.67 147.16 78.59
20 4.97 31.37 96.11 43.48

H2SO4

control 15.23 114.40 368.63 156.56
5 15.38 86.57 224.96 108.60

10 13.14 45.83 91.49 49.92
20 7.71 38.49 89.20 44.31
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Table 1. Cont.

Pretreatments Grinding Time (h)
Particle Diameter (µm)

D10 D50 D90 Dm

NaOH

control 13.22 78.60 233.52 104.93
5 13.81 62.32 246.33 100.43

10 14.14 76.38 210.59 99.40
20 13.97 64.47 165.11 79.01

NaClO

control 15.50 79.92 233.95 106.37
5 17.37 70.32 226.92 100.86

10 13.39 57.75 195.35 85.98
20 12.45 49.26 177.00 76.74

Dm: Average diameter; DX: diameter where X% is below the presented particle size value.

3.5. Morphological Analysis

Figure 7 shows the morphological images resulting from the scanning electron mi-
croscopy (SEM) analysis of A. donax L. subjected to different chemical pretreatments and
milling times. When comparing the particle size before and after the final milling period, a
reduction in size and change in particle shape was evident in both the in natura and chemi-
cally pretreated samples, characterized by the presence of elongated and thin particles.
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Rajaonarivony et al. (2023) [60] reported that a comminution friction mechanism tends
to produce a more elongated mean shape than an impact mechanism. This observation
suggests that the particle surface was defibrillated during the grinding process, due to
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friction between the A. donax L. granules, the grinding balls, and the cylinder wall [61].
This phenomenon can be attributed to the increase in surface area, formation of cracks, and
increased porosity during the milling process [62,63].

It is noted that pretreatment with H2SO4 resulted in the greatest structural changes,
and it is evident that acid treatment was the most aggressive in terms of degradation of
the biomass structure. This behavior is in line with the observations of the particle size
distribution analysis (Section 3.4), which showed rapidly disintegrated fibers due to the
combined effect of acid treatment and milling.

All samples showed that both grinding time and biomass type had a significant influence
on particle size, with smaller sizes being observed after 20 h of grinding. Grinding demon-
strated a positive impact on improving the particle size distribution of the biomass processed
during this period, corroborating findings from other studies [64]. Therefore, a thorough
understanding of the variables involved and the application of techniques to optimize particle
size are essential to advance the production of lignocellulosic films. This optimization not only
improves the quality of the final products but also enhances the viability of their applications
in various industries, resulting in more resistant and uniform films.

3.6. Thermal Analysis

The investigation of the thermal properties of A. donax L. after chemical pretreatments and
milling processes is of paramount importance, as it allows the determination of the maximum
operating temperature for each condition without inducing thermal decomposition of the
material. In this sense, Figure 8 presents the thermogravimetric analysis (TGA) and the derived
thermogravimetric analysis (DTG), while Table S1 provides the percentage of mass loss.

In general, the thermogravimetric curves showed three stages of accentuated degrada-
tion, where the first stage represents the initial mass loss between 80 ◦C and 100 ◦C, which
corresponds to the elimination of water (sample moisture); the second stage, also called
the main stage, between 200 ◦C and 350 ◦C, which corresponds to the greatest mass loss
of the lignocellulosic components; and the third stage, between 430 ◦C and 750 ◦C, which
represents the residual mass loss of the components. According to Sathasivam e Haris,
2012 [65], in the decomposition of lignocellulosic materials, hemicellulose decomposes
between 220 ◦C and 315 ◦C and cellulose between 315 ◦C and 400 ◦C and lignin, because it
has a more complex structure, its range is between 150 ◦C and 800 ◦C.

Figure 8a shows the results obtained for the in natura sample. In the main degradation
stage, a mass loss of 53.62% was observed for the control compared to the loss of 45.59%
after 20 h of milling, a difference of 7.93% in the reduction in mass loss. This behavior
may be related to the partial removal of volatile compounds and a possible reduction in
hemicellulose and lignin. The partial removal of these components alters the structure of
the biomass, making it more thermally unstable.

In Figure 8c, the results for the sample pretreated with H2SO4 revealed a mass loss of
58.74% (control) and a loss of 65.10% after 10 h of milling, resulting in an increase in the
difference of 6.36%. This behavior is related to the acid process and milling, which modify
the lignin structure and reduce the particle size. This decrease in particle size increases the
surface area, making the material more susceptible to thermal degradation.

