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Abstract: The COVID-19 disease is a major problem affecting human health all over the world.
Consequently, researchers have been trying to find solutions to treat this pandemic-scale disease.
Even if there are vaccines and approved drugs that could decrease the spread of this pandemic,
multidisciplinary approaches are still needed to identify new small molecules as alternatives to
combat COVID-19, especially those from nature. In this study, we employed computational ap-
proaches by screening 17 natural compounds from the tropical brown seaweed Sargassum polycystum
known to have anti-viral properties that benefit human health. This study assessed some seaweed
natural products that are bound to the PLpro of SARS-CoV-2. By employing pharmacophore and
molecular docking, these natural compounds from S. polycystum showed remarkable scores for
protein targets with competitive scores compared to X-ray crystallography ligands and well-known
antiviral compounds. This study provides insightful information for advanced study and further
in vitro examination and clinical investigation for drug development prospects of abundant yet
underexploited tropical seaweeds.

Keywords: algae; computer modelling; molecular docking; natural compounds; Phaeophyceae; virus

Key Contribution: The study screened 17 natural compounds from Sargassum polycystum seaweed
and found that these compounds showed remarkable scores for PLpro of SARS-CoV-2 through in
silico studies. This result is important in drug development for COVID-19 disease.

1. Introduction

Severe Acute Respiratory Syndrome-Coronavirus-2 or SARS-CoV-2 has become a
transmissible pandemic virus targeting the respiratory system that rapidly and seriously
affects global health, causing the coronavirus disease in 2019 (COVID-19) [1]. This disease
was initially discovered in Wuhan City, China, in December 2019 and has now spread
to approximately 230 countries [2]. Several symptoms are found in patients infected by
COVID-19, mainly including dry cough, body ache, high fever, fatigue, difficulty breathing,
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pressure build-up in the chest cavity, and speech difficulties [3]. Specifically, the endothelial
cells of the lung are the main targets where the SARS-CoV-2 binds. This would then
stimulate an immune response and causes cytokine storm syndrome [4,5]. Afterward, this
results in fatal respiratory failure, which is considered the primary reason for mortality
in COVID-19 patients. Furthermore, about 6.34 million deaths have been reported until
the mid-year of 2022, and an average of 3.39 million new cases weekly in June 2022 have
been registered, despite a total of 12,037,259,035 vaccine doses being administered. The
World Health Organization (WHO) has therefore acknowledged COVID-19 as a worldwide
pandemic in this century [2,6,7].

Despite its lethality, no selective treatment using antiviral drugs to treat COVID-19
exists [8]. Instead, the patients are mainly administered supportive treatment. In an attempt to
overcome this issue, more than 200 drugs which FDA has previously approved have been used
for clinical experiments [9]. Numerous antiviral agents, namely ritonavir, lopinavir, remdesivir,
favipiravir, and oseltamivir, as well as antimicrobial agents, namely antiprotozoals and
azithromycin, and anti-inflammatory drugs, including glucocorticoids, hydroxychloroquine,
and chloroquine, have been tried for COVID-19 management and treatment. Nevertheless,
the administration of these drugs could potentially result in high toxicity among treated
patients [10,11]. Accordingly, novel treatment using new compounds to target the virus
directly is immediately required to control the COVID-19 pandemic.

