
Academic Editor: Paolo Iadarola

Received: 18 December 2024

Revised: 18 January 2025

Accepted: 27 January 2025

Published: 30 January 2025

Citation: McBrien, C.; O’Connell, D.J.

The Use of Biologics for Targeting

GPCRs in Metastatic Cancers. BioTech

2025, 14, 7. https://doi.org/10.3390/

biotech14010007

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Review

The Use of Biologics for Targeting GPCRs in Metastatic Cancers
Cian McBrien and David J. O’Connell *

School of Biomolecular & Biomedical Science, University College Dublin, D04 V1W8 Dublin, Ireland;
cian.mcbrien@ucd.ie
* Correspondence: david.oconnell@ucd.ie

Abstract: A comprehensive review of studies describing the role of G-protein coupled
receptor (GPCR) behaviour contributing to metastasis in cancer, and the developments
of biotherapeutic drugs towards targeting them, provides a valuable resource toward im-
proving our understanding of the opportunities to effectively target this malignant tumour
cell adaptation. Focusing on the five most common metastatic cancers of lung, breast,
colorectal, melanoma, and prostate cancer, we highlight well-studied and characterised
GPCRs and some less studied receptors that are also implicated in the development of
metastatic cancers. Of the approximately 390 GPCRs relevant to therapeutic targeting, as
many as 125 of these have been identified to play a role in promoting metastatic disease in
these cancer types. GPCR signalling through the well-characterised pathways of chemokine
receptors, to emerging data on signalling by orphan receptors, is integral to many aspects of
the metastatic phenotype. Despite having detailed information on many receptors and their
ligands, there are only thirteen approved therapeutics specifically for metastatic cancer, of
which three are small molecules with the remainder including synthetic and non-synthetic
peptides or monoclonal antibodies. This review will cover the existing and potential use
of monoclonal antibodies, proteins and peptides, and nanobodies in targeting GPCRs for
metastatic cancer therapy.

Keywords: cancer; metastasis; GPCR; monoclonal antibodies; peptides; nanobodies

Key Contribution: Extensive review highlighting the role of GPCRs in cancer metastasis,
and the current state of the field of biotherapeutics for cancer therapy.

1. Introduction
G-protein coupled receptors (GPCRs) are the largest class of human membrane pro-

teins with 810 receptors identified [1–4]. Of these, 455 have olfactory functions, and the
remaining 355 receptors mediate the signalling of a wide variety of ligands including
odours, hormones, neurotransmitters, and chemokines, that range from photons to amines,
carbohydrates, lipids, and peptides to globular proteins [3–5]. GPCRs were originally
separated into six classes, A-F based on sequence homology, of which D and E classes
are not expressed in vertebrates. Those found in vertebrates were then classified into the
GRAFS system which groups GPCRs together based on structural features, functionality
and ligand specificity. Rhodopsin family receptors (Class A), Secretin Family receptors
(Class B), Glutamate family receptors (Class C), Adhesion family receptors and Frizzled
family receptors (Class F) [6]. As many as 390 GPCRs are of therapeutic interest, with
the majority remaining unexplored therapeutically. GPCRs mediate a wide variety of
cellular responses to stimuli and, thus, are widely involved in regulating physiological
processes such as cell growth, differentiation, immune regulation, sensory, and neurological
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processes [7]. Aberrant signalling by these receptors can lead to and drive tumorigenic
behaviour in cancer cells.

