In Vitro: The Extraordinary Enhancement in Rutin Accumulation and Antioxidant Activity in Philodendron “Imperial Red” Plantlets Using Ti-Mo-Ni-O Nanotubes as a Novel Elicitor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ti-Mo-Ni Oxide NTs Preparation
2.2. Plant Material
2.3. Ti-Mo-Ni-O NTs Experiment on Philodendron erubescens
2.4. High-Performance Liquid Chromatography with a Diode-Array Detector (HPLC–DAD) Analysis
2.5. Phytochemical Analysis
2.5.1. Total Phenolic and Total Flavonoids
2.5.2. Determination of Antioxidant Activity
2.6. Statistical Analysis
3. Results and Discussion
3.1. Material Properties and Characterization
3.2. Ti-Mo-Ni-O NTs Experiment on Philodendron erubescens
3.3. High-Performance Liquid Chromatography with a Diode-Array Detector (HPLC–DAD) Analysis
3.4. Biochemical Analysis of Total Phenolic and Total Flavonoid Compounds
3.5. Total Antioxidant Activity Assay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Ti-Mo-Ni-O NTs | Titanium–Molybdenum–Nickel–Oxide Nanotubes. |
EDX | Energy-Dispersive X-ray. |
XRD | X-Ray diffraction analysis. |
SEM | Scanning Electron Microscopy. |
P. erubescens | Philodendron erubescens. |
ABTS+ Assay | 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) Assay. |
FRAP Assay | Ferric ion-reducing antioxidant power assay. |
NTs | Nanotubes. |
NPs | Nanoparticles. |
MS medium | Murashige and Skoog medium. |
BA | Benzyl Adenine. |
TPTZ Reagent | 2,3,5-Triphenyltetrazolium chloride. |
TFA | Trifluoroacetic acid. |
HPLC–DAD | High-Performance Liquid Chromatography with a Diode-Array Detector. |
References
- Santiago, J.A.; Cardoso1, G.A.; Figueiredo, A.C.S.; Moraes, J.C.; Assis, F.A.; Teixeira, M.L.; Santiago, W.D.; Sales, T.A.; Camargo, K.C.; Nelson, D.L. Chemical Characterization and Application of the Essential Oils from Chenopodium ambrosioides and Philodendron bipinnatifidum in the Control of Diabrotica speciosa (Coleoptera: Chrysomelidae). Am. J. Plant Sci. 2014, 5, 3994–4002. [Google Scholar] [CrossRef]
- Maury, G.; Rodríguez, D.; Hendrix, S.; Arranz, J.; Boix, Y.; Pacheco, A.; Díaz, J.; Morris-Quevedo, H.; Dubois, A.; Aleman, E.; et al. Antioxidants in Plants: A Valorization Potential Emphasizing the Need for the Conservation of Plant Biodiversity in Cuba. Antioxidants 2020, 9, 1048. [Google Scholar] [CrossRef]
- Amer, A. Biotechnology Approaches for In Vitro Production of Flavonoids. J. Microbiol. Biotechnol. Food Sci. 2018, 7, 457–468. [Google Scholar] [CrossRef]
- Khan, A.K.; Kousar, S.; Tungmunnithum, D.; Hano, C.; Abbasi, B.H.; Anjum, S. Nano-Elicitation as an Effective and Emerging Strategy for In Vitro Production of Industrially Important Flavonoids. Appl. Sci. 2021, 11, 1694. [Google Scholar] [CrossRef]
- Begum, P.; Fugetsu, B. Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L.) and the role of ascorbic acid as an antioxidant. J. Hazard. Mater. 2012, 243, 212–222. [Google Scholar] [CrossRef]
- Samadi, S.; Jamal, M.; Azizi, M.; Samiei, L. Chemosphere Multi-walled carbon nanotubes stimulate growth, redox reactions and biosynthesis of antioxidant metabolites in Thymus daenensis celak. in vitro. Chemosphere 2020, 249, 126069. [Google Scholar] [CrossRef] [PubMed]
- Carbajal-Vázquez, V.H.; Gómez-Merino, F.C.; Alcántar-González, E.G.; Sánchez-García, P.; Trejo-Téllez, L.I. Titanium Increases the Antioxidant Activity and Macronutrient Concentration in Tomato Seedlings Exposed to Salinity in Hydroponics. Plants 2022, 11, 1036. [Google Scholar] [CrossRef] [PubMed]