Among several resources, the use of natural medicines from medicinal plants, which
have been reported to possess a rich and wide range of bioactive compounds, has been
extensively investigated in treating various diseases. Currently, the discovery of bioactives
from marine sources has attracted the interest of researchers worldwide. For example, as-
cidians have been reported to produce secondary metabolites with antimicrobial properties.
Additionally, in 2021, a total of 1425 new compounds have been identified as bioactive
substances [12,13]. Moreover, to address the eradication of COVID-19, the application
of bioactive compounds from medicinal plants has been considered an alternative treat-
ment [14,15] as they have been found to be highly effective with less toxicity. In the field
of drug discovery, the application of computational techniques has become the main op-
tion, especially in addressing urgent requirements for new drugs. Compared to other
approaches, the computational approach does not entail high costs and a long time. Essen-
tially, numerous studies have reported its successful application in screening for potential
benefits of several natural products as bioactive agents to target SARS-CoV-2 [6,11,16,17].
Specifically, we have previously reported the potential antiviral activity of the marine
red alga Halymenia durvillei Bory in inhibiting SARS-CoV-2 using a computational study.
Our study found that the bioactive compound in the red alga showed a high affinity to
3CL-Mpro, which is an essential enzyme for SARS-CoV-2 replication [18]. Furthermore,
in addition to 3CL-Mpro, another protein, namely PLpro, has also been reported to play
essential roles in the replication of SARS-CoV-2.

In this study, we investigated the potential antiviral activity of another type of seaweed,
the marine brown alga Sargassum polycystum C. Agardh using an in silico computational
model against SARS-CoV-2. This plant has been discovered to show antiviral activity
against numerous virus-associated diseases. For the first time, we investigate the bioactive
compounds from S. polycystum against PLpro using an in-silico approach. Ethanolic
compounds further analyzed using GC-MS were screened for their antiviral activities.
This study provides new information about the potential anti-SARS-CoV-2 agents from S.
polycystum and reinforces previous findings by applying the computational approach as an
initial step to discovering new COVID-19 treatments.

2. Materials and Methods
2.1. Sample Collection and Extraction

Samples of the brown seaweed Sargassum polycystum were collected from around
Lae-Lae Island, Makassar, Indonesia (119◦20.52′ E, 5◦7.38′ N). The samples were identified
by the use of morphometric techniques. The Faculty of Marine Science and Fisheries at
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Hasanuddin University is where voucher samples are kept. Algae samples were dried in
a herb drier after being cleaned with distilled water to eliminate any remaining particles.
Dried algae (90.8 g) were macerated after adding 700 mL of 96% ethanol. Then, the mixture
was filtered using a rotary evaporator.

2.2. Analysis of Extracts Using Gas Chromatography-Mass Spectrometry (GC-MS)

The bioactive elements of Sargassum polycystum extracts were discovered using an
Ultra Shimadzu QP2010 Gas Chromatograph Mass Spectrometer paired with an AOC-20i
Autosampler. An SH-Rxi-5Sil capillary column MS with a 30 m column length and 0.25 mm
inner diameter was utilized for the analysis, and a Vigreux column with a 20 cm length
and 2.4 cm inner diameter and an injection volume of 1 L was employed for vacuum
fractionation distillation. A 250 mL round bottom flask was filled with 5 g of S. polycystum
extract. The flask was next attached to a vacuum pump, fractionation column, and batch
jacket, which heated it to 200 ◦C under 96 kPa of pressure. The distillates were collected
at each change in steam temperature during the distillation procedure, and the amounts
of alcohol in each fraction were measured. For example, helium carrier gas was used in
GC-MS analysis with pressure at 76.9 kPa, injector temperature in splitless mode at 250 ◦C,
carrier gas flow rate at 14 mL/min, and a ratio of 1:10. The ion source and interfaces were
200 ◦C and 280 ◦C, respectively, in temperature. The solvent cut-off time was 3 min, and the
mass spectrum ranged from 400 to 700 m/z. With a hold time of two minutes, the column’s
starting temperature was 110 ◦C. With a final temperature of 280 ◦C and a holding period
of 9 min at a rate of 5 ◦C/min, the analysis was carried out at a rate of 10 ◦C/min up to
200 ◦C. It took 36 min to complete. The NIST and Wiley libraries were used to determine
the bioactive chemicals [19].