Likewise, it is noted that for the sample pretreated with NaOH shown in Figure 8e,
there was a mass loss of 38.43% (control) and 48.18% after 10 h of milling, an increase in
the difference of 9.75%. NaOH, being an alkaline agent, is efficient in solubilizing lignin
and hemicellulose, which results in a higher concentration of cellulose in the samples and,
consequently, a greater mass loss at the temperatures corresponding to cellulose handling.

In Figure 8g the highest mass loss of 66.40% was observed for the sample pretreated
with NaClO and milled for 10 h. This increase in mass loss may be related to the partial
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removal of non-cellulosic components due to chemical pretreatment. According to Fischer
et al., 2002 [66], the thermal behavior of lignocellulosic materials is related to their chemical
composition and crystallinity. According to Kabir et al., (2012) [67], chemical pretreatment
and treatment conditions also influence temperature and increase degradation loss, which
can eventually weaken the material structure and damage it, impairing its thermal and
mechanical properties. Therefore, it is noted that among the different pretreatments studied
in this work, the highest mass losses were observed for those pretreated with H2SO4 and
NaClO after 10 h of milling, 65.10% and 66.40%, respectively, due to the partial removal of
non-cellulosic components, and confirmed in chemical analyses.
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(e–f) NaOH, and (g–h) NaClO, 0 h (control), 5, 10, and 20 h of milling.

Another relevant fact is shown in Table S1 with the initial and final temperatures (Tstart

and Tend) of the main degradation stages of the chemical pretreatments. According to
Elango et al., (2023) [68], as the non-crystalline character of the material decreases, there is
a shift in the maximum degradation temperature, which will occur at a higher temperature,
since the non-crystalline regions are more active in relation to the crystalline against thermal
decomposition. This fact can be evidenced by comparing the temperatures of the in natura
sample (non-crystalline character) before (control) and after 20 h of milling (Tstart 256.50 ◦C
and Tend 325.92 ◦C), with the sample pretreated with NaClO (crystalline character) for 10 h
of milling (Tstart 292.96 ◦C and Tend 345.13 ◦C). The crystalline character of A. donax L. is in
agreement with the results obtained in the X-ray diffraction analyses.

Furthermore, the increase in milling time also altered the thermal properties of chemi-
cally pretreated A. donax. For all pretreatments, the greatest mass loss was evident after 10 h
of milling. Therefore, this behavior can be explained by the defibrillation of the particles
by the mechanical milling process, altering their particle size and consequently increasing
their surface area, as can be observed in the SEM analyses.

In the DTG curves, two intense peaks are observed, the first being characterized by
the decomposition of hemicellulose and degradation of the crystalline structure of cellulose
(main stage), and the second peak corresponding to the degradation of lignin (secondary
stage). Furthermore, a greater intensity of this peak is noted for those pretreated with
H2SO4 (Figure 8d) after 5 h of milling and pretreated with NaClO (Figure 8h) after 10 and
20 h. According to Monteiro et al., 2013 [69], this behavior is attributed to the presence of
lignin and hemicellulose compounds in its composition.

3.7. FT-IR Analysis

FT-IR was used to investigate the chemical changes resulting from the different pre-
treatment methods. Figure 9 shows the FT-IR spectra obtained for the different samples.
In general, the spectra present an intense peak at 3340 cm−1 that may be related to the
stretching vibrations of the hydroxyl groups of the cellulose and lignin molecules [70].
Although a considerable portion of lignin is removed by the applied treatments, the –OH
signals in the spectra remain practically unchanged due to the high cellulose content in all
the samples. The peak at ~1740 cm−1 is attributed to carbonyl stretching of acetyl groups
in hemicellulose and alpha-keto carboxylic acid in lignin. An additional and less significant
peak is found in the feedstock at ~1240 cm−1, which may be related to CO bonding in
hemicelluloses [71].
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In Figure 9a, the samples subjected to H2SO4 pretreatment exhibit a distinct feature
characterized by an increased intensity in the absorption band at 3340 cm−1 compared to
other pretreatment methods. This variation suggests a possible change in the hydrophilicity
of the material due to the reduction of hydroxyl groups caused by other chemical pretreat-
ments, subsequently leading to a reduction in water absorption. Furthermore, a notable
change can be observed at ~1595 cm−1, attributed to the axial deformation of the C=C
bonds within the aromatic rings of lignin [72]. This change is characterized by a decrease
in peak intensity for samples treated with NaOH and NaClO. This decrease provides
evidence that these specific chemical pretreatments did not completely remove lignin and
hemicellulose from the analyzed material. This observation is consistent with the results of
the chemical characterizations performed in this study.

