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Abstract: Cannabis sativa plants have been widely investigated for their specific compounds with
medicinal properties. These bioactive compounds exert preventive and curative effects on non-
communicable and infectious diseases. However, C. sativa extracts have barely been investigated,
although they constitute an affordable option to treat human diseases. Nonetheless, antioxidant,
antimicrobial, and immunogenicity effects have been associated with C. sativa extracts. Furthermore,
innovative extraction methods in combination with nanoformulations have been proposed to increase
desirable compounds’ availability, distribution, and conservation, which can be aided by modern
computational tools in a transdisciplinary approach. This review aims to describe available extraction
and nanoformulation methods for C. sativa, as well as its known antioxidant, antimicrobial, and
immunogenic activities. Critical points on the use of C. sativa extracts in nanoformulations are
identified and some prospects are envisaged.

Keywords: medicinal plants; in silico analysis; low-cost medicine; alternative uses; cannabidiol

Key Contribution: This review article provides a comprehensive view of Cannabis sativa’s potential
in modern medicine, highlighting its antioxidant, antimicrobial, and immunostimulant properties;
computational tools; and innovations in its extraction and formulation at the nanoscale level.

1. Introduction

Cannabis is a plant that belongs to the Cannabaceae family; it is annual and dioecious.
Over time, since its appearance (possibly more than 5000 years ago), it has been used for
purposes such as obtaining fibers and oils. Originally, Cannabis sativa is believed to be
indigenous to Eastern Asia, particularly in Mongolia and southern Siberia [1]. Due to
its cultivation for various uses, this plant has spread globally and is now found in many
parts of the world, including America, Europe, and Asia. Its adaptability to different
climates and soils has contributed to its cosmopolitan distribution. The plant thrives in
diverse environments, which has led to significant morphological and chemical variations
based on geographical location and cultivation practices. At the pharmacological level,
compounds such as alkaloids, flavonoids, terpenoids, and cannabinoids stand out. Of the
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latter, more than 130 have been isolated in trichomes of Cannabis sativa [2]. The structures
in trichomes can be divided into glandular and non-glandular. Within the non-glandular
trichomes, two types are not linked to the production of terpenoids, whereas there are
three types of trichomes in the glandular ones: (1) stalked, (2) sessile, and (3) bulbous [3,4].
They are made up of secretory cells and stems with different functions. In recent years,
there has been a resurgence of interest in its therapeutic potential due to its complex
chemical composition, including cannabinoids such as tetrahydrocannabinol (THC) and
cannabidiol (CBD), among others [5]. Although several authors have proposed classifying
them into three species, C. sativa, Cannabis indica, and Cannabis ruderalis, most research
groups agree that it is a monotypic plant; that is, all varieties belong to the same species,
C. sativa. Another classification is the chemotaxonomic one, which considers phenotypes
based on the proportion of cannabinoids. However, even though this classification may not
fully account for the cannabinoid content that different chemotypes can present, it is still
considered a helpful tool for classification [6].

The Cannabis sativa plant, a subject of extensive research, holds immense promise in
the modulation of the immune system [7], oxidative stress [8], and antimicrobial capac-
ity [9]. These studies have revealed the potential of cannabinoids, terpenes, flavonoids,
and lignans [10], which are metabolites present in the plant that can bolster the body’s
antioxidant response, enhance antimicrobial treatments, and exert beneficial immunomodu-
latory effects [11–13]. Unlike isolated compounds, these phytochemicals present in extracts
can also act synergistically to promote therapeutic effects, a phenomenon known as the
entourage effect [14]. With approximately 500 compounds in C. sativa, the presence of
THC in extracts has been a critical focus, leading to the study of cannabinoids such as
CBD [15] and other terpenes such as β-caryophyllene (BCP). The potential benefits of these
extracts are vast, and overcoming the challenges in their practical application, such as
reducing the psychoactive effect of THC [16], preventing the degradation of these active
compounds [17,18], and enhancing bioavailability [19], could revolutionize the field of C.
sativa therapeutics.

The problem of the psychotropic stimulus caused by THC has been addressed by explor-
ing other non-psychoactive cannabinoids, such as CBD, cannabigerol (CBG), cannabichromene
(CBC), and cannabidivarin (CBDV) [20]. On the other hand, to reduce the degradation
processes of active compounds, the development of protection methods such as nanoen-
capsulation has been promoted [21]. This approach protects cannabinoids, terpenes, and
flavonoids from environmental effects (light, temperature, and oxygen) to prolong their
stability and half-life [22]. Related to the above, the improvement of bioavailability has
been studied to increase the therapeutic capacity of active compounds, highlighting that
the oral route has the lowest assimilation rate [23,24]. For example, nanoemulsions are
an alternative to the challenge of oral administration because they can protect bioactive
compounds from digestive processes and improve their bioavailability and bioaccessibility.

Nanoemulsions have been manufactured from oils/lipids (olive oil, phospholipids,
and sunflower oil) [25,26], proteins (albumins, soy protein isolate, whey protein isolate,
β-lactoglobulin, rice protein isolate, and peanut protein) [27–29], polysaccharides (car-
boxymethylcellulose, chitosan, glucans, pectins, alginates, hyaluronic acid, starches, cellu-
lose, xanthan, guar, and gum arabic) [30–34], surfactants (sodium lecithin, lactoglobulins,
and sodium dodecyl sulfate) [35], and plasticizers (glycerol, sorbitol, propylene glycol,
and polyethylene glycol) [36,37], which form nanostructures with improved solubility and
absorption of bioactive compounds. This technology can protect bioactive compounds from
C. sativa for diverse therapeutic purposes. In this context, this paper describes and discusses
recent research on C. sativa extracts (ECs) and the potential of nanoemulsion formulation to
protect bioactive compounds and improve their bioavailability and bioaccessibility.