2.3. Preparation of Ligands and SARS-CoV-2 PLpro

The Chimera and PyMoL were used to prepare the protein structures and the ligands.
SARS-CoV-2 enzyme structure was obtained from the Protein Data Bank (PDB) for protein
preparation: PLpro (7JIR) with resolution 2.79 Å. Then, the protein structure was prepared
for the docking approach by removing water and non-standard molecules, adding hy-
drogen, extracting X-ray crystallography ligand (Snyder 457), adding charged ions, and
doing minimization with Gasteiger force field in UCSF Chimera. Meanwhile, all of the
three-dimensional structures and canonical smiles from GC/MS data, as well as inhibitors,
were gathered in ligand preparations from PubChem (https://pubchem.ncbi.nlm.nih.gov/,
accessed on 23 March 2022). Any compounds were generated using UCSF Chimera 1.14
(https://www.cgl.ucsf.edu/chimera/, accessed on 23 March 2022) by adding hydrogens
and charges, and all unavailable 3D compound structures were converted using the NIH
molecule converter at https://cactus.nci.nih.gov (accessed on 25 March 2022). The com-
pounds were then prepared into their 3D structure using the Gasteiger Force Field in UCSF
Chimera and then further screened in the pharmacophore and molecular docking study.

2.4. Pharmacophore-Based Virtual Screening

The pharmacophore study used LigandScout version 4.4 to analyze pharmacophore
interaction features of protein and ligand structures. The structure-based pharmacophore
model was initiated by creating a pharmacophore model from the initial ligand of the
co-crystallized protein structure Snyder 457 from PLpro (7JIR PDB). Thereafter, the hit
compounds from virtual screening are analyzed for their pharmacophore features.

https://pubchem.ncbi.nlm.nih.gov/
https://www.cgl.ucsf.edu/chimera/
https://cactus.nci.nih.gov
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2.5. Molecular Docking

The Scripps Research Institute’s AutoDock Tools version 1.5.6 and Cambridge Crys-
tallographic Data Centre’s GOLD were both used for the docking study. A dataset of
17 natural compounds from S. polycystum alga and the co-crystallized ligand (Snyder 457)
were used for molecular docking. Grid size is manually defined according to the active site
of the X-ray crystallography PLpro structure, and the exhaustiveness were set by default.
The grid scale is 50.23, 29.9, 0.74 (x, y, z), and the box size is 20 × 20 × 20. Moreover, the
docking results were analyzed based on a combination of binding energy, ligand conforma-
tions, binding site, and favorable interactions. The best binding affinity and fitness scores
from compounds were analyzed for their molecular interactions with active site residues
required for the biological activity of the virus.

2.6. Docking Validation and Ligand Efficiency

In validating the docking results, the re-docking method of the co-crystalized ligand,
Snyder 457, was applied as the positive control. Using AutoDock, the ligand was taken
out of the protein’s active site and docked back at the original location. The docked co-
crystallized was then superimposed with the re-docked protein-ligand complex result,
and the root mean square deviation was calculated using PyMOL. The docking result was
accepted if the docking co-crystallized ligand and the re-docked co-crystallized ligand
bound to the protein have the same position at the active site with a similar pose mode
and low rmsd. These steps were performed to validate the docking procedure to ensure
the validation of the docking [20]. Each ligand’s efficiency should also be determined in
accordance with its affinity and size since this will help a chemical be further optimized.
The quantity of non-hydrogen atoms in the ligand that were taken into consideration affects
the −∆G or free energy of binding of each ligand to HA [21].

