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Abstract: An eight-week trial was designed to study the effects of arginine (Arg) supplemented diets
on the growth, immunity, antioxidant activity, and oxygen-carrying capacity of juvenile Gibel carp
(Carassius auratus gibelio). A total of 300 fish (27.53 ± 0.03 g) were randomized into 15 equal groups
and fed on diets with graded Arg levels: 0 (control), 0.2%, 0.4%, 0.6%, and 0.8% (w/w). The results
showed that final body weight (FBW), weight gain rate (WGR), and specific growth rate (SGR) all
increased and then declined with increasing levels of Arg supplementation, while feed conversion
ratio (FCR) showed the opposite trend. In addition, the fish’s whole-body crude protein and ash
content had no remarkable difference at different levels of Arg addition (p > 0.05). Supplementation
with 0.6% and 0.8% Arg significantly increased plasma alanine transaminase (ALT) activity (p < 0.05).
The malondialdehyde (MDA) levels and superoxide dismutase (SOD) activities of the liver were not
significantly different between the different levels of Arg supplementation (p > 0.05), while catalase
(CAT) activity was significantly increased with 0.4% Arg supplementation levels (p < 0.05). The
0.8% Arg supplementation greatly increased the expression of hepatic-related genes to the Nrf2
signaling pathway, including sod and gpx (p < 0.05). However, the 0.8% Arg supplementation did
not significantly increase the relative expression of genes related to the NF-κB signaling pathway,
including il-1β, il-8, and tnf-α (p > 0.05). Similarly, the relative expression of hif-1 signaling pathway-
related genes at 0.8% Arg supplementation was significantly elevated, including hif-1α, epo, and vegf
(p < 0.05). Hence, Arg supplementation could promote growth and improve immune, antioxidant,
and oxygen-carrying capacity in juvenile Gibel carp.

Keywords: juvenile Gibel carp; growth performance; antioxidant capacity; immune response; oxygen
carrying capacity

Key Contribution: Arg plays an important role in improving the growth, antioxidant capacity,
and immune capacity of juvenile Gibel carp. Arg also plays an important role in enhancing the
oxygen-binding capacity of their hemoglobin. This information will provide a basis for developing
Arg functional additives.

1. Introduction

Fish are an essential component of people’s daily diets, providing high-quality protein
and unsaturated fatty acids [1]. Therefore, aquaculture is an important way to ensure hu-
manity’s protein supply. However, with the fast development of high-density and intensive
aquaculture models, aquaculture is facing many challenges. The likelihood of decreased
immunity and hypoxia affecting live aquatic organisms has increased significantly [2].

BioTech 2024, 13, 56. https://doi.org/10.3390/biotech13040056 https://www.mdpi.com/journal/biotech

https://doi.org/10.3390/biotech13040056
https://doi.org/10.3390/biotech13040056
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biotech
https://www.mdpi.com
https://orcid.org/0000-0001-6502-3914
https://orcid.org/0009-0007-2405-4221
https://doi.org/10.3390/biotech13040056
https://www.mdpi.com/journal/biotech
https://www.mdpi.com/article/10.3390/biotech13040056?type=check_update&version=1


BioTech 2024, 13, 56 2 of 15

Scientists have attempted to reverse this situation through the extensive use of antibiotics
and other medicines [3,4]. However, many of these medicines are no longer suitable for
aquaculture owing to increasing environmental pressures and restrictions on antibiotic
use. Thus, nutritional modification is an important way to boost fish immune systems and
reduce the risk of disease [5].

Amino acids are essential nutrients that regulate disease and support physiological
functions. In recent years, the nutritional physiological role of amino acids has been
increasingly correlated to growth [6,7]. Arginine (Arg) is an essential amino acid in all
fish [8] and is the most versatile amino acid. Arg is involved not only in protein synthesis but
also in a number of metabolic pathways, such as the production of urea, the metabolism of
glutamate and proline, and the synthesis of creatine and polyamines [9,10]. Previous studies
have shown that dietary Arg supplementation can positively affect fish growth [11–13].
Adding 1% Arg to feed significantly enhanced the final body weight (FBW), specific growth
rate (SGR), feed conversion rate (FCR), and survival rate (SR) of hybrid striped bass (Morone
saxatilis) [14]. A fish’s ability to digest and absorb nutrients in the intestine also affects its
growth performance [15]. Arg significantly increased the depth of gut folds and the height
of villi in hybrid striped bass [14]. In addition, Arg can be used as a dietary supplement:
Atlantic salmon (Salmo salar) fed Arg-supplemented diets have shown a trend toward
higher specific feed rate (SFR) and specific growth rate (SGR) and increased final body
weight [16].