2. Extraction Methods Reported for C. sativa

C. sativa is considered an excellent source of bioactive compounds (cannabinoids,
terpenes, flavonoids, and lignans) that can be extracted through diverse techniques [38].
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Extraction methods can be classified into three broad groups. Traditional methods are
based on the use of solvents (such as Soxhlet and maceration), alternative methods [38], and
conventional methods without the use of solvents [39]. The main extraction methods used
for Cannabis sativa are depicted in Figure 1. Solvent-based extractions can be subclassified
into those using alcohols (methanol and ethanol), hexane, and ethers [40,41]. In this
type of extraction, the solid material crushed in the organic solvent is disposed of in
different proportions, filtered, and stored. In extractions using ether, organic acids are
used to adjust the pH [42], and continuous evaporation–condensation cycles can be used to
improve efficiency [43] or dynamic maceration, which is more efficient [44]. In addition,
there are other methods for making oil extractions in which the use of edible vegetable
oils as a solvent is required, such as coconut [45], sunflower [46], and olive [47]. For
example, Cannabis flowers are dried between 85 and 145 ◦C for 40 min in a convection oven,
pulverized, coated with olive oil (1:10), stirred for 40 to 120 min, filtered, and stored [47].
Although widely used, this type of extraction is inefficient and, in some cases, can leave
potentially toxic residues [48].
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Figure 1. Extraction methods for Cannabis.

Alternative extraction methods differ from traditional ones mainly because of their
higher efficiency. They use physical and chemical principles that optimize the process,
allowing its use in the food, cosmetic, and research industries. There are ultrasound-assisted
(UAE), microwave-assisted (MAE), pressurized liquid (PLE), supercritical fluid (SFE) [49],
and Cannabis hydrodynamics extractions [50]. In the case of PLE and SFE extractions,
CO2 and high pressure are used [51] to achieve better extractions [52]. For example,
the conditions that have been recommended for cannabinoid extraction are T ≥ 31 ◦C,
P ≥ 1015 psi for CO2, T ≥ 57 ◦C, P ≥ 2625 psi for CO2/Absolute Ethanol (95/5, v/v) at a flow
rate of 3 mL/min and (a) an extraction time of 60 min for SFE and 4 mL/min and (b) 30 min
of extraction for PLE [53]. On the other hand, ultrasound-assisted (UAE) and microwave-
assisted (MAE) extraction techniques are similar to the previous ones in that they reduce
the time and use of solvents while obtaining bioactive compounds [54]. UAE extraction
uses acoustic cavitation to generate microbubbles that break up plant material, and MAE
extraction uses rapid microwave heating to increase the solubility of compounds and
facilitate the extraction of cannabinoids, terpenes, and other compounds of interest using
sample–solvent ratios, times, and temperatures [55]. Finally, the hydrodynamic extraction
of Cannabis requires freezing the plant material, converting it into a nanoemulsion using
hot water, and using ultrasound to use the hydrodynamic force to break the cell wall;
finally, the steps they follow are liquid–liquid extraction, centrifugation, and drying at low
temperatures [56]. Despite having the name “Cannabis”, this method has been little used
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on this plant. For a generalized visual summary of extraction methods for Cannabis sativa,
see Figure 2.
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Some critical extraction points may be considered in the extraction methods for ob-
taining bioactive compounds or extracts from C. sativa, as discussed below.

The solvent is decisive in the extraction of bioactive compounds; the efficiency and
quality of the product depend on it, and the compound to be used must be safe and
environmentally friendly. Solvents such as hexane, butane, and ether have been widely
used. However, they are highly flammable and toxic, representing potential health risks [48].
These solvents can leave traces in extracts, and synthesizing nanoemulsions with them can
affect purity, safety, and quality [22]. Therefore, choosing a solvent that achieves a high
extraction performance, is safe, and is environmentally friendly is a challenge. Supercritical
solvents have been a convenient alternative; however, high costs can reduce their use
widely [57]. On the other hand, vegetable oils and solvents offer the possibility of obtaining
less expensive quality extracts that do not compromise human health or pose a danger to
the environment. In addition, simultaneous use with other technologies, such as ultrasonic
extraction, could improve performance [58].

The extraction process requires controlling variables like extraction time, temperature,
pressure, the proportion of plant material and solvent, and stirring speed [59]. Carelessness
in one of these variables could lead to the loss of sensitive compounds. In this sense, repro-
ducing an optimal and quality process is difficult, representing a drawback. Automation
strategies to optimize and control the critical variables of the extraction process could be
a good target for exploration, thus constantly adjusting the conditions as required by the
process with precision and efficiency and avoiding less loss of bioactive compounds, which
translates into better extraction percentages and the quality of the phytochemical profiles
of interest [60,61].