GPCRs are composed of a single polypeptide chain, with seven membrane-spanning
alpha helices that combine to form a barrel-like structure that transduces extracellular
stimuli across the cell membrane. The extracellular section contains the N-terminus and
three extracellular loops (ECL 1–3), and is associated with ligand recognition and bind-
ing, while the intracellular section contains the C-terminus, the three intracellular loops
(ICL 1–3), and mediates the signalling cascades of G proteins, kinases, and arrestins [8].
The binding of a ligand to the extracellular domain causes a conformational change, the
most common being the outwards movement of transmembrane helix 6 (TM6), along with
the relative shifting of the other helixes. This, in turn, exposes an intracellular pocket
which allows the forming of a complex with G proteins, G-protein coupled receptor kinases
(GRKs), and arrestins [9]. Each ligand can have different effects on a receptor’s signalling.
Full agonists elicit a maximal signal, while partial or inverse agonists induce reduced or
minimal signalling, respectively. A key aspect of GPCR signalling is biased signalling,
where different ligands can stabilise distinct receptor conformations, which results in the
preferential activation of specific pathways. Cryogenic electron microscopy (Cryo-EM) has
been used to determine the structural basis of biased signalling and has shed further light
on structural elements of ligand–receptor interactions and how these shape intracellular
signalling [10].

Classical GPCR signal transduction results in the activation of the heterotrimeric G
proteins which are composed of α, β, and γ subunits. The α subunit is composed of
4 families, Gs, Gi/o, Gq/11, and G12/13. When bound to GDP, the α subunit also forms an
inactive complex with the Gβγ dimer. Following receptor activation, it rapidly dissociates
from GDP and binds GTP. This results in a conformational change in Gα resulting in the
release of the Gβγ dimer [8,11,12]. These two subunit complexes have been shown to
regulate the activity of various downstream effector proteins. The Gα subunit regulates
downstream effector proteins such as DAG/IP3 and RhoGEF, while the Gβγ subunit
interacts with phospholipases, ion channels, and GRKs [8,11,12]. Receptor signalling is
then terminated by GRKs as they phosphorylate the carboxy terminal tail of the receptor.
This recruits β-arrestin, which recognises phosphorylated receptors to which it binds and
prevents further activity of the associated G proteins. It does so by occupying the same
binding space as G proteins, which rapidly dissociate from the receptor in the presence of
GTP, thereby regulating receptor activity [10]. It also allows for facilitation with clathrin,
resulting in the endosomal degradation of the receptor [8,13]. This is the classical form of
signalling, although, it is now understood that many receptors continue to signal through-
out the endosomal pathway and β-arrestin can also activate alternative MAPK pathways,
serine/threonine kinases, as well as c-Jun N terminal kinases [13,14]. Receptors have
also been shown to have internal signalling from endosomal compartments in the Golgi
apparatus [15]. Due to their extensive signalling mechanisms and their wide involvement
in regulating physiological processes, mutations, or changes in the expression of these
receptors can disrupt this signalling network, leading to continuous downstream signalling
of pathways such as MAPK/ERK and PI3K/AKT that are involved in cell proliferation and
growth. Dysregulation of these pathways can lead to the extended survival and growth of
cells resulting in cancerous phenotypes [1,16,17].

Key pathways through which GPCRs can promote cancer development are the
chemokine, protease-activated receptor (PAR), Hippo, and the WNT signalling pathways
and many others, that mediate key tumorigenic characteristics such as cell proliferation,
differentiation, immune system regulation, and migration [17]. One particular process
these pathways can activate is epithelial–mesenchymal transition (EMT). This is a process
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by which cells transition from an epithelial phenotype to a mesenchymal phenotype as the
expression of epithelial genes such as E-cadherin is decreased and mesenchymal genes,
such as vimentin are increased. This causes a loss of cell–cell adhesion and an increase in
stem cell-like features making these cells more invasive, thereby allowing increased metas-
tasis [18]. These pathways can also affect the tumour microenvironment (TME), specifically
through the recruitment and interaction with cancer associated fibroblasts (CAFs) which
have been shown to promote cell proliferation, angiogenesis, and metastasis of cancer
cells [19]. Here, we will describe the role of some key GPCRs in various metastatic cancers
as well as the therapeutic application of monoclonal antibodies (mAbs), peptides, and
nanobodies (the VHH variable domain of heavy chain antibodies derived from camelids).