Comparing the spectra in Figure 9a,b, a certain similarity is apparent; however, there
is a reduction in the intensity of the peak at ~1464 cm−1 for the NaOH-treated sample.
Similarly, the peaks at 3340 and 1688 cm−1 for the H2SO4-treated samples also show
decreased intensity. These results collectively indicate that the milling process does not
induce significant changes in the chemical properties of the material. Therefore, it can be
attributed to deformation or bond breaking [73], which corroborates the results presented
in Section 3.4.
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3.8. XRD Analysis

The XRD technique was applied to investigate the presence of crystalline regions in A.
donax L. samples before (control) and after 20 h of milling. In general, the diffractograms
in Figure 10 exhibit three main peaks, with two more prominent peaks at approximately
15◦ (110) and 22◦ (200), followed by a less intense peak at 34◦ (004). These characteristic
diffraction peaks are typical patterns associated with cellulose [74,75].

Figure 10a shows the diffractograms for the in natura sample. It is noticeable that
after 20 h of grinding, there is a reduction in the intensity of the largest peaks in relation
to the other grinding times. This phenomenon suggests that prolonged grinding induces
exfoliation and partial rupture of the crystalline region of cellulose due to friction between
the A. donax L. particles, the grinding balls and the walls of the jar. Consequently, this
exposes a greater number of hydroxyl groups, which is in agreement with FT-IR analyses.
Samples pretreated with H2SO4 aim to isolate the (insoluble) lignin, thus removing the
holocellulose (hemicellulose and cellulose).

Although lignin is an amorphous polymer with a three-dimensional structure, the sam-
ple pretreated with H2SO4 exhibited peaks in the diffractograms, illustrated in Figure 10b,
with similar behavior to that of the in natura sample, but with higher peak intensities.
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This increase in peak intensity can be attributed to the partial removal of extractives and
hemicelluloses, which leads to the reduction in the amorphous portion of the structure,
but mainly due to the high content of cellulose remaining in the samples (as evidenced by
chemical characterization).

The samples pretreated with NaOH (Figure 10c) and NaClO (Figure 10d) exhibited
behavior consistent with the diffraction patterns, corresponding to the cellulose peaks. This
pattern can be attributed to the higher cellulose content associated with these pretreatment
methods compared to the previous ones. Table 2 clearly shows that the crystallinity of
chemically pretreated A. donax L. samples depends on the grinding time, which probably
improves the surface area and increases their amorphism. The lowest crystallinity, of
17.43%, was observed for the sample pretreated with H2SO4 during 20 h of milling. The
results presented attest that the crystallinity decreases with the increase in milling time.
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Figure 10. XRD analysis of A. donax L. (a) in natura; and pretreated with: (b) H2SO4; (c) NaOH, and
(d) NaClO, 0 h (control), 5, 10, and 20 h of milling.

Table 2. Average crystallinity index of the samples.

Pretreatments
IC%

Control 5 h 10 h 20 h

in natura 23.24 21.80 23.03 19.52
H2SO4 35.81 19.05 33.63 17.43
NaOH 28.05 28.09 29.92 24.73
NaClO 33.39 37.04 30.04 30.76

4. Conclusions
This study demonstrates that the combination of chemical and physical pretreatments

is an innovative and effective approach for the modification of Arundo donax L. biomass,
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making it promising for the future production of high-quality and high-performance
biodegradable materials. Pretreatment with NaClO was the most efficient in terms of
lignin removal and cellulose preservation, resulting in a high cellulose content (67%). This
suggests greater efficiency in the formation of homogeneous materials for biodegradable
packaging applications. In addition, the samples pretreated with NaClO showed bimodal
behavior in the particle size distribution at milling times of 10 and 20 h. Pretreatment with
H2SO4, although resulting in a high residual lignin content (24%), was effective in reducing
the average particle diameter to 44.31 µm.

In addition, the study innovates by correlating the effects of pretreatment and milling
with critical parameters, such as thermal stability, density, and morphological changes.
The observed improvements in thermal properties, with a mass loss of 66.4% for NaClO-
treated samples, highlight the role of combined processes in modifying material resilience
and performance. Morphological analysis revealed distinct structural transformations,
such as defibrillation and the formation of elongated particles, which are critical for the
development of biodegradable films and composite materials.
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