3. Nanoemulsions: Materials and Synthesis Methods

Nanoemulsions consist of the dispersion of two immiscible liquid phases, where one
is dispersed in the other in the form of droplets on a nanometric scale (<100 nm). They
are composed of an aqueous phase, an oil phase, and an emulsifier. Nanoemulsions are
primarily prepared with an aqueous phase, an oily phase, and surfactants [62]. Polar
materials frequently used in the aqueous phase include polyols [63], simple alcohols [64],
proteins [65], and carbohydrates [66]. In the oil phase, acylglycerols [67], essential oils [68],
vitamins [69], and others of a lipophilic nature [70] are used. Surfactants confer stability to



BioTech 2024, 13, 53 5 of 19

nanoemulsions and include lecithin [71], lactoglobulin [72], sodium dodecyl sulfate [73],
and saponin [37,74]. Although these materials have been shown to protect cannabinoids
and other compounds of interest from C. sativa, the formulation must be optimized, and
the release mechanisms must be considered.

Additionally, surfactants, or emulsifiers, play an essential role in stabilizing nanoemul-
sions. They hold the two immiscible phases, oily and aqueous, together. However, the
fillers of bioactive compounds can interfere with the emulsifier or have a greater affinity
for one of the phases, causing processes such as Ostwald maturation in the short term [54].
Concerning synthesis, each stage of the process deserves care, starting from the compo-
nent’s homogenization to the fine emulsion’s final packaging. Factors such as temperature,
mixing order, stirring time, and speed in the homogenization process influence droplet
size and polydispersity [36]. In this way, a good experimental design is necessary, and the
quality of the equipment must be guaranteed throughout the process.

The synthesis of nanoemulsions is not the last step of the process; stability is one of
the most critical points, as the particle size, the zeta potential, the surfactant, and the com-
position of the dispersing phase condition it. Cremation, sedimentation, coalescence, and
Ostwald maturation are consequences of a loss of stability and bioactive compounds [75]. If
large nanoemulsion droplets lead to sedimentation/cremation, an unfavorable zeta poten-
tial leads to aggregation and a marked difference in droplet sizes. Aspects such as viscosity
can affect how the emulsion can be applied or dosed in experimental animal models [54].
To state the above in physicochemical terms, at a biological level, nanoemulsions could
present little assimilation if the components used are not related to the cells of the target
tissue. The stability and viscosity of nanoemulsions should be explored with new sur-
factants that reduce the interfacial tensions of the phases without significantly increasing
the nanoemulsion’s size or the continuous phase’s rheological properties. Sedimentation,
on the other hand, the surface modification of the particles, could improve electrostatic
repulsion and prevent the aggregation of droplets. However, it must be ensured that
this functionalization does not alter the mechanism of action of the nanoemulsion [76].
Furthermore, the synthesis method significantly influenced nanoemulsion properties. In
this context, high- and low-energy methods have been used to synthesize nanoemulsions
(Figure 3), as described below.
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ultrasonic equipment breaks the emulsion droplets into smaller ones. Microfluidizers use high
pressures that break up emulsion droplets. Low-energy methods: the emulsion inversion point
(EIP) consists of changing the nature of the emulsion from water in oil (W/O) to oil in water
(O/W), modifying the concentration and type of surfactants, varying the speed and inversion
temperatures [54,77].

3.1. High-Energy Methods Used for Nanoemulsions

High extraction methods require high-intensity forces and little use of surfactants to
cause an increase in kinetic energy that breaks droplets in the oil phase and increases dis-
persion in the aqueous phase [78]. Commonly used high-energy methods are ultrasound,
high-pressure homogenization, and microfluidization. Ultrasound uses high-frequency
waves in the mixture, generating cavitation and the collapse of the microparticles, re-
ducing the size to nanometer values. It is necessary to adjust the pulse’s time and
intensity since the temperature increase can cause the degradation of the compounds
of interest [54,79]. High-pressure homogenization passes the mixture through a small
hole that breaks the droplets to nanometer-scale value sizes, so a precise flow rate and
pressure control are required [54,80]. Finally, microfluidization makes the mixture tran-
sit at high speed through small channels to cause shear forces capable of breaking the
droplets of the emulsions, turning them into nanoemulsions. Characteristics such as chan-
nel geometry and velocity determine conditions for achieving normal size distributions in
nanoemulsions [54,81].

3.2. Low-Energy Methods Used for Nanoemulsions

Low-energy methods for nanoemulsions are recommended to avoid the degradation of
thermolabile compounds. However, they may need other types of surfactants and a greater
quantity to stabilize the nanoemulsions [54,78]. The most used are solvent evaporation,
membrane emulsification, and spontaneous emulsification. In solvent evaporation, the
organic solvent in the mixture, in which the oil phase and surfactants are located, evaporates
in a controlled manner. Selecting the appropriate solvent is critical, and one with a low
boiling point is recommended because it allows the use of low temperatures, such as ethanol,
acetone, lactic-co-glycolic acid (PGLA) [82], and tetrahydrofuran [70]. Another critical
consideration to review is solvent safety and compatibility. In membrane emulsification, the
dispersion of the oil phase is achieved by forcing the mixture through a porous membrane
with electrical or hydrodynamic forces. The main element of this method is the selection of
the membrane with appropriate pore sizes, pressure values, flow rate, and temperature
control to obtain stable and uniform nanoemulsions [83]. Spontaneous emulsification is
achieved by correctly combining the components of the mixture so that, under specific
conditions of pH, temperature, and concentration, stable and uniform nanoemulsions are
formed without needing energy [84,85].