2. GPCRs in Metastatic Cancers
Metastasis is perhaps the most malignant characteristic of cancers and causes 90% of

all cancer related deaths [20]. Metastasis is the process by which a primary tumour mass
disseminates from its original site to a new tissue niche via blood vessels or the lymphatic
system, and once this occurs they become highly resistant to therapy [21]. GPCRs have
been shown to have a significant role in the ability of tumour cells to metastasize with a
third of the druggable GPCR family shown to promote metastatic cancers (Figures 1 and 2,
Table 1).
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Figure 1. Number of GPCRs involved in the top five most common metastatic cancers.

Table 1. Table of the GPCRs involved in the most common metastatic cancers. Column one represents
the name of the receptor, and column two represents the type of metastatic it is involved in.

Receptor Metastatic Cancer Reference

5-HT1A Prostate [22]

5-HT1D Colorectal [23]

5-HT2B Colorectal [24]
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Table 1. Cont.

Receptor Metastatic Cancer Reference

5-HT4 Prostate [25]

5-HT7 Breast, Lung [26,27]

A2BR Breast, Colorectal, Lung, Melanoma [28,29]

A3R Breast, Colorectal [30]

ACKR2 Breast, Lung [31,32]

ADGRE1 Colorectal [33]

ADGRF5 Breast, Colorectal [34,35]

ADGRG1 Breast [36]

ADRA2A Breast [37]

ADRA2C Breast [37]

ADRB2 Breast, Colorectal [37,38]

ADRB3 Lung [39]

APNLR Breast, Lung, Prostate, Melanoma [40–42]

AVPR1A Prostate [43]

C3AR1 Breast, Melanoma [44,45]

C5AR1 Breast, Colorectal, Melanoma, [45–47]

CASR Breast, Prostate [48]

CB2 Breast, Lung, Prostate [49,50]

CCKAR Lung [51]

CCR1 Breast, Colorectal, Lung, Melanoma, Prostate [52–54]

CCR2 Breast, Colorectal, Lung, Melanoma, Prostate [55,56]

CCR3 Breast, Colorectal, Melanoma, Prostate [57–60]

CCR4 Breast, Colorectal, Melanoma, Prostate [61–63]

CCR5 Breast, Colorectal, Lung, Melanoma, Prostate [64,65]

CCR6 Breast, Colorectal, Lung, Melanoma, Prostate [66–69]

CCR7 Breast, Colorectal, Lung, Melanoma, Prostate [66,70]

CCR8 Breast, Colorectal, Lung, Melanoma [66,71]

CCR9 Breast, Lung, Melanoma, Prostate [66,72]

CCR10 Breast, Lung, Melanoma [73,74]

CCRL2 Colorectal, Prostate [75,76]

CRHR1 Prostate [77]

CX3CR1 Breast, Lung, Prostate [78–80]

CXCR1 Breast, Colorectal, Lung, Melanoma, Prostate [81–83]

CXCR2 Breast, Colorectal, Lung, Melanoma, Prostate [81,83,84]

CXCR3 Breast, Colorectal, Lung, Melanoma, Prostate [85–87]

CXCR4 Breast, Colorectal, Lung, Melanoma, Prostate [88,89]
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Table 1. Cont.

Receptor Metastatic Cancer Reference

CXCR5 Breast, Lung, Melanoma, Prostate [90]

CXCR6 Breast, Lung, Melanoma, Prostate [91–93]

CXCR7 Colorectal, Lung, Melanoma, Prostate [94–97]

EDNRA Colorectal [98]

EDNRB Breast, Melanoma [99,100]

F2R Breast, Colorectal Melanoma, Prostate [101–103]

FFAR1 Breast, Prostate [104,105]

FPR1 Breast, Colorectal, Lung, Melanoma [106–109]

FPR2 Breast, Colorectal [106,110]

FSH Breast, Lung, Prostate [111,112]

FZD1 Breast [113]

FZD2 Breast, Colorectal, Lung [114]

FZD5 Prostate [115]

FZD7 Breast, Colorectal, Melanoma, [116–118]

FZD8 Breast, Colorectal, Prostate [119–121]

GABBR2 Breast [106]

GALR1 Colorectal [122]

GNRHR Breast, Colorectal, Prostate [123,124]

GPER Breast [125]