2.7. Molecular Dynamics

GROMACS 2021.5 was used for MD simulations for the PLpro-Cholesterol and PLpro-
Snyder 457 complex for 50 ns. The unit cell—a dodecahedron box with a minimum
separation from the protein surface of 1 nm—was solvated using the Simple Point Charge
(SPC) water model. The topologies of the target were constructed using the CHARMM36
force field. The system was subjected to energy minimization before the MD run using the
steepest descent integrator for 50,000 steps with a force convergence of 1000 kcal/mol/nm.
After that, each protein-ligand combination was equilibrated using NVT and NPT ensem-
bles within 100 ps. The systems were connected to temperature and pressure controllers
by Berendsen and Parrinello-Rahman, respectively, to maintain a temperature of 300 K
and a pressure of 1 bar throughout equilibration. MD simulations were run for 50 ns, and
the system’s coordinates were stored every 2 fs. The duration of 50 ns is considered a
sufficient time to achieve a balance between computational time and information. When
observing the fluctuation graph, the data provided already show a stable equilibration.
Several analytic modules included in the GROMACS package were used to undertake
structural and conformational analysis of all systems. The snapshots’ binding free energies
were treated to MM-PBSA (MMPoisson-Boltzmann surface area).
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3. Results
3.1. GC/MS

In this study, phytochemicals from Sargassum polycystum were extracted using ethanol
as the solvent, resulting in the identification of 17 compounds. The GC–MS chromatograms
of these compounds are presented in Figure 1, and detailed information about each com-
pound can be found in Table 1. Analysis of Table 1 reveals that the compound with the
highest area percentage (12.85%) is 1,3,5-triazine-2,4-diamine,6-chloro-n-ethyl (C2). On the
other hand, the compound with the lowest area percentage (0.99%) is Cyclohexasiloxane,
Dodecamethyl (C9). Following these, Methenamine (C14) exhibits an area percentage
of 6.73%, while Hexadecanoic Acid (C12) and 1,3-dioxane,4,6-dimethyl (C3) show area
percentages of 6.66%, respectively. Other compounds display areas of less than 5%. The
majority of the identified compounds are fatty acids or lipids, constituting the prominent
phytochemicals derived from this seaweed, as shown in Table 1 (refer to Figure 2).
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Table 1. The 17 natural compounds Sargassum polycystum.

No Compounds Smiles PubChem ID Area%

1 1,2-benzenedicarboxylic Acid CC(C)CCCCCC1=C(C(=C(C=C1)C(=O)O)C(=O)O)CCCCCC(C)C 18972250 2.05
2 1,3,5-triazine-2,4-diamine, 6-chloro-n-ethyl CCNC1=NC(=NC(=N1)N)Cl 13878 12.85
3 1,3-dioxane, 4,6-dimethyl-. CC1CC(OCO1)C 136893 5
4 1,6-octadien-3-ol, 3,7-dimethyl CC(=CCCC(C)(C=C)O)C 6549 2.31
5 1-decanol CCCCCCCCCCO 154477145 2.4
6 9-octadecenoic Acid (Z)- CCCCCCCCC=CCCCCCCCC=O 17029 3.11
7 Azulene CC1CCC2=C(CCC(CC12)C(=C)C)C 520826 2.07
8 Cholest-5-en-3-ol (3.Beta.)- CC(C)CCCC(C)C1CCC2C1(CCC3C2CC=C4C3(CCC(C4)O)C)C 5997 1.51
9 Cyclohexasiloxane, Dodecamethyl- C[Si]1(O[Si](O[Si](O[Si](O[Si](O[Si](O1)(C)C)(C)C)(C)C)(C)C)(C)C)C 10911 0.99
10 Dotriacontane CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 11008 7.9
11 Heneicosane, 11-cyclopentyl CCCCCCCCCCC(CCCCCCCCCC)C1CCCC1 23170 2.6
12 Hexadecanoic Acid CCCCCCCCCCCCCCCC(=O)O 985 6.66
13 Loliolide CC1(CC(CC2(C1=CC(=O)O2)C)O)C 14334 1.05
14 Methenamine C1N2CN3CN1CN(C2)C3 4101 6.73
15 Neophytadiene CC(C)CCCC(C)CCCC(C)CCCC(=C)C=C 10446 3.1
16 N-formylmorpholine C1COCCN1C=O 20417 1.59
17 Octadecanoic Acid, Methyl Ester CCCCCCCCCCCCCCCCCC(=O)OC 8201 1.3
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Figure 2. The chemical structure 17 natural compounds Sargassum polycystum.