In general, the nanoemulsions achieved by these methods are stable and uniform,
which is suitable for applications in the pharmaceutical industry. In addition, the combi-
nation of different techniques can be considered, which can improve stability and biodis-
tribution. The possibility of preserving bioactive compounds and their properties drives
continuous process refinement and optimization based on the size, distribution, stability,
and controlled release of C. sativa emulsions.
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4. Antioxidant Activity of Cannabis sativa Extracts and Nanoemulsions

The study of cannabinoids has become an area of great interest due to their therapeutic
potential, in which antioxidant power stands out. Although C. sativa extracts (CSEs)
contain several cannabinoids, little is known about their antioxidant properties acting
together. No reports were found on the analysis of the antioxidant capacity of CSE, although
some bioactive compounds reported in the plant were found. In this context, it must be
noted that the antioxidant capacity of extracts is essential for therapeutic applications,
but determining that capacity can be challenging due to the heterogeneity of bioactive
compounds [86].

The antioxidant activity of CBD increases the concentration of anandamide that ac-
tivates the peroxisome proliferator alpha (PPAR-α), which in turn participates in the
regulation of the expression of the antioxidant enzyme superoxide dismutase [87]. In
another study, CBD decreased reactive oxygen species (ROS), pro-inflammatory cytokines,
and lipid peroxidation in LPS-stimulated C57BL/6J mouse microglial cells [88]. Similarly,
CSE with 72% THC reduced ROS formation by 80% in differentiated SH-SY5Y neurons
compared to purified CBD and THC [89]. Not only are cannabinoids found in CSE that may
have antioxidant properties, but flavonoids, terpenes, and other phytochemicals known for
their antioxidant properties are also present [90]. Because the bioavailability of cannabi-
noids varies according to the route of administration (i.e., 6% orally) [91], nanoemulsions
could improve the stability and bioavailability of phytocannabinoids and other CSE com-
pounds with antioxidant capacity; other studies have evaluated nanoemulsions of crude
extracts or compounds with antioxidant capacity. In this regard, it was demonstrated that
a nanoemulsion with a Nigella sativa seed extract containing thymoquinone had greater
bioavailability and antioxidant capacity than pure extract. In the context of C. sativa crude
extract, this has been evaluated for its antioxidant properties in nanoemulsions, the op-
posite of cannabinoids such as CBD, which has been widely studied [92–96]. Therefore,
studying nanoemulsions with CSE to increase antioxidant capacity is an opportunity for
future research; all the above is represented in Figure 4.
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5. Effect of Cannabis sativa Extract and Nanosystems on Antimicrobial Activity

Among the therapeutic interests aroused by C. sativa are its antimicrobial properties.
The improved distribution of nanoemulsions shows promise in encapsulated extracts in
dose reduction for effective microbial activity, although few studies have been published.
For example, extracts of different varieties of C. sativa had variable antimicrobial effects
depending on their chemical composition and the concentration used on the microbial
strains. The most significant inhibition of growth by C. sativa extracts was against Bacil-
lus thuringiensis, Staphylococcus aureus, Candida albicans, Micrococcus luteus, Pseudomosas
protegens, Saccharomyces cerevisiae, and Fusarium eumartii [92]. In another study, C. sativa
seed extract inhibited the growth of pathogenic Enterobacteriaceae and the formation of
Staphylococcus aureus biofilms without detecting an antimicrobial effect on probiotic bacteria
of the genus Bifidobacterium and Lactobacillus [98].

Cannabis extract has been shown to have an antimicrobial effect on pathogenic strains,
an ability that may be linked to cannabinoids and terpenes; however, the level of activity
can vary according to various factors such as the concentration of the bioactive compounds,
the sensitivity of the target strains [99], and the level of nanoemulsions, the ability of
the structures to cross the membranes of the microorganisms, the rate of erosion of the
nanoemulsion, and the action against the efflux pumps present in the bacteria [100]. Thus,
it is necessary to determine the antimicrobial capacity in several contexts to know the
antimicrobial activity level of the nanoemulsion. In this context, it is crucial to determine
the antimicrobial capacity and the spectrum of action of nanoemulsion-based C. sativa
extracts. Bioactive compounds can be specific to Gram-negative or Gram-positive bacteria,
non-selective, and harmful to beneficial bacteria [98]. However, studies on specificity,
concentration variation in nanoemulsions, and spectrum range are suggested by testing
on various pathogenic and beneficial Gram-positive and Gram-negative strains. In this
way, the mechanism of antimicrobial action can be better understood, allowing better
applications in treating pathogenic strains or promoting beneficial ones.

Additionally, an innovative approach has been the biosynthesis of C. sativa nanoparti-
cles with antimicrobial activities. Fungicidal effects were studied using solid lipid nanopar-
ticles (SLNs) and chitosan against the fungus Fusarium solani with a lower concentration of
pure extract [101]. The pure EC obtained consisted of 770.3 mg of THC, 72.1 mg of CBD,
and 28 mg of CBN per gram of resin and various terpenes (α-pinene 9338 mg, β-pinene
3132 mg, β-myrcene 29,837 mg, p-cymene 4031 mg, ocimene 2.3 mg, linalool 2853 mg,
BCP 7038 mg, and α-humulene 1660 mg per gram of resin) and chitosan SLNs interacted
with the negative charges of cell membranes, facilitating release into cells. In this way, the
combination of terpenes, cannabinoids, and chitosan exerted a fungicidal effect against
the microorganism. The researchers synthesized four types of SLN: control (183 nm),
chitosan (237 nm, SLNQ), Cannabis (146.9 nm, SLNC), and Cannabis–chitosan (152.4 nm,
SLNCQ), with the latter having greater inhibition capacity (90%) at an extract concentration
of 0.06 µg/mL. SLNCQs had an EC release rate of 42.4% over 24 h, higher than that found in
SLNCs, with 26.4%. In another report, bimetallic gold and silver nanoparticles synthesized
with Vitis vinifera canes and C. sativa residues had antimicrobial activity by reducing the
growth and biofilm formation of Pseudomonas aeruginosa [102]. Although nanostructures
are not strictly speaking nanoemulsions, they are nanosystems and allow them to be con-
sidered in exploring other antimicrobial applications. Figure 5 graphically represents all
the above.
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6. Effect of Cannabis sativa Extracts Nanoemulsions on Immunogenicity Activity