GPR107 Prostate [126]

GPR132 Breast [127]

GPR141 Breast [128]

GPR15 Colorectal [129]

GPR161 Breast [130]

GPR171 Breast, Lung [131,132]

GPR176 Colorectal [133]

GPR18 Melanoma [134]

GPR19 Breast, Melanoma [135,136]

GPR31 Colorectal [137]

GPR34 Colorectal [138]

GPR35 Colorectal [139]

GPR37 Lung [140]

GPR39 Breast, Prostate [141,142]

GPR4 Colorectal, Melanoma [143,144]

GPR50 Breast [145]

GPR55 Breast [146]

GPR65 Colorectal [147]
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Table 1. Cont.

Receptor Metastatic Cancer Reference

GPR75 Prostate [148]

GPR78 Lung [149]

GPRC6A Breast, Prostate [150,151]

GRM3 Breast [152]

GRPR Colorectal [153]

GSHR Lung, Melanoma, Prostate [154–156]

HCAR1 Breast [157]

HRH1 Breast, [158]

HRH3 Breast, Lung [159,160]

HTR2B Colorectal [161]

LGR4 Breast, Lung, Prostate [162–164]

LGR6 Breast, Colorectal, Lung [165–167]

LH Breast, Colorectal [168,169]

LPAR1 Breast, Lung, Melanoma [170–172]

LPAR2 Breast [173]

LPAR3 Breast [174]

LPAR5 Breast [175]

LPAR6 Breast [176]

LTB4R Breast [177]

M2R Colorectal, Lung [178,179]

M3R Lung [180]

MRGD Lung [181]

NMUR1 Colorectal [182]

NMUR2 Colorectal [183]

NPY1R Breast, Colorectal, Melanoma, Prostate [184]

NPY5R Breast [185]

NTSR1 Breast, Lung [186,187]

OPKR1 Breast [188]

OPN3 Lung [189]

OXER1 Breast, Prostate [150,190]

OXTR Breast, Melanoma [191,192]

P2YR1 Lung [193]

P2YR11 Breast [194]

P2YR6 Lung [195]

PROK1 Colorectal [196]

PROK2 Colorectal [197]

PTAFR Breast [198]
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Table 1. Cont.

Receptor Metastatic Cancer Reference

PTGER1 Colorectal [199]

PTGER2 Prostate [200]

PTH1R Breast, Lung [201,202]

QRFPR Prostate [203]

RXFP1 Breast [204]

S1PR1 Breast, Colorectal [205,206]

S1PR3 Breast, Colorectal [206,207]

SUNCR1 Lung [208]

TACR1 Breast [209]

TACR2 Lung [210]

TBXA2R Breast, Colorectal, Lung, Melanoma, Prostate [211]

XCR1 Breast, Lung [212,213]
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Figure 2. Upset plot showing the overlap of different GPCRs in the top five most common metastatic
cancers. Histogram in blue (top) showing the distribution of individual GPCRs across all five cancer
types. Bar chart in amber (bottom left) showing total numbers of receptors per cancer type. Black
spheres linking both datasets. Data taken from Table 1.