3.2. Identification of 3D-Pharmacophore

The identification of a structure-based pharmacophore model from PLpro enzyme with
its inhibitor Snyder 457 (see Figure 3) revealed five hydrophobic interactions with Met208,
Tyr264, Tyr268, Gln269, Tyr273, and Thr301, two hydrogen-bond acceptors from Gln269
and Tyr264 with O atom and two hydrogen-bond donors from Asp164 and Tyr268 with NH
and NH2, respectively. Furthermore, the virtual screening result from the pharmacophore
model of Snyder 457 yielded nine natural compounds of S. polycystum as follows: C1, C2,
C3, C4, C7, C8, C9, C13, and C15 (see Figure 4). The highest pharmacophore-fit score was
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C4 with four hydrophobic interactions and a 66.04 score with two hydrogen bond acceptors
at the OH atom.
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Figure 4. Structure-based pharmacophore screening result of PLpro inhibitors (red arrows, hydrogen
bond acceptor (HBA); greens arrow, hydrogen bond donor (HBD); yellow lines, hydrophobic sites). A.
Snyder 457 (2HBA;2HBD), C1(2HBA;0HBD), C2(2HBA;0HBD), C3(2HBA;0HBD), C4(2HBA;0HBD),
C7(0HBA;0HBD), C8(2HBA;1HBD), C9(2HBA;0HBD), C13(2HBA;0HBD), and C15(0HBA;0HBD).
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3.3. SARS-CoV-2 Enzyme Docking PLpro

To gain insight into the molecular interaction of PLpro enzyme or papain-like protease
enzyme that regulates SARS-CoV-2 virus replication, 17 natural compounds of Sargassum
polycystum have been screened in molecular docking. Through assessing compounds, the
most potent compounds have been examined based on their binding affinity and molecular
interaction. The most potential compounds based on AutoDock calculation (see Table 2)
were C8 and C7 with −6.5 kcal/mol, which was lower than the positive control Snyder
457 with −10 kcal/mol. The compounds were then followed by C1 (−6.0 kcal/mol),
C6 (−5.5 kcal/mol), and C12 (−5.4 kcal/mol). Meanwhile, based on GOLD scoring (see
Table 3), the best natural compound was C11 with 39.08 which was slightly lower than
Snyder 457 with 42.04, and the score of C11 was higher than C8 to around 10 scores.

Table 2. The five most potent natural compounds against PLpro enzyme based on AutoDock software.

Protein Molecular Docking Scores

PLpro

Compound Snyder
457 Cholesterol Azulene 1,2 Benzenedicar-boxylic acid 9-octadecenoic acid (Z) Hexadecanoic acid

AutoDock −10 −6.5 −6.5 −6 −5.5 −5.4
HA 23 28 15 28 19 18
LE −0.43 −0.23 −0.43 −0.21 −0.29 −0.30

Table 3. The five most potent natural compounds against PLpro enzyme based on GOLD software.

Protein Molecular Docking Scores

PLpro
Compound Synder457 Heneicosane,

11-cyclopentyl Neophytadiene Octadecanoic Acid, Methyl Ester 9-octadecenoic acid (Z) Cholesterol

GOLD 42.04 39.08 31.54 29.91 29.16 28.78

Regarding the visualization of molecular docking (see Figure 5), the conformation
of C8 bound to the cleft of the enzyme was not deep enough, such as Snyder 457 (see
Figure 6), but both compounds were fairly attached to the active site of the enzyme. The
interaction between ligand and protein contained several residues with 5 Å at the active site:
Cys111, Lys157, Leu162, Gly163, Asp164, Val165, Arg167, Ala246, Pro247, Pro248, Tyr264,
Gly266, Asn267, Tyr268, Gln269, Gly271, His272, Tyr273, and Thr301. The compounds of C8
formed one hydrogen bond with Asn267 and developed a Pi-Sigma interaction with Tyr264.
Similarly, Snyder 457 formed several hydrogen bonds with PLpro active site residues
Asp164, Gln269, and Tyr264, where Asp164 generated Pi-Anion bonding interaction with
the ligand.