Another aspect of the therapeutic properties of C. sativa to consider is immunomodula-
tion [103–105]; see Figure 6. One of the aspects to highlight is that pure extracts of C. sativa
have possibly been little studied due to the presence of THC and its known psychotropic
effect [106]. There are relatively few studies that include cannabinoid mixtures. Blanton
and collaborators [107] reported that the CBD–BCP interaction modulated pain and in-
flammation in a murine model. In another study, indomethacin (IND) nanoemulsions
were prepared with BCP (BCP–IND) in different proportions to test the anti-inflammatory
effect in LPS-stimulated macrophages. The results of the trials showed that BCP–IND
nanoemulsions reduced the production of pro-inflammatory cytokines more than only
BCP or IND. This indicates that cannabinoids alone have therapeutic potential. Still, in
conjunction with other cannabinoids or other drugs, they can be even more effective, sug-
gesting the use of pure C. sativa extracts in O/W nanoemulsions. In research focused on the
treatment of diabetes mellitus (DM), a condition characterized by high oxidative stress and
alteration of the immune system [88], Wistar rats with C. sativa oil-induced DM (CSO) and
nanoemulsions of C. sativa oil (NECSO) and metformin were used. The trials demonstrated
that CSO and NECSO positively affected DM symptoms and reduced glucose in urine,
blood, triglycerides, and low-density lipoproteins (LDL) [108]. A graphic summary of this
section is presented in Figure 6.

Although research on Cannabis and its great potential to modulate the immune system
has been growing, it still faces the difficulty of the wide diversity of bioactive compounds
in the plant and its multiple interactions with cells [103,105,110]. Thus, the synergistic effect
of around 500 compounds is not the same when isolated. Therefore, characterizing each of
these compounds and understanding their therapeutic potential is challenging. Regarding
immunomodulation, whether anti- or pro-inflammatory, one bioactive compound could
have a favorable effect, while at the same time, another can act as an inverse agonist [111],
so elucidating each compound’s effects requires rigorous and exhaustive approaches.
Preclinical studies addressing in silico, in vitro, and in vivo assays using animal models
and clinical studies in humans are a possibility to validate the immunomodulatory effects
of extracts. The immune system’s high specialization makes it highly complex [112], so it is
necessary to evaluate the interactions of these compounds with the different cell lineages
and sublineages that make up the system, as well as the nanoemulsions based on C. sativa
extracts’ immunomodulatory effects.
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Figure 6. Immunomodulatory activity. The bioactive compounds cannabidiol (CBD) and caryophyl-
lene (BCP) were administered orally in a murine model to treat pain and inflammation, reducing
these conditions [108]. The mixture of indomethacin (IND) and BCP reduced the production of
proinflammatory cytokines in a culture of macrophages stimulated by lipopolysaccharide (LPS) [109].
It is expected that studies with Cannabis extract nanoemulsions (NECs) will be carried out more
frequently from now on.

7. Computational Analysis of Cannabis sativa Compounds

Computational analyses, in the context of Cannabis sativa bioactive compounds (iso-
lated or in nanoemulsions), are necessary to understand their therapeutic properties better.
Knowledge of these metabolites at the molecular level allows a better understanding of
the interactions of these compounds with receptor proteins, helping to elucidate their
mechanisms of action; for the precision of the metabolites in the Cannabis plant related
to its genes and metabolic pathways, databases are used as proposed by [113]. Computa-
tional research has been carried out on the compounds provided by Cannabis. Researchers
performed a characterization to explain the quantitative structure–activity relationships
(QSARS) between cannabigerol (CBG), especially in the 3D structure, and the biological
activity, complementing it with the density functional theory (DFT) to understand the
stability and activity of the cannabinoid. In this way, they concluded that the geranyl
chains of CBG follow a tendency to wrap around the central phenolic ring, leaving the
side chains forming hydrogen bonds with the para-substituted hydroxyl groups. This
research was also extended to molecular dockings with cytochrome P450-3A4, observing
the decreased inhibitory effect of CBG on the key enzyme in drug metabolism, allowing a
better understanding of the activity and structure of the compound [114].

Regarding immunomodulation, a study of bioactive peptides in Cannabis seed hy-
drolysates (bioHPHS) was carried out to evaluate their anti-inflammatory capacity in silico
with the results obtained from in vitro tests in human monocytes [115]. Once the peptides
in two bioHPHS were identified, ten were selected and synthesized in silico to determine
their immunomodulatory capacity in monocytes. The peptides DDNPRRF, SRRFHLA,
RNIFKGF, VREPVFSF, QADIFNPR, and SAERGFLY showed very high immunomodula-
tory activity. Subsequently, other molecular dockings were carried out to determine the
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interaction of the TLR4/MD2 peptide, seeking to understand the action in the inflammatory
cascade modulated by these proteins. In a similar investigation, the impact of the cannabi-
noids CBD, CBG, and cannabinol (CBN) on DNA methylation was analyzed to understand
the regulation of gene expression and cellular function; in this case, the target proteins were
the TET enzymes important in DNA demethylation processes. Through computational
simulations, it was shown that cannabinoids would have the ability to chelate ferrous ions,
which could potentially interfere with the enzymatic activity, notably in CBD and CBN.