- Lyu, S.; Wei, X.; Chen, J.; Wang, C.; Wang, X. Titanium as a Beneficial Element for Crop Production. Front. Plant Sci. 2017, 8, 597. [Google Scholar] [CrossRef]
- Shenavaie Zare, A.; Ganjeali, A.; Vaezi Kakhki, M.R.; Cheniany, M.; Mashreghi, M. Plant elicitation and TiO2 nanoparticles application as an effective strategy for improving the growth, biochemical properties, and essential oil of peppermint. Physiol. Mol. Biol. Plants 2022, 28, 1391–1406. [Google Scholar] [CrossRef]
- Gao, D.; Liu, R.; Biskupek, J.; Kaiser, U.; Song, Y.; Streb, C. Modular Design of Noble-Metal-Free Mixed Metal Oxide Electrocatalysts for Complete Water Splitting. Angew. Chem. Int. Ed. 2019, 58, 4644–4648. [Google Scholar] [CrossRef]
- Yang, J.; Song, Z.; Ma, J.; Han, H. Toxicity of Molybdenum-Based Nanomaterials on the Soybean—Rhizobia Symbiotic System: Implications for Nutrition. ACS Appl. Nano Mater. 2020, 3, 5773–5782. [Google Scholar] [CrossRef]
- Williams, R.J.P.; Frau, J.J.R. The Involvement of Molybdenum in Life. Biochem. Biophys. Res. Commun. 2002, 299, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, G.; Mendel, R.R.; Ribbe, M.W. Molybdenum cofactors, enzymes and pathways. Nature 2009, 460, 839–847. [Google Scholar] [CrossRef] [PubMed]
- Mendel, R.R.; Mendel, R.R. Molybdenum: Biological activity and metabolism † The molybdenum cofactor. Dalton Transactions. 2005, 21, 3404–3409. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, B.N.; Gridley, K.L.; Ngaire Brady, J.; Phillips, T.; Tyerman, S.D. The role of molybdenum in agricultural plant production. Ann. Bot. 2005, 96, 745–754. [Google Scholar] [CrossRef] [PubMed]
- Alam, F.; Kim, T.Y.; Kim, S.Y.; Alam, S.S.; Pramanik, P.; Kim, P.J.; Lee, Y.B. Effect of molybdenum on nodulation, plant yield and nitrogen uptake in hairy vetch (Vicia villosa Roth). Soil Sci. Plant Nutr. 2015, 61, 664–675. [Google Scholar] [CrossRef]
- Lepetit, M.; Brouquisse, R. Control of the rhizobium–legume symbiosis by the plant nitrogen demand is tightly integrated at the whole plant level and requires interorgan systemic signaling. Front. Plant Sci. 2023, 14, 1114840. [Google Scholar] [CrossRef]
- Hoffman, B.M.; Lukoyanov, D.; Yang, Z.; Dean, D.R.; Seefeldt, L.C. Mechanism of Nitrogen Fixation by Nitrogenase: The Next Stage. Chem. Rev. 2014, 114, 4041–4062. [Google Scholar] [CrossRef]
- Haq, S.; Dildar, S.; Ali, M.B.; Mezni, A.; Hedfi, A.; Shahzad, M.I.; Shahzad, N.; Shah, A. Antimicrobial and antioxidant properties of biosynthesized of NiO nanoparticles using Raphanus sativus (R. sativus) extract. Mater. Res. Express 2021, 8, 5. [Google Scholar] [CrossRef]
- Din, S.U.; Iqbal, H.; Haq, S.; Ahmad, P.; Khandaker, M.U.; Elansary, H.O.; Al-Harbi, F.F.; Abdelmohsen, S.A.M.; El-Abedin, T.K.Z. Investigation of the Biological Applications of Biosynthesized Nickel Oxide Nanoparticles Mediated by Buxus wallichiana Extract. Crystals 2022, 12, 146. [Google Scholar] [CrossRef]
- Perachiselvi, M.; Jenson, J.; Sakthi, M.; Feiona, T.A.; Pitchumani, K.; Laksmi, E.; Swetha, V.; Leema, M.; Britto, S.; Gurusamy. A fabrication of Nickel oxide nanoparticles for antibacterial and photocatalytic activity. Life Sci. Inform. Publ. 2018, 4, 749–760. [Google Scholar] [CrossRef]
- Nadia, N.; Zorkipli, M.; Haida, N.; Kaus, M.; Azmin, A. Synthesis of NiO Nanoparticles through Sol-gel Method. Procedia Chem. 2016, 19, 626–631. [Google Scholar] [CrossRef]