3.4. SARS-CoV-2 Enzyme Molecular Dynamics PLpro

The molecular dynamics study of PLpro-Cholesterol complex, PLpro-Snyder 457 com-
plex, and the apo system continued to understand further the flexibility degree. Gromacs
version 2021.5 was employed to carry out the investigation (see Table 4). Temperature,
pressure, and potential/kinetic energy were examined as quality control parameters for
the simulated system to ensure that the simulations were accurate. The root means square
deviations (RMSD) of the C-alpha atoms of each complex were computed to investigate the
complexes’ rigidity (see Figure 7). The average RMSD in the PLpro-Cholesterol complex
is 0.15 nm, and the PLpro-Snyder 457 complex is about 0.14 nm. Because of their greater
flexibility, the apo PLpro, the complexes of Cholesterol, and Snyder 457 showed a fairly
stable fluctuation in RMSD. Around 10 ns, the apo PLpro achieved a stable state, and after
10 ns, the PLpro-Cholesterol and PLpro-Snyder 457 also stabilized. In both systems, there
is some variation after 25 ns, but it remains constant for the rest of the simulation duration.
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Table 4. The value of MDS parameters for PLpro complexes and Apo system.

Parameters PLpro-Cholesterol Plpro-Snyder 457 Apo System

RMSD (nm) 0.15 0.14 0.15
RMSF (nm) 0.12 0.15 0.1

Rg (nm) 2.34 2.37 2.37

For estimating residue flexibility during dynamics of the targeted protein, the back-
bone atoms of each amino acid residue of PLpro in the Apo PLpro, PLpro-cholesterol, and
PLpro-Snyder 457 complex are calculated and presented in Figure 8 as RMSF (Root Mean
Square Fluctuations). In PLpro-Cholesterol, the average RMSF is about 0.12 nm, and in
PLpro-Snyder is slightly higher at 0.15 nm. Otherwise, the average apo system has lower
rmsf with 0.1 nm. The spikes of each system can be seen at the same locations as shown in
Figure 8 with Thr225, Cys226, Gly227, and Lys228.
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The degree of protein compaction is indicated by the gyrating radius. A collection of
atoms’ mass-weighted RMSD is calculated from their shared center of mass. As a conse-
quence, the examination of the Rg’s trajectory shows how the protein’s overall dimension
has changed during dynamics. Figure 9 compares the findings of radius of gyration (Rg)
studies for the apo PLpro, the PLpro-Snyder 457 complex, and the PLpro-Cholesterol
complex. PLpro-average Cholesterol’s Rg value was 2.34 nm, with a considerable decline
occurring before 15 ns (Figure 9). On the other hand, the PLpro-average Snyder 457’s Rg
value was around 2.37 nm, the same as the Rg of the Apo system.
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Binding free energy is the total of all the non-bonded interactions. It was estimated
for PLpro-Cholesterol and PLpro-Snyder 457 using the MM-PBSA method. From the
results obtained from the MM-PBSA analysis, the average binding free energies (∆GBind)
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of PLpro-Cholesterol and PLpro-Snyder 457 complexes were calculated during the 50 ns
simulation. The resulting ∆GBind of PLpro-Cholesterol and PLpro-Snyder 457 complexes
were found to be−20.91 kJ mol–1 and−30.66 kJ mol–1, respectively. The details of the
MM-PBSA calculation of the complexes are summarized in Table 5.

Table 5. Calculated binding free energies of PLpro complexes.