In an antimicrobial context, the antimalarial activity of compounds present in Cannabis
was addressed in silico to elucidate in vivo results of tetrahydrocannabivarin (THCV) be-
cause this cannabinoid had a high affinity with the α/β tubulin proteins of the pathogen
Plasmodium falciparum [116]. Based on these results, the authors suggested that this cannabi-
noid (THCV) would inhibit microtubules, preventing the parasite from advancing through
red blood cells. In this way, one can understand the importance of computational analyses
in the promising study of bioactive compounds of C. sativa, thanks to the fact that they
allow a better understanding of the therapeutic properties and, at the same time, offer
a broader view of the molecular interactions between these metabolites and the target
receptors. Figure 7 is a graphical representation of this.
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Figure 7. In silico studies. The analysis of computational studies on bioactive compounds from
isolated metabolites and nanoemulsions of Cannabis sativa was parameterized in various functional
modalities with comparative emphasis on therapeutic properties and molecular mechanisms. Such
analyses include QSAR modeling, molecular docking, and DFT, which shed light on the degree of
interaction between cannabinoids such as cannabigerol (CBG) with target proteins and their stabilities.
One such example is CBG, whose inhibitory effects on cytochrome P450-3A4 were characterized [114].
Furthermore, some immunomodulatory peptides derived from Cannabis seed hydrolysates indicated
some promising potential anti-inflammatory effects in silico and in vitro, especially since after the
elucidation of the specific molecular mechanisms, they may prove useful as therapeutic agents [115].
Similarly, cannabinoids such as tetrahydrocannabivarin (THCV) were evaluated for their antimalarial
activity by linking them to Plasmodium falciparum tubulin binding. These studies serve to underline
the relevance of tools to explore the sources of bioactivity in C. sativa [116].
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Although computational analysis exhibited some advantages, some challenges cannot
be solved due to computational analytics requiring high data processing capacity and
intensive operations [117]. This requires state-of-the-art equipment that integrates graphics
processing units (GPUs) and central processing units (CPUs) well, ensuring efficient analy-
ses. However, resource-limited academic contexts can limit this equipment’s availability
and cost. Once the appropriate hardware is configured, software with great analytical
power is required; this includes data processing, visualization, and molecular modeling.
These criteria constitute a challenge due to the variety, approach, learning curve, and costs
of licenses [118]. In this context, artificial intelligence has gained space, and tools such as
machine learning and data mining have proven to have great potential to detect patterns in
data [119–121]; however, extensive knowledge of statistics, mathematics, and biological
sciences is required. Because of these challenges, an interdisciplinary collaboration where
mathematicians, physicists, chemists, engineers, and other specialties converge is necessary.

8. General Critical Points for Cannabis sativa-Based Nanosystems

Nanosystems have emerged as a technological proposal with wide application in
biomedicine and food. These systems provide better active compound availability, distribu-
tion, and conservation [22]. However, C. sativa-based nanosystems seem underutilized in
research, unlike purified cannabinoids, which have many applications and studies. This
could impede the broad understanding of the therapeutic potential of the crude extract
of the plant using nanoemulsions. The pharmaceutical industry could take part in the
research now that discussions of legalizing the use of Cannabis are more frequent; this
is convenient because it destigmatizes the use of the plant and supports the different
applications of Cannabis in conjunction with biotechnology. In this way, the population
could have more confidence in the therapeutic advantages and limitations of Cannabis
nanoemulsions in various clinical contexts. The industry could participate in innovation in
harnessing Cannabis and scaling up the production of nanoemulsions. Therefore, each new
publication based on Cannabis nanoformulation should consider in vitro and in vivo release
tests to extrapolate this technology, determining cytotoxicity, efficacy, and the best delivery
method [122,123]. A key aspect is to evaluate the lipophilic nature of the extracts and
convey them appropriately. From this point of view, lipid transporters in the formulations
will be crucial for subsequent tests for both their release and toxicological properties [124].
In addition, regarding normative regulations, it is necessary to review the updates for
human applications. New nanoformulations would be subject to scientific scrutiny and
clinical trials approved by regulatory agencies. The regulatory framework differs from
country to country, and the efforts of regulatory agencies such as the European Union and
the FDA work in the face of the growing research based on cannabinoids and the current
market demands.

The study of nanostructures, especially nanoemulsions, is highly anticipated. Al-
though many of the techniques mentioned to produce nanoemulsions have not been
applied, for the most part, in the study of EC, any advance in technology in terms of for-
mulation, the combination of homogenization processes, or the improvement of interfacial
properties could lead to much more stable and secure structures [125–128].

Finally, the possibilities of C. sativa-based nanosystems are vast, as cannabinoids are
studied in neurosciences [129–132], cardiovascular health [133–135], gut motility [136–139],
and inflammation [105].