Moreover, Arg plays a vital role in mediating the immune response [17,18] and antiox-
idant capacity [19,20] of fish. Appropriate Arg levels stimulate non-specific immunity and
improve disease resistance and fish survival [21]. As the only substrate for NO synthesis,
Arg could regulate the NF-κB pathway by mediating toll-like receptors (TLRs) and then
inhibit the expression of inflammatory response-related genes, such as tumor necrosis
factor-α (tnf-α) and interleukin-1β (il-1β) [22–24]. Furthermore, Arg is essential for the
antioxidant capacity of fish; it can activate the Nrf2 signaling pathway, upregulating the
expression of nrf2 and reducing oxidative stress [25]. Activation of this pathway upregu-
lates antioxidant genes such as superoxide dismutase (sod), catalase (cat), and glutathione
peroxidase (gpx) [26] and enhances the antioxidant capacity of Jian carp (Cyprinus carpio
var.Jian) [27], grass carp (Ctenopharyngodon idella) [25], and blunt snout bream (Megalobrama
amblycephala) [28]. Furthermore, HIF-1 (hypoxia-inducible factor), a transcription factor
regulated by oxygen levels in vivo, plays an active role in oxygen homeostasis in fish.
Numerous genes downstream of HIF-1 have been found to enhance oxygen transport,
including those that affect erythropoiesis, iron metabolism, angiogenesis, vascular tone,
and oxygen consumption [29–31]. Increased hif-1α downstream gene expression facilitates
adaptation to hypoxia and improves hypoxia tolerance in the doughnut bream [32]. As a
precursor of nitric oxide, Arg enhances oxygen transport, and in recent years, it has been
found to play an important role in regulating the oxygen-carrying capacity of animals.
However, there are few related studies, especially on fish.

As a significant aquaculture species, Gibel carp (Carassius auratus gibelio) is found
throughout Asia and Europe. People in China and other countries enjoy eating carp
as a delicacy. However, with changes in the culture environment, Gibel carp is highly
susceptible to stress and other effects in culture. Therefore, finding the right supplements
to add to animal feed could improve animal health; in addition, there have been a few
studies on feed supplementation for Gibel carp [33–35]. However, Arg is a beneficial feed
supplementation to enhance fish growth and immune response, and research on the use of
Arg as a feed supplementation for the health and welfare of Gibel carp is limited. Thus,
this study will attempt to determine if Arg supplementation can improve growth, immune
responses, antioxidative stress, and oxygen-carrying capacity in this species.
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2. Materials and Methods
2.1. Diets

The base level of Arg in the feed is 2.19%, which meets the Arg requirement of juvenile
Gibel carp at 2.0% [36]. On this basis, we designed five Arg levels: 0 (control), 0.2%, 0.4%,
0.6%, and 0.8% (w/w), which were replaced by equal proportions of glycine to ensure
consistent feed protein. The fundamental dietary composition is described in Table 1. All
components were thoroughly ground and passed through a 180 µm mesh sieve, and the
diets were fixed using trial recipes. The feed was well mixed with oil and water. The mixed
components were processed into 1 mm expanded granules using a machine for puffing
aquatic feed (Jiangsu Muyang Holdings Co., Ltd., Yangzhou, China). Before use, the feed
was dried, placed in a zip-lock bag, and maintained at 4 ◦C.

Table 1. Formulation and proximate composition of the experimental feed (% dry matter).