2.1. Metastatic Breast Cancer

Metastatic breast cancer is one of the leading causes of cancer-related deaths in women
worldwide, and the role of GPCRs in this disease is a rapidly growing area of research,
due to their role in key events during metastasis [214]. The chemokine receptor family
for example, one of the largest class A receptor subtypes, has been extensively studied.
Chemokine receptors engage in a large array of cellular functions, but their most promi-
nent function is in cell movement. They regulate movement in different ways, including
chemotaxis, haptotaxis, and transcellular migration [215,216]. Among 92 two GPCRs that
have been implicated in the metastasis of breast cancer cells, CXCR4 is the possibly the
best characterised, with a significant majority of published research describing the role
of this receptor in metastasis, while there are many more that have had very few studies
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into their involvement in metastatic cancer such as NPY1R/5R or RXFP1. CXCR4 in breast
cancer plays a critical role in cancer progression by promoting growth as well as allowing
for metastasis to distant tissues that express its ligand CXCL12 including lung and bone
niches [217]. Knocking out CXCR4 in mice delayed and regressed the growth of primary
tumours, as well as preventing metastasis, showing its key role in the growth of primary
tumours as well as metastasis of breast cancers [218]. HER2 activity has been shown to
enhance the expression of CXCR4 as well as prevent its degradation, facilitating metastasis
to the lungs [219]. More recently it has been shown that inhibiting CXCR4 with plerixafor®,
a small molecule antagonist to the receptor, reduces fibrosis in breast cancers that have
metastasized to the lungs and liver, increases T-lymphocyte infiltration, and more than
doubles the sensitivity of breast cancer cells to immunotherapy [220]. Another well-studied
chemokine receptor involved in breast cancer metastasis is CCR7. CCR7 has been shown to
form heterodimers with CXCR4 in breast cancer cells resulting in a metastatic phenotype
as well as allowing for increased survival in the absence of an extracellular matrix (ECM)
attachment [221]. Silencing CCR7 in metastatic breast cancer cell lines has been shown
to reduce motility, migration, and invasion both in vitro and in vivo [31,222]. PAR1 is a
protease-activated GPCR whose interaction with the extracellular protease thrombin has
been shown to activate breast carcinoma cells and initiate their invasion [223]. The use
of two PAR1 antagonists, MMP-1 inhibitor and P1pal7, caused significant apoptosis and
reduced metastasis to the lungs by 85% in xenografted mice [224]. The expression of PAR1
on breast cancer cells causes a loss of epithelial markers such as E-cadherin and gain of
mesenchymal markers including vimentin, shifting them to an invasive phenotype and
allowing a HMG2A mediated invasion of breast cancer [225]. PAR1 expression has been
shown to be induced by the Twist transcriptional factor, which also downregulates E-
cadherin expression, promoting tumour progression and metastasis. PAR1 activation leads
to the downregulation of the Hippo pathway, thereby inducing an epithelial–mesenchymal
transition in breast cancer [101]. ADGRF5 (GPR116) is a member of the adhesion GPCR
family, the second largest of the GPCR families. They have long N-terminal adhesion
regions and are involved in cell adhesion, motility, and immune response [226]. The GPCR
ADGRF5 has been shown to be a regulator of breast cancer metastasis, with knock out
of ADGRF5 in triple negative breast cancer cells, reducing metastasis in mouse models.
ADGRF5 signalling modulates the formation of actin stress fibres and lamellipodia via
Rho GTPase signalling [227]. More recent studies into the role of ADGRF5 in breast cancer
metastasis showed that the loss of ADGRF5 in breast cancer cells reduced cell motility,
extracellular matrix remodelling, and tumour growth. It was also shown that the loss of
ADGRF5 increased the expression of MMP-8, a metalloprotease that leads to the secretion
of CXCL8, resulting in increased infiltration of tumour associated neutrophils (TANs) [35].
GPER (GPR30) is a GPCR that mediates oestrogen signalling and has been shown to be
significantly associated with other pro-migratory genes and metastatic pathways in ER
negative breast cancer patients; high expression of GPER is also associated with lower
disease-free interval in these patients [228]. GPER has also been shown to mediate oe-
strogen signalling in cancer associated fibroblasts contributing to migration, spreading,
and the triggering of more aggressive malignant features [125]. Conversely, it has also
been shown that the activation of this receptor in triple negative breast cancer using its
endogenous ligand G1 reduces the angiogenesis and migration of these cells, as well as
xenograft tumours [229], further showing the need to understand the temporal activation
of receptors more clearly to target them therapeutically.
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2.2. Metastatic Colorectal Cancer