9. Conclusions

C. sativa offers excellent therapeutic potential, including antimicrobial, immunomodu-
latory, and antioxidant properties. Aspects such as extraction and synthesis methods can
determine the stability of nanostructures. However, despite all the benefits of the plant,
studying it still presents challenges. Computational analyses make it easier to understand
the properties of the compounds that comprise extracts and how they interact with molec-
ular targets. Given all this, the pharmaceutical industry’s active participation is needed
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to advance and exploit other forms of distribution in animals and, finally, application
in humans.
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53. Pilařová, V.; Hadysová, Z.; Švec, F.; Nováková, L. Supercritical Fluids in Analysis of Cannabinoids in Various Cannabis Products.
Anal. Chim. Acta 2022, 1232, 340452. [CrossRef] [PubMed]

54. Jafari, S.; McClements, D. Nanoemulsions: Formulation, Applications, and Characterization; Academic Press: Cambridge, MA,
USA, 2018.

55. Addo, P.W.; Sagili, S.U.K.R.; Bilodeau, S.E.; Gladu-Gallant, F.-A.; MacKenzie, D.A.; Bates, J.; McRae, G.; MacPherson, S.; Paris,
M.; Raghavan, V.; et al. Microwave- and Ultrasound-Assisted Extraction of Cannabinoids and Terpenes from Cannabis Using
Response Surface Methodology. Molecules 2022, 27, 8803. [CrossRef] [PubMed]

56. Lazarjani, M.P.; Young, O.; Kebede, L.; Seyfoddin, A. Processing and Extraction Methods of Medicinal Cannabis: A Narrative
Review. J. Cannabis Res. 2021, 3, 32. [CrossRef] [PubMed]

57. Buitrago, O.Y.; Ardila, R.; Orjuela, A.; Santaella, M.A.; Arturo, D.E.; Hurtado, A. Affordable Method for Batch Supercritical
Extraction Using Solid Carbon Dioxide–Extraction of Cannabis Threshing Residues. Chem. Eng. Process.—Process Intensif. 2024,
198, 109721. [CrossRef]

58. Naveira-Pazos, C.; Veiga, M.C.; Mussagy, C.U.; Farias, F.O.; Kennes, C.; Pereira, J.F.B. Carotenoids Production and Extraction
from Yarrowia Lipolytica Cells: A Biocompatible Approach Using Biosolvents. Sep. Purif. Technol. 2024, 343, 127136. [CrossRef]

59. Han, Q.-H.; Liu, W.; Li, H.-Y.; He, J.-L.; Guo, H.; Lin, S.; Zhao, L.; Chen, H.; Liu, Y.-W.; Wu, D.-T.; et al. Extraction Optimization,
Physicochemical Characteristics, and Antioxidant Activities of Polysaccharides from Kiwifruit (Actinidia chinensis Planch.).
Molecules 2019, 24, 461. [CrossRef]

60. Chouhan, K.B.S.; Tandey, R.; Sen, K.K.; Mehta, R.; Mandal, V. A Unique Model of Gravity Assisted Solvent Free Microwave Based
Extraction of Essential Oil from Mentha Leaves Ensuring Biorefinery of Leftover Waste Biomass for Extraction of Nutraceuticals:
Towards Cleaner and Greener Technology. J. Clean. Prod. 2019, 225, 587–598. [CrossRef]

61. Sorita, G.D.; Favaro, S.P.; Ambrosi, A.; Luccio, M.D. Aqueous Extraction Processing: An Innovative and Sustainable Approach for
Recovery of Unconventional Oils. Trends Food Sci. Technol. 2023, 133, 99–113. [CrossRef]

62. McClements, D.J. Food Emulsions: Principles, Practices, and Techniques, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2004;
ISBN 978-0-429-12389-4.

63. Gan, L.; Cui, D.; Ali, N.; Zhang, Q.; Zhang, D.; Jiang, W.; Zhang, W. Phase Behavior of Polyglycerol Ester-Based Nanoemulsions.
J. Nanosci. Nanotechnol. 2021, 21, 6188–6195. [CrossRef]

64. Zeeb, B.; Herz, E.; McClements, D.; Weiss, J. Impact of Alcohols on the Formation and Stability of Protein-Stabilized Nanoemul-
sions. J. Colloid. Interface Sci. 2014, 433, 196–203. [CrossRef]

https://doi.org/10.3390/technologies8030045
https://doi.org/10.1016/j.forsciint.2004.05.015
https://www.ncbi.nlm.nih.gov/pubmed/15734104
https://doi.org/10.3389/fnut.2022.892314
https://doi.org/10.1007/s13197-020-04436-z
https://www.ncbi.nlm.nih.gov/pubmed/33071325
https://doi.org/10.3390/foods10081732
https://doi.org/10.1055/s-0043-123074
https://doi.org/10.3390/foods11213412
https://doi.org/10.3390/separations10020121
https://cannabistech.com/articles/hydrodynamic-cannabis-extraction/
https://cannabistech.com/articles/hydrodynamic-cannabis-extraction/
https://doi.org/10.1016/j.chroma.2005.06.072
https://doi.org/10.1016/j.jiec.2020.01.036
https://doi.org/10.1016/j.aca.2022.340452
https://www.ncbi.nlm.nih.gov/pubmed/36257737
https://doi.org/10.3390/molecules27248803
https://www.ncbi.nlm.nih.gov/pubmed/36557949
https://doi.org/10.1186/s42238-021-00087-9
https://www.ncbi.nlm.nih.gov/pubmed/34281626
https://doi.org/10.1016/j.cep.2024.109721
https://doi.org/10.1016/j.seppur.2024.127136
https://doi.org/10.3390/molecules24030461
https://doi.org/10.1016/j.jclepro.2019.03.325
https://doi.org/10.1016/j.tifs.2023.01.019
https://doi.org/10.1166/jnn.2021.19540
https://doi.org/10.1016/j.jcis.2014.07.034