Ingredients Diet 1 Diet 2 Diet 3 Diet 4 Diet 5

Fish meal 14 14 14 14 14
Chicken meal 4 4 4 4 4
Soybean meal 22 22 22 22 22
Cotton meal 5 5 5 5 5

Rapeseed meal 22 22 22 22 22
Wheat meal 14.15 14.15 14.15 14.15 14.15

Rice bran 10 10 10 10 10
Soybean oil 4 4 4 4 4

Monocalcium phosphate 2 2 2 2 2
F11V Vitamin Premix for Carnivorous Fish 0.2 0.2 0.2 0.2 0.2

F29M Trace element premix for
omnivorous fish 2 2 2 2 2

L-lysine (98.5%) 0.3 0.3 0.3 0.3 0.3
L-methionine 0.1 0.1 0.1 0.1 0.1

Vc Phospholipid 0.05 0.05 0.05 0.05 0.05
Choline Chloride (60%) 0.2 0.2 0.2 0.2 0.2

L-Glycine 0.8 0.6 0.4 0.2 0
L-Arg 0 0.2 0.4 0.6 0.8

Analyzed proximate composition
Crude protein (%) 38.45 38.71 38.78 38.78 38.46

Crude lipid (%) 6.25 6.18 6.62 6.46 6.22
Gross energy (MJ/Kg) 15.81 15.76 15.83 15.80 15.77

Note: The protein content of the fish meal, soybean meal, rapeseed meal, chicken meal, and cotton meal was
65.6%, 46.0%, 39.2%, 62.5%, and 53.7%, respectively, and the crude lipid content of the fish meal, soybean meal,
rapeseed meal, chicken meal, and cotton meal was 9.5%, 4.3%, 6.1%, 10%, and 1.4%, respectively. These values are
part of the composition and analysis for each ingredient. All the ingredients were sourced from Wuxi Tong-Wei
Feedstuffs Co., Ltd., Wuxi, China.

2.2. Feeding Procedure

Before the formal trials, the fish were fed general meals (Tong-Wei, Wuxi, China)
for two weeks to acclimate them to their surroundings. Three hundred healthy juvenile
Gibel carp with an initial weight of 27.53 (±0.03 g) were randomly distributed into 15 nets
(1 m × 1 m × 1 m) with 20 fish in each cage stochastically. The eight-week feeding trial
used a satiety feeding strategy (stop coming up to feed). Gibel carp were given two equal
meals twice daily at 7 a.m. and 5:30 p.m. The water’s temperature and pH were measured
daily throughout the trial: the range of water temperature was 28–32 ◦C, the pH was 7.0–7.8,
the dissolved oxygen concentration remained at 6.0–7.8 mg/L, and the ammonia nitrogen
content was less than 0.1 mg/L.

2.3. Sampling and Preservation

Before sampling, the fish were starved for twenty-four hours. To determine growth
indicators, we then recorded the number and weight of the fish in each cage. Five fish were
taken from each cage, three fish were taken out to gather liver and blood samples, and two
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were analyzed for general composition. The fish specimens were rendered unconscious
using MS-222 (100 mg/L) before obtaining liver and blood samples. After drawing blood
from the tail vein, the upper plasma was separated by centrifuging the mixture for ten
minutes at 4000 rpm. As soon as blood was drawn, the fish was dissected to obtain liver
samples. Liver and serum samples were kept at −80 ◦C for storage.

2.4. Analytical Methods

Whole-body fish and feed were analyzed for protein, moisture, crude lipid, and ash
content according to the AOAC (2003) method and our previous study [37]; crude protein
(N × 6.25) was determined with the Kjeldahl method after acid digestion; dry matter
was determined after drying in an oven at 105 ◦C until constant weight; ash content was
determined by incineration in a muffle furnace at 560 ◦C for 5 h; and lipid content was
determined by ether extraction using Soxhlet. The biochemical levels of the blood samples
were measured using a Mindray BS-400 autoanalyzer (Shenzhen, China). The antioxidant
indices were measured as previously described [38]. Table 2 shows the detailed procedures,
reagent kits, and devices used.

Table 2. Primary methodology and analytical equipment.

Items Methods Assay Kits/Testing Equipment

Composition of diets/ingredients/Fish

Moisture Drying method Electric blast drying oven (Shanghai Yiheng
Scientific Instrument Co., Ltd., Shanghai, China)

Protein Kjeldahl Auto kieldahl apparatus: Hanon K1100 (Jinan
Hanon Instruments Co., Ltd., Jinan, China)

Lipid Soxhlet Auto fat analysis: Hanon SOX606 (Jinan Hanon
Instruments Co., Ltd., Jinan, China)

Ash Combustion Muffle: XL-2A (Hangzhou Zhuochi Instrument
Co., Ltd., Hangzhou, China)