Colorectal cancer (CRC) is responsible for a third of all cancer deaths in the United
States. Twenty percent of all patients are diagnosed with metastatic colorectal cancer,
with a 5-year survival rate of less than 5%, highlighting the lack of effective treatments
in this area [230]. Colorectal cancers metastasize to many organs but predominantly
the liver, lungs, and the peritoneum, with a number of GPCRs involved in driving this
behaviour. CXCR4 has a well-described role in CRC, with high expression levels in patients
associated with poor overall survival and progression-free survival [231]. The activation
of the CXCR4/CXCL12 axis was shown to upregulate a series of miRNAs that interact
with tumour associated macrophages at the invasive fronts of tumours, resulting in M2
polarisation of these macrophages. These cells then increase the metastatic capacity of CRC
cells via secretion of VEGF and enhancing EMT [232,233]. The overexpression of CXCR4 has
been shown to induce the formation of pseudopodia. The reorganisation of the cytoskeleton
in CRC cells and activation via its ligand causes the secretion of a metalloproteinase MMP-9,
increasing cell migration and metastasis [217,234]. CXCR4 interacts with CD133, a marker
of CRC stem cells, in CRC metastasis. CXCR4+CD133+ cells were found in higher amounts
in metastatic liver cancer, and were shown to be involved in carcinogenesis [235]. CXCR7
is active in CRC, sharing the same ligand and heterodimerizing with CXCR4. CXCR7 has
been shown to be overexpressed in CRC. The gene silencing of CXCR7 inhibited growth,
invasion, and induced apoptosis in CRC cells. This was due to the downregulation of
PCNA, a nuclear protein and marker of cell proliferation and MMP-2, suggesting the
involvement of ERK1/2 and β-arrestin signalling pathways [236]. CXCR7 activation by
CXCL12 was shown to bias its signalling to β-arrestin, which promoted EMT and metastasis
through induction of YAP1 nuclear transportation, resulting in the downregulation of mi-
RNAs and promoting expression of DCLK1, a tumour stem cell marker [237]. CXCR7
regulates CAFs, which are known to drive cancer progression. CXCR7 expression is
positively correlated with CAF activation markers in colorectal cancer patients. CXCR7+
CRC cells upregulate miRNAs that cause CAFs to increase their expression of inflammatory
cytokines that can trigger EMT [95], allowing the metastasis of CRC cells to the lungs in
xenografts. Prokineticin receptors are a family of GPCRs shown to be involved in CRC
metastasis. Their activity plays a role in chemotaxis and the production of pro-inflammatory
cytokines [238]. Pk-r1 and Pk-r2 are the only receptors in this family and their expression
is upregulated in CRC cell lines. Activation of these receptors in CRC cell lines causes a
3–5-fold increase in in vitro metastasis, along with an increase in mRNA and protein levels
of metalloproteinases MMP-2,7 and 9. This increase in metastasis was reduced with the
addition of an anti-Pk-r2 antibody, suggesting that the Pk-r2 receptor is involved in the
metastatic response [239]. In a comparative study, Pk-r2 was shown to be expressed in
45% of human CRC samples and was associated with a high rate of vascularisation and
metastasis to the liver and lymph nodes. Pk-r2 expression increased with tumour grade
and its expression was negatively correlated with the 5-year survival rate [240]. The use of
an antibody against PROK1, the ligand for Pr-k2, is able to reduce the size and amount of
liver metastatic lesions in a mouse model for CRC, with immunohistochemistry showing a
reduction in the amount of ki-67, a marker of dividing cells [241]. Another of the adhesion
GPCR family ADGRG1 (GPR56) is indicated in the progression and metastasis of CRC.
ADGRG1 has been shown to be overexpressed in patients with CRC and is associated with
a poor prognosis. Overexpression in CRC cell lines promoted migration and invasion via
EMT through PI3K/AKT signalling. Knock out of ADGRG1 caused CRC cells to arrest
in G0/G1 phase preventing proliferation and reducing EMT markers such as N-cadherin
and vimentin [242]. Study of ADGRG1 in patients with CRC, showed that downregulation
was indicated with less cell proliferation, migration, and invasion. Those with a higher
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expression of ADGRG1 had a lower 5-year survival rate, and ADGRG1 expression was
found to be a significant prognostic factor for overall survival [243].

2.3. Metastatic Lung Cancer

Lung cancer can be