Ligand ∆Gvdw ∆Gelec. ∆Gpolar ∆Gsurf ∆GMM/PBSA

Cholesterol −27.58 −1.03 7.71 −3.44 −20.91

Snyder 457 −34.48 −34.41 38.23 −4.49 −30.66

4. Discussion

The utilization of seaweeds has improved and benefitted many aspects of human life.
The consumption of seaweeds in Asia, either as part of the traditional diet or therapeutic
alternative, appears to be growing in the West. Seaweeds contain many kinds of important
natural compounds which have been proven experimentally to prevent or treat some
diseases. Seaweed compounds include polysaccharides, minerals, antioxidants, and lots
of essential nutrients such as fatty acids, which could promote human health as antiviral,
antitumor, anti-inflammatory, and anticancer agents [22]. Recent studies have highlighted
the significant nutritional value of seaweeds and the remarkable properties exhibited by
their bioactive compounds. Seaweeds belonging to the classes Phaeophyceae, Rhodophyta,
and Chlorophyta are known to contain unique compounds that offer various potential
health benefits. Research has indicated that the consumption of seaweeds is associated
with a reduced risk of ischemic heart disease and lower mortality from stroke, possibly
due to their ability to regulate blood pressure and lower lipid levels. These findings
emphasize the potential role of seaweeds as valuable allies in promoting our overall health
and well-being [23,24].

Although many studies have identified potential seaweed natural compounds for
various medicinal applications, the search for natural compounds useful as effective drugs,
vaccines, and dietary supplements for the current COVID-19 pandemic remains a high
priority for preserving human health. Recent in silico studies have highlighted the health
benefits of seaweed, particularly in the context of COVID-19. These studies have re-
vealed the potential of seaweed compounds to inhibit the binding of the omicron B.1.1.529
spike protein’s receptor-binding domain (RBD) with the ACE2 receptor, which plays a
crucial role in the viral entry process. Additionally, research on aldehyde derivatives
from seaweeds has shown promising results in the fight against SARS-CoV-2. Specifically,
3,4-dihydroxybenzaldehyde has been predicted to exhibit interactions with the 3C-like
protease, an important viral enzyme. These findings suggest that seaweed compounds
have the potential to be developed as effective therapeutics against COVID-19 by targeting
key viral proteins and inhibiting viral replication.

In the current study, the assay of 17 natural compounds from the brown seaweed
Sargassum polycystum identified promising antagonistic action against the SARS-CoV-2
enzymes PLpro, which play an important role in the metabolism of the SARS-CoV-2. There-
fore, their potential as antivirals was investigated by computer-aided drug discovery, which
consists of a pharmacophore study (ligand-based pharmacophore and structure-based
pharmacophore model), virtual screening, and molecular docking. Among the 17 natural
compounds found in S. polycystum, fatty acids are common and have shown remarkable
results compared to co-crystalized ligands and repurposed drugs against the SARS-CoV-2
enzymes. Intriguingly, some studies reported that fatty acids have antiviral, antibacterial,
and antifungal activity. Studies of fatty acids as antiviral agents have shown that they could
inhibit viral enzymes either through their replication or expression genes [25]. Furthermore,
a recent study of SARS-CoV-2 inhibitors has found that polyunsaturated, monounsaturated,
and saturated fatty acids could inhibit the receptor of SARS-CoV-2 entry, hACE2 [26].
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PLpro enzyme plays an essential role in processing viral polyproteins to produce a
functional replicate complex, reproduction of the virus, and immune system responses. It is
one of the SARS-CoV-2 proteases that was targeted for the development of antivirals [27,28].
The structure of PLpro (7JIR PDB) consisted of 318 amino acids, 9 α-helices, 19 β-sheets,
and 27 loops, while the active sites of the enzyme were located around the helices α5, α8,
13β-15β, 18β, loop15, and loop22. The inhibitor assay of the crystallized ligand PLpro and
the list of natural compounds against the PLpro enzyme were analysed through pharma-
cophore and molecular docking methods. In structure-based pharmacophore, which is
based on pharmacophore features from Snyder 457, it was revealed that 1,6-octadien-3-ol,
3,7-dimethyl is the promising inhibitor for the PLpro enzyme. The pharmacophore feature
of Synder457, also known as GRL0617, was used as the model due to its potential to be an
inhibitor of PLpro. The ability of Snyder 457 to induce a conformational change of PLpro
has been investigated by the molecular dynamics approach [29]. Therefore, this study
has conducted the prior step in molecular docking using two standard docking software,
AutoDock, and GOLD, to assess and compare the ability of the 17 natural compounds
from S. polycystum against Snyder 457. Both AutoDock and GOLD yielded different but
promising results, in which Cholest-5-en-3-ol (3.Beta.) was identified by AutoDock and
Heneicosane, 11-cyclopentyl by GOLD as candidate inhibitors for PLpro. Furthermore,
previous in silico studies have provided insights into the potential health benefits of specific
compounds found in seaweed. For example, Cholesterol, Cholestan-3-ol, 2-methylene-,
(3 beta, 5 alpha) derived from C. officinalis has shown activity against specific residues, such
as LEU452 and ALA484, within the omicron B.1.1.529 spike protein. This suggests its po-
tential as a targeted inhibitor against the spike protein [30]. Additionally, heneicosane from
Bontia daphnoides L. has demonstrated a strong affinity towards bHSV type-1 thymidine
kinase (TK) and HSV type-1 DNA polymerase (DP), indicating its potential as a therapeutic
candidate against herpes simplex virus type-1. These findings provide valuable insights
into the specific molecular interactions of these seaweed-derived compounds and highlight
their potential as antiviral agents for targeted therapeutic interventions.