Plasma parameters

Albumin (ALB)
Total cholesterol (TC)

Triglyceride (TG) International Federation of Clinical
Chemistry recommended

Assay kits purchased from Mindray Medical
International Ltd. (Shenzhen, China); Mindray

BS-400 automatic biochemical analyzer (Mindray
Medical International Ltd., Shenzhen, China).Alanine transaminase (ALT)

Aspartic transaminase (AST)

Superoxide dismutase (SOD)
Malondialdehyde (MDA)

Catalase (CAT)

Liver antioxidant capacity
WST-1 method
TBA method

Ammonium molybdenum acid method

Assay kits purchased from Jian Cheng
Bioengineering Institute (Nanjing, China),

Spectrophotometer (Thermo Fisher Multiskan GO,
Shanghai, China).

2.5. RNA Extraction and Real-Time PCR Analysis

Hepatic RNA was extracted using RNAiso Plus reagent (Vazyme, Nanjing, China),
with an acceptable A260/280 ratio between 1.8 and 2.0 for further experiments. Real-time
PCR analyzed the Ct value for different genes with a One Step SYBR Prime Script TM
PLUS RT-PCR kit (Takara, Dalian, China) using CFX96 Touch (Bio-Rad, Singapore). Be-
ta-actin (β-actin) was used as the internal reference gene owing to its steady and high
expression levels, and no discernible variation was seen. Table 3 shows the gene sequences.
Sangon Biotech (Shanghai) Co., Ltd. synthesized all primers. Some of these were based
on references from earlier research, and the remainder were created online using Primer
Premier 6.0. Finally, the gene expression results were analyzed using the standard curve
approach [39].
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Table 3. Real-time PCR primer sequences used in the present study.

Genes Forward Primer (5′-3′) Reverse Primer (5′-3′) Accession Number/Reference

il-10 AGTGAGACTGAAGGAGCTCCG TGGCAGAATGGTGTCCAAGTA [40]
tgf-β GTTGGCGTAATAACCAGAAGG AACAGAACAAGTTTGTACCGATAAG [41]
il-1β GCGCTGCTCAACTTCATCTTG GTGACACATTAAGCGGCTTCA C [41]
il-8 ATTGGTGAAGGAATGAGTCT CCACAGATGACCTTGACAT KC184490.1

tnf-α CATTCCTACGGATGGCATTTACTT CCTCAGGAATGTCAGTCTTGCAT [41]
nf-κb GCTCTGACTGCGGTCTTATAC GCGCTTCATCGAGGATAGTT [42]
gpx GAAGTGAACGGTGTGAACGC GATCCCCCATCAAGGACACG DQ983598.1
cat TGAAGTTCTACACCGATGAG CTGAGAGTGGACGAAGGA XM_026238665.1
sod TCGGAGACCTTGGTAATGT CGCCTTCTCATGGATCAC JQ776518.1

κeap1 CTCCGCTGAATGCTACAA GGTCATAACACTCCACACT XM_026245355.1
Nrf2 TACCAAAGACAAGCAGAAGAAACG GCCTCGTTGAGCTGGTGTTTGG [43]
hif-1α CTGCCGATCAGTCTGTCTCC TTTGTGGAGTCTGGACCACG DQ306727.1
vegf ATCGAGCACACGTACATCCC CCTTTGGCCTGCATTCACAC NM_131408.3
epo CGAAGTGTCAGCATACCGGA GCAGATGACGCACTTTTCCC KC460317.1

β-actin TCCATTGTTGGACGACCCAG TGGGCCTCATCTCCCACATA LC382464.1
Note: tgf-β, transforming growth factor-β; il-10, interleukin-10; il-8, interleukin-8; il-1β, interleukin-1β; tnf-α,
tumor necrosis factor-α; nf-κb, nuclear factor kappa-β; gpx, glutathione peroxidase; cat, catalase; sod, superoxide
dismutase; nrf2, nuclear factor erythroid 2-related factor 2; κeap1, recombinant kelch like ech associated protein
1; hif-1α, hypoxia-inducible factor 1-α; vegf, vascular endothelial growth factor; epo, erythropoietin; β-actin,
beta-actin.