- Salehabadi, A.; Enhessari, M. Application of (mixed) metal oxides-based nanocomposites for biosensors. In Materials for Biomedical Engineering: Inorganic Micro- and Nanostructures; Elsevier: Amsterdam, The Netherlands, 2019; pp. 357–396. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth 552 and bio assays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Khattab, T.A.; Gabr, A.M.; Mostafa, A.M.; Hamouda, T. Luminescent plant root: A step toward electricity-free natural lighting plants. J. Mol. Struct. 2019, 1176, 249–253. [Google Scholar] [CrossRef]
- Attard, E. A rapid microtitre plate Folin-Ciocalteu method for the assessment of polyphenols. Cent. Eur. J. Biol. 2013, 8, 48–53. [Google Scholar] [CrossRef]
- Kiranmai, M.; Kumar, C.M.; Mohammed, I. Comparison of total flavonoid content of Azadirachta indica root bark extracts prepared by different methods of extraction. Res. J. Pharm. Biol. Chem. Sci. 2011, 2, 254–261. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 76, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Sousa, J.; Rafael, V.; Brizola, A.; Granato, D. High-throughput assay comparison and standardization for metal chelating capacity screening: A proposal and application. Food Chem. 2017, 214, 515–522. [Google Scholar] [CrossRef]
- Leopold, L.F.; Coman, C.; Clapa, D.; Oprea, I.; Toma, A.; Iancu, D.; Barbu-Tudoran, L.; Suciu, M.; Ciorîță, A.; Cadiș, A.I.; et al. The effect of 100–200 nm ZnO and TiO2 nanoparticles on the in vitro-grown soybean plants. Colloids Surf. B Biointerfaces 2022, 216, 112536. [Google Scholar] [CrossRef]
- Shah, T.; Latif, S.; Saeed, F.; Ali, I.; Ullah, S.; Alsahli, A.A.; Jan, S.; Ahmad, P. Seed priming with titanium dioxide nanoparticles enhances seed vigor, leaf water status, and antioxidant enzyme activities in maize (Zea mays L.) under salinity stress. J. King Saud Univ. Sci. 2021, 33, 101207. [Google Scholar] [CrossRef]
- Mittal, D.; Kaur, G.; Singh, P.; Yadav, K.; Ali, S.A. Nanoparticle-Based Sustainable Agriculture and Food Science: Recent Advances and Future Outlook. Front. Nanotechnol. 2020, 2, 10. [Google Scholar] [CrossRef]
- Adisa, I.O.; Pullagurala, V.L.R.; Peralta-Videa, J.R.; Dimkpa, C.O.; Elmer, W.H.; Gardea-Torresdey, J.L.; White, J.C. Recent advances in nano-enabled fertilizers and pesticides: A critical review of mechanisms of action. Environ. Sci. Nano 2019, 6, 2002–2030. [Google Scholar] [CrossRef]
- Fraceto, L.F.; Grillo, R.; de Medeiros, G.A.; Scognamiglio, V.; Rea, G.; Bartolucci, C. Nanotechnology in agriculture: Which innovation potential does it have? Front. Environ. Sci. 2016, 4, 20. [Google Scholar] [CrossRef]
- Verma, K.K.; Song, X.-P.; Joshi, A.; Tian, D.-D.; Rajput, V.D.; Singh, M.; Arora, J.; Minkina, T.; Li, Y.-R. Recent Trends in NanoFertilizers for Sustainable Agriculture under Climate Change for Global Food Security. Nanomaterials 2022, 12, 173. [Google Scholar] [CrossRef]
- Zhao, J.; Davis, L.C.; Verpoorte, R. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol. Adv. 2005, 23, 283–333. [Google Scholar] [CrossRef]
- Inam, M.; Attique, I.; Zahra, M.; Khan, A.K.; Hahim, M.; Hano, C.; Anjum, S. Metal oxide nanoparticles and plant secondary metabolism: Unraveling the game-changer nano-elicitors. Plant Cell Tissue Organ Cult. 2023, 155, 327–344. [Google Scholar] [CrossRef]
- Hu, X.; Lu, K.; Mu, L.; Kang, J.; Zhou, Q. Interactions between graphene oxide and plant cells: Regulation of cell morphology, uptake, organelle damage, oxidative effects and metabolic disorders. Carbon 2014, 80, 665–676. [Google Scholar] [CrossRef]