In summary, combining the two methods, C8, C7, C13, C11, C10, and C15 are included
as part of the most potent compounds to inhibit SARS-CoV-2 and notably, C8 and C11 were
rated among the other compounds by the two docking methods, AutoDock and GOLD. Be-
yond the results from both docking methods, the conformation, mode, and intermolecular
interaction are taken carefully and analyzed for their effectiveness as inhibitors. All the
compounds were bound precisely to the active site, even though some of them were not
intimately bound to the cleft or the active site of each enzyme due to their size.

AutoDock is different from GOLD. Identifying the best compound from S. polycystum
has been observed in the structural interaction between the protein complexes and each
ligand (compound); however, the ranking from the two docking methods is different due
to different packages and force-fields [31]. Cautious with the results from each docking
method, the study found that some of the candidate compounds did not have any hydrogen
bond interaction with protein, although pharmacophore has shown that the compound
should have some interaction of hydrogen and bind strongly to the active site. Although
different results were found using the two docking methods, the main objective was to find
any candidate compounds from S. polycystum against SARS-CoV-2 as a drug or dietary
additive by computational approach or in silico methods. These approaches have provided
lots of insight and knowledge, especially the features and characteristics of SARS-CoV-2
inhibitors. The precise binding location, conformation, and free energy of each natural
compound compared to the positive control from each enzyme have shown that natural
compounds can compete with other well-known drugs based on their molecular interaction
and binding affinity score revealed by the in-silico study. Therefore, this study could be
a reference for any further drug development for SARS-CoV-2, especially from seaweed
sources, and the optimization of known compounds from S. polycystum by in silico studies
such as molecular dynamics, MM/PBSA, to obtain better insights into the ability of each
compound as potential SARS-CoV-2 inhibitors.
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5. Conclusions

In conclusion, this study has investigated natural compounds from Sargassum polycystum
as potential antiviral agents against SARS-CoV-2. Our results suggest that the 17 natural
compounds obtained from S. polycystum could be promising antiviral agents, particularly
inhibiting the PLpro enzyme of SARS-CoV-2. While many therapeutic and nutritional benefits
of S. polycystum have been reported, the human consumption of this abundant seaweed still
needs to be popularized. With its promising beneficial effects in the prevention of SARS-CoV-2
being further elucidated, the development of seaweed-based medicine will provide additional
ammunition for the growing variety of anti-SARS-CoV-2 medication.
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