2.6. Statistical Analysis

The data were subjected to normality and homogeneity tests where necessary, and
then data were analyzed via one-way analysis of variance (ANOVA) using SPSS (20.0) and
compared for significance using Tukey’s test. The data were recorded as mean ± standard
error. Significant differences between values are represented with different alphabetical
superscripts (p < 0.05).

3. Results
3.1. Growth Performance and Whole-Body Composition

Table 4 shows the growth performance results. The FBW and WGR values all showed
an increasing trend up to the 0.4% Arg supplementation group, followed by a declining
trend; the effects of the Arg supplementation levels were not statistically different (p > 0.05).
The SGR was markedly higher in the 0.4% and 0.6% Arg supplementation groups than
in the 0% (control) group (p < 0.05), and the FCR was significantly lower in the 0.6% and
0.8% Arg supplementation groups than in the 0% (control) group (p < 0.05). We compared
the R2 of the SGR and FCR quadratic, linear, and broken linear regression models (SGR:
quadratic regression R2 = 0.9793 > linear regression R2 = 0.6499 > broken linear regression
R2 = 0.487; FCR: quadratic regression R2 = 0.9625 > linear regression R2 = 0.8047 > broken
linear regression R2 = 0.497). Hence, we chose quadratic regression models based on the
highest value of R2; quadratic regression analyses yielded optimal Arg supplementation
levels for juvenile Gibel carp for SGR and FCR, which were 0.57% and 0.67% in the dry
diet, respectively (Figures 1 and 2). Table 5 shows that the whole-body water, fat, ash,
and protein contents were not significantly affected by the feed treatments in this study
(p > 0.05).



BioTech 2024, 13, 56 6 of 15

Table 4. Effect of Arg supplementation levels on growth performance.

Arg Addition Levels (%) 1 IBW(g) 2 FBW(g) 3 WGR (%) 4 SGR(%/day) 5 FCR

0 27.45 ± 0.08 80.13 ± 1.56 191.93 ± 0.06 1.15 ± 0.02 a 1.24 ± 0.04 b

0.2 27.52 ± 0.06 82.83 ± 0.44 201.00 ± 0.02 1.18 ± 0.01 ab 1.18 ± 0.01 ab

0.4 27.53 ± 0.03 84.81 ± 1.41 208.03 ± 0.05 1.21 ± 0.02 b 1.17 ± 0.02 ab

0.6 27.50 ± 0.06 84.50 ± 0.47 207.27 ± 0.02 1.21 ± 0.01 b 1.15 ± 0.00 a

0.8 27.47 ± 0.06 84.05 ± 1.07 206.00 ± 0.03 1.20 ± 0.01 ab 1.15 ± 0.01 a
p-value

Linear trend 0.926 0.022 0.019 0.025 0.008
Quadratic trend 0.487 0.010 0.011 0.017 0.012

Note: 1 Initial body weight (IBM). 2 Final body weight (FBM). 3 Weight gain rate (WGR) (%) = 100 × (FBW
(g) − IBW (g))/IBW (g). 4 Specific growth rate (SGR) (%/d) = 100 × [(Ln (FBW (g)) − Ln (IBW (g)))/days].
5 Feed conversion ratio (FCR) = dry feed fed (g)/wet weight gain (g). The mean ± standard error was used to
characterize the data. Superscripts of different letters (a and b) indicate significant differences between groups
(p < 0.05).
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Table 5. Effect of Arg supplementation levels on whole body composition.

Arg Addition
Levels (%) Moisture (%) Lipid (%) Ash (%) Protein (%)

0 73.86 ± 0.45 3.59 ± 0.32 5.42 ± 0.33 15.78 ± 0.53
0.2 73.70 ± 0.85 3.73 ± 0.82 5.67 ± 0.15 16.01 ± 0.11
0.4 74.54 ± 0.77 3.74 ± 0.68 4.68 ± 0.36 15.68 ± 0.3
0.6 73.01 ± 0.53 3.79 ± 0.42 5.07 ± 0.54 16.29 ± 0.22
0.8 75.52 ± 0.15 2.29 ± 0.37 5.15 ± 0.18 16.25 ± 0.26

p-value
Linear trend 0.263 0.177 0.399 0.220

Quadratic trend 0.299 0.123 0.484 0.456
Note: The mean ± standard error was used to characterize the data.