BioTech 2024, 13, 53 16 of 19

65. Bleoanca, I.; Lanciu, A.; Patras, cu, L.; Ceoromila, A.; Borda, D. Efficacy of Two Stabilizers in Nanoemulsions with Whey Proteins
and Thyme Essential Oil as Edible Coatings for Zucchini. Membranes 2022, 12, 326. [CrossRef] [PubMed]

66. Abbasi, Z.; Aminzare, M.; Hassanzad Azar, H.; Rostamizadeh, K. Effect of Corn Starch Coating Incorporated with Nanoemulsion
of Zataria Multiflora Essential Oil Fortified with Cinnamaldehyde on Microbial Quality of Fresh Chicken Meat and Fate of
Inoculated Listeria Monocytogenes. J. Food Sci. Technol. 2021, 58, 2677–2687. [CrossRef] [PubMed]

67. Agame-Lagunes, B.; Grube-Pagola, P.; García-Varela, R.; Alexander-Aguilera, A.; García, H.S. Effect of Curcumin Nanoemulsions
Stabilized with MAG and DAG-MCFAs in a Fructose-Induced Hepatic Steatosis Rat Model. Pharmaceutics 2021, 13, 509. [CrossRef]

68. Vega-Hernández, L.C.; Serrano-Niño, J.C.; Velázquez-Carriles, C.A.; Martínez-Preciado, A.H.; Cavazos-Garduño, A.; Silva-Jara,
J.M. Improving Foodborne Pathogen Control Using Green Nanosized Emulsions of Plectranthus hadiensis Phytochemicals. Colloids
Interfaces 2024, 8, 3. [CrossRef]

69. Kim, T.-I.; Kim, T.-G.; Lim, D.-H.; Kim, S.-B.; Park, S.-M.; Hur, T.-Y.; Ki, K.-S.; Kwon, E.-G.; Vijayakumar, M.; Kim, Y.-J. Preparation
of Nanoemulsions of Vitamin A and C by Microfluidization: Efficacy on the Expression Pattern of Milk-Specific Proteins in
MAC-T Cells. Molecules 2019, 24, 2566. [CrossRef]

70. Knoke, S.; Bunjes, H. Transfer of Lipophilic Drugs from Nanoemulsions into Lipid-Containing Alginate Microspheres. Pharmaceu-
tics 2021, 13, 173. [CrossRef]

71. Vater, C.; Bosch, L.; Mitter, A.; Göls, T.; Seiser, S.; Heiss, E.; Elbe-Bürger, A.; Wirth, M.; Valenta, C.; Klang, V. Lecithin-Based
Nanoemulsions of Traditional Herbal Wound Healing Agents and Their Effect on Human Skin Cells. Eur. J. Pharm. Biopharm.
2022, 170, 1–9. [CrossRef]

72. Ali, A.; Mekhloufi, G.; Huang, N.; Agnely, F. β-Lactoglobulin Stabilized Nanemulsions--Formulation and Process Factors
Affecting Droplet Size and Nanoemulsion Stability. Int. J. Pharm. 2016, 500, 291–304. [CrossRef] [PubMed]

73. Abbasian Chaleshtari, Z.; Salimi-Kenari, H.; Foudazi, R. Glassy and Compressed Nanoemulsions Stabilized with Sodium Dodecyl
Sulfate in the Presence of Poly(Ethylene Glycol)-Diacrylate. Soft Matter 2023, 19, 5989–6004. [CrossRef]

74. Azeem, A.; Rizwan, M.; Ahmad, F.J.; Iqbal, Z.; Khar, R.K.; Aqil, M.; Talegaonkar, S. Nanoemulsion Components Screening and
Selection: A Technical Note. AAPS PharmSciTech 2009, 10, 69–76. [CrossRef]

75. Algahtani, M.S.; Ahmad, M.Z.; Ahmad, J. Investigation of Factors Influencing Formation of Nanoemulsion by Spontaneous
Emulsification: Impact on Droplet Size, Polydispersity Index, and Stability. Bioengineering 2022, 9, 384. [CrossRef] [PubMed]

76. Zhang, M.; Cao, Q.; Yuan, Y.; Guo, X.; Pan, D.; Xie, R.; Ju, X.; Liu, Z.; Wang, W.; Chu, L. Functional Nanoemulsions: Controllable
Low-Energy Nanoemulsification and Advanced Biomedical Application. Chin. Chem. Lett. 2024, 35, 108710. [CrossRef]
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93. Demisli, S.; Galani, E.; Goulielmaki, M.; Kyrilis, F.L.; Ilić, T.; Hamdi, F.; Crevar, M.; Kastritis, P.L.; Pletsa, V.; Nallet, F.; et al.
Encapsulation of Cannabidiol in Oil-in-Water Nanoemulsions and Nanoemulsion-Filled Hydrogels: A Structure and Biological
Assessment Study. J. Colloid Interface Sci. 2023, 634, 300–313. [CrossRef] [PubMed]

94. Pugazhendhi, A.; Suganthy, N.; Chau, T.P.; Sharma, A.; Unpaprom, Y.; Ramaraj, R.; Karuppusamy, I.; Brindhadevi, K. Cannabi-
noids as Anticancer and Neuroprotective Drugs: Structural Insights and Pharmacological Interactions—A Review. Process
Biochem. 2021, 111, 9–31. [CrossRef]
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