- Lahiani, M.H.; Dervishi, E.; Chen, J.; Nima, Z.; Gaume, A.; Biris, A.S.; Khodakovskaya, M.V. Impact of Carbon Nanotube Exposure to Seeds of Valuable Crops. ACS Appl. Mater. Interfaces 2013, 5, 7965–7973. [Google Scholar] [CrossRef]
- Asghar, M.N.; Khan, I.U.; Bano, N. In vitro antioxidant and radical-scavenging capacities of Citrullus colocynthes (L) and Artemisia absinthium extracts using promethazine hydrochloride radical cation and contemporary assays. Food Sci. Technol. Int. 2011, 17, 481–494. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef] [PubMed]
- Dinis, T.C.P.; Madeira, V.M.C.; Almeida, L.M. Action of phenolic derivates (acetoaminophen, salycilate and 5-aminosalycilate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys. 1994, 315, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Ganeshpurkar, A.; Saluja, A.K. The Pharmacological Potential of Rutin. Saudi Pharm. J. 2017, 25, 149–164. [Google Scholar] [CrossRef] [PubMed]
Samples ID | Area | Results (µg/mL) | Rutin (mg/g) |
---|---|---|---|
Control | 20,646 | 0.573 | 0.02 |
Sample | 607,786 | 16.889 | 2.96 |
Sample | Average Reading at 630 nm | Total Phenolic Content (mg/g Extract) | Average Reading at 420 nm | Total Flavonoids Content (mg/g Extract) |
---|---|---|---|---|
Control | 0.059 | 18.56 ± 1.37 b | Undetected | 0.0 |
Sample | 0.401 | 61.30 ± 2.67 a | 0.078 | 29.31 ± 2.62 a |
Treatment ID | Applying Equation (1), the % of Inhibition | Substitution in cal. Curve Equation (µM) | Micro Molar Trolox Equivalent per mg Extract (µM TE/mg Extract) |
---|---|---|---|
Control | 14.98 | 140.46 | 70.23 ± 4.30 b |
Sample | 59.19 | 549.11 | 274.55 ± 13.56 a |
Treatment ID | Average Reading at 593 nm | Substitution in cal. Curve Equation (µM) | Micro Molar Trolox Equivalent per mg Extract (µM TE/mg Extract) |
---|---|---|---|
Control | 0.133 | 17.41 | 8.70 ± 0.88 b |
Sample | 0.603 | 213.25 | 106.62 ± 7.13 a |
Treatment ID | Applying Equation (1), the % of Inhibition | Substitution in cal. Curve Equation (µM) | Micro Molar EDTA Equivalent per mg Extract (µM EDTA eq/mg Extract) |
---|---|---|---|
Control | 28.77 | 18.83 | 9.41 ± 0.57 b |
Sample | 35.05 | 23.42 | 11.71 ± 0.89 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ebrahim, H.S.; Deyab, N.M.; Shaheen, B.S.; Gabr, A.M.M.; Allam, N.K. In Vitro: The Extraordinary Enhancement in Rutin Accumulation and Antioxidant Activity in Philodendron “Imperial Red” Plantlets Using Ti-Mo-Ni-O Nanotubes as a Novel Elicitor. BioTech 2024, 13, 24. https://doi.org/10.3390/biotech13030024
Ebrahim HS, Deyab NM, Shaheen BS, Gabr AMM, Allam NK. In Vitro: The Extraordinary Enhancement in Rutin Accumulation and Antioxidant Activity in Philodendron “Imperial Red” Plantlets Using Ti-Mo-Ni-O Nanotubes as a Novel Elicitor. BioTech. 2024; 13(3):24. https://doi.org/10.3390/biotech13030024
Chicago/Turabian StyleEbrahim, Hanan S., Nourhan M. Deyab, Basamat S. Shaheen, Ahmed M. M. Gabr, and Nageh K. Allam. 2024. "In Vitro: The Extraordinary Enhancement in Rutin Accumulation and Antioxidant Activity in Philodendron “Imperial Red” Plantlets Using Ti-Mo-Ni-O Nanotubes as a Novel Elicitor" BioTech 13, no. 3: 24. https://doi.org/10.3390/biotech13030024
APA StyleEbrahim, H. S., Deyab, N. M., Shaheen, B. S., Gabr, A. M. M., & Allam, N. K. (2024). In Vitro: The Extraordinary Enhancement in Rutin Accumulation and Antioxidant Activity in Philodendron “Imperial Red” Plantlets Using Ti-Mo-Ni-O Nanotubes as a Novel Elicitor. BioTech, 13(3), 24. https://doi.org/10.3390/biotech13030024