3.2. Plasma Biochemical Parameters

Table 6 shows the plasma parameter results. The 0.6% and 0.8% Arg supplementation
groups showed ALT levels that were significantly higher than the 0% (control) group
(p < 0.05). ALB and AST levels did not markedly differ across the groups (p > 0.05). TC and
TG levels did not differ significantly between groups (p > 0.05).

Table 6. Effect of Arg supplementation levels on plasma parameters.

Arg Addition Levels (%) ALB (g/L) ALT (U/L) AST (U/L) TC (mmol/L) TG (mmol/L)

0 8.59 ± 0.24 0.76 ± 0.1 ab 166.3 ± 9.45 6.86 ± 0.58 1.33 ± 0.06
0.2 8.77 ± 0.42 0.44 ± 0.11 a 169.44 ± 10.09 7.00 ± 0.35 1.29 ± 0.10
0.4 8.86 ± 0.41 1.12 ± 0.22 bc 185.37 ± 13.85 7.10 ± 0.43 1.41 ± 0.13
0.6 8.19 ± 0.35 1.47 ± 0.18 c 166.32 ± 9.78 6.21 ± 0.37 1.23 ± 0.09
0.8 7.96 ± 0.49 1.53 ± 0.23 c 171.88 ± 9.49 6.20 ± 0.49 1.25 ± 0.10

p-value
Linear trend 0.137 0.000 0.811 0.143 0.477

Quadratic trend 0.184 0.000 0.730 0.258 0.694
Note: The mean ± standard error was used to characterize the data. Superscripts of different letters (a, b, c)
indicate statistically significant between groups (p < 0.05).

3.3. Liver Antioxidant Parameters

The liver antioxidant parameter results are presented in Table 7. The CAT activity
increased to 0.4% and then decreased (p < 0.05). Compared with the 0% group, there are no
significant differences in the SOD activity and MDA levels in Arg diets (p > 0.05).

Table 7. Effect of Arg supplementation levels on liver antioxidant parameters.

Arg Addition Levels (%) CAT (U/mgprot) SOD (U/mgprot) MDA (nmol/mgprot)

0 7.45 ± 2.37 a 28.08 ± 0.65 6.00 ± 0.17
0.2 18.25 ± 2.09 bc 26.90 ± 0.85 5.89 ± 0.64
0.4 23.15 ± 2.04 c 26.81 ± 0.83 6.17 ± 0.66
0.6 18.42 ± 2.43 bc 26.79 ± 0.64 5.99 ± 1.02
0.8 13.10 ± 1.75 ab 26.25 ± 1.25 7.04 ± 1.02

p-value
Linear trend 0.373 0.165 0.123

Quadratic trend 0.000 0.354 0.314
Note: The mean ± standard error was used to characterize the data. Superscripts of different letters (a, b, c)
indicate significant differences between groups (p < 0.05).

3.4. Inflammatory Factor Gene Expression

Figure 3 shows the anti-inflammatory gene expression results. The tgf-β mRNA
expression was highest in the 0.8% Arg supplementation group and was significantly
higher than in the 0% (control) group (p < 0.05). There was a tendency for il-10 mRNA
expression to increase; however, there was no significant difference compared to the control
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group (p > 0.05). Figure 4 shows the pro-inflammatory gene expression results. The il-1β
and nf-κb mRNA expression showed no significant difference compared to the control
group (p > 0.05). There was no statistical difference in tnf-α and il-8 mRNA expression
across the groups (p > 0.05).
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3.5. Antioxidant-Related Gene Expression

Figure 5 shows the antioxidant-related gene results. The nrf2 mRNA expression
was significantly higher in the 0.8% Arg supplementation group than in the 0% (control)
group (p < 0.05). The κeap1 mRNA expression was significantly higher in the 0.8% Arg
supplementation group than in the 0% (control) group (p < 0.05). The sod and gpx mRNA
expression was highest in the 0.8% Arg supplementation group (p < 0.05). There was no
difference between the groups in cat mRNA expression, which showed the same trend
(p > 0.05).
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3.6. HIF-1 Pathway-Associated Gene Expression

Figure 6 shows gene expression results related to the HIF-1 pathway. The hif-1α, epo,
and vegf mRNA expression in the 0.8% Arg supplementation group were markedly higher
than in the 0% (control) group (p < 0.05). There was no significant difference in nos mRNA
expression between the groups (p > 0.05).
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4. Discussion

In this study, Arg-supplemented diets improved the growth performance and feed ef-
ficiency of juvenile Gibel carp. Although no significant changes were observed in FBW and
WGR after Arg supplementation, 0.4–0.6% Arg supplementation significantly increased
SGR compared with that of the control group, and 0.6–0.8% Arg supplementation sig-
nificantly decreased the FCR compared with that of the control group. The increase in
SGR and FCR may reveal this theory that Arg in the feed has a beneficial effect on the
growth of juvenile Gibel carp. There are quite a few literature studies on Gibel carp with
feed supplementation [33–35]; while Arg is a beneficial feed supplementation, there was
no research on Gibel carp. Arg is an essential amino acid for fish; therefore, any excess
or shortage in the diet may reduce feed utilization and growth performance [44]. In a
previous study, the FBW of rainbow trout (Oncorhynchus mykiss) was improved when Arg
feed levels increased from 1.72% to 3.09% [45]. The WGR and feed efficiency of hybrid
striped bass were also improved when feed was supplemented with 1.45% to 1.55% Arg
levels [46]. In addition, studies have shown that Arg supplementation above the prescribed
minimum requirement can improve feeding and growth in Atlantic salmon [16]. Feed
supplemented with the dipeptide or free form of Arg significantly affected the FBW, WGR,
and SGR of juvenile South American pacu (mesopotamicus Piaractus mesopotamicus) [12].
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Furthermore, the growth-promoting effect of Arg has been confirmed in several other fish
species, including largemouth bass (Micropterus salmoides) [47], spotted catfish (Ictalurus
punctatus) [48], and Nile tilapia (Oreochromis niloticus) [49]. The results of our experiments
support the current data for juvenile Gibel carp, suggesting that Arg supplementation
performs a critical function in regulating the growth performance of fish. This is because
Arg is an essential amino acid for fish and participates in protein synthesis, promoting
growth [50].

Arg supplementation in the diet increased the crude protein content of juvenile Gibel
carp to an extent; however, there was no discernible difference between the whole-body
crude protein, crude fat, and ash levels in the supplemented groups and those of the control
group. These results agree with those for juvenile golden pompan (Trachinotus ovatus) [51]
and juvenile Nile tilapia (Oreochromis niloticus) [52]. However, one study found that adding
9–12 g/kg of Arg to the feed significantly increased the overall protein content and reduced
lipid deposition in juvenile Asian red-tailed catfish (Hemibagrus wyckoiides) [53]. Thus,
the effect of feed supplementation with amino acids on whole-body composition may be
related to the species of fish. As a vital metabolic transport system, one of the prominent
functions of blood is to regulate the lipid metabolism in the organism and blood lipid levels
can be used as an indicator of lipid metabolism [54]. TG and TC are lipid metabolism
intermediates and are thus considered good indicators of lipolytic metabolism [55]. In this
study, TG and TC contents did not significantly differ between the groups, while lower TC
and TG contents were recorded in the 0.6% and 0.8% groups, similar to the results of dietary
supplementation with leucine in Gibel carp [56]. ALT reached its maximum in the 0.8%
Arg supplementation group, and AST did not differ between groups, possibly because of
vigorous metabolism in the body due to Arg supplementation rather than liver injury [57]
because AST and ALT also play an important role in fish nutrient metabolism [58]. In
this study, ALB did not show significant changes, similar to the results for juvenile Asian
red-tailed catfish (Hemibagrus wyckoiides) [53].

Nrf2 is one of the main cellular oxidative stress regulators, and the nrf2-κeap1 signaling
pathway can modulate the expression of several detoxification enzymes and antioxidant-
protein-related genes [59]. In this study, nrf2 mRNA and κeap1 mRNA expression levels
were simultaneously upregulated in the 0.8% Arg supplementation group compared with
the control group, indicating that the Nrf2 antioxidant system can only be activated when
the supplementation level of Arg reaches a certain level. Normally, κeap1 plays a significant
negative regulatory role for nrf2 and interacts with the Neh2de electronic domain of nrf2 [60].
In addition, gpx and sod mRNA levels were highest in the 0.8% Arg supplementation group.
Our results showed a dose-dependency rise in the gpx and sod gene expression, which
indicates that high levels of Arg increased the antioxidant functions of Gibel carp, like male
zebrafish (Danio rerio) [61]. The antioxidant defense systems of organisms also include SOD,
CAT, GPX, and GSH [27]. In the present study, Arg feed supplementation increased CAT
activity but did not have any significant effect on SOD activity in the liver. Since antioxidant
enzymes are essential for fish to avoid oxidative stress and scavenge superoxide anion and
hydroxyl radicals [62], exogenous Arg supplementation may increase their antioxidant
capacity. Similar results were reported in hybrid grouper (Epinephelus fuscoguttatus ♀×
Epinephelus lanceolatus ♂) [63] and yellow catfish (Pelteobagrus fulvidraco) [64]. Various
reports have shown that antioxidant enzyme activities are closely related to their gene
expression. It was further shown that Arg improves and enhances antioxidant capacity.
Therefore, adding Arg to the diet is beneficial for the antioxidant capacity of juvenile
Gibel carp.

In the past few years, Arg-mediated immunomodulation has attracted particular
interest [65–67]. Arg has multiple functions, including participation in protein synthesis,
urea production, polyamine synthesis, proline and guanidinium synthesis, and the en-
docrine and reproductive regulatory processes. Therefore, its involvement in the immune
response of fish may be crucial for managing their health throughout the feeding cycle.
This is a key reason why Arg supplementation is considered a strategy for improving
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immune responses [68,69]. For example, in turbot, Arg supplementation improved the
immunosuppressive response because of high stocking density [70]. In addition, studies
on mirror carp (Cyprinus carpio) have shown that dietary Arg supplementation upregulates
anti-inflammatory genes in the gut [62]. Our results showed il-1β expression in the liver
was highest in the liver at 0.8% Arg level, in line with Chen et al. [71] and Hoseini et al. [72],
who found upregulated il-1β and tnf-α levels in the heads and kidneys of carp after Arg sup-
plementation. Under normal conditions, this effect on pro-inflammatory cytokines could
be interpreted as enhancing the immune response, preparing fish to face pathogens. Sup-
porting this hypothesis, Chen et al. proposed that Arg enhances the immune response and
increases resistance to Aeromonas hydrophila in Jian carp by upregulating the expression
of pro-inflammatory genes [71]. That study’s findings show that 0.8% Arg supplementation
significantly upregulated the relative expression of tgf-β, suggesting that appropriate Arg
levels may attenuate tissue inflammation and reconcile body homeostasis by increasing the
gene expression of anti-inflammatory factors such as tgf-β. Taken together with our results,
this might indicate that Arg supplementation improves growth and immune responses.

Hif-1α is an upstream gene of the hypoxia signaling pathway and can regulate the
expression of various genes in this pathway, possibly modulating fish responses to hypoxic
environments [72–76]. Epo and vegf are important factors that manage erythropoiesis
and angiogenesis [77]. In this study, only the 0.8% Arg supplementation group exhibited
significantly greater relative hif-1α, vegf, and epo gene expression than the control group in
a normoxic environment, indicating that there was a dose-dependent effect of Arg supple-
mentation on the organisms, which is related to the production and degradation of vessels
and hemoglobin [63–75]. Fish can adapt to prolonged exposure to hypoxia by increasing
blood volume with hemoglobin affinity [78], indicating that Arg supplementation might
improve their hypoxia tolerance and the ability to transport oxygen. Similarly, the oxygen
consumption of juvenile European sea bass (Dicentrarchus labrax) during feed deprivation
is similar under normoxic and hypoxic conditions, suggesting that fish can adapt to pro-
longed exposure to hypoxia by increasing blood volume through hemoglobin affinity [79].
Hemoglobin proteins are oxygen sensors in cells [80,81], and HIF-1 can receive the per-
oxides and reactive oxygen species signaling molecules produced by these sensors [82].
In summary, Arg supplementation enhances the oxygen-binding capacity of hemoglobin,
which is why it improves feed utilization.

5. Conclusions

In this study, binding key immune factor expression levels and growth performance,
adding exogenous Arg supplementation at 0.4–0.6% positively affected the growth, antioxi-
dant capacity, and immune capacity of juvenile Gibel carp, with some dose-dependency.
Arg also plays an important role in enhancing the oxygen-binding capacity of their
hemoglobin. This information will provide a basis for developing Arg functional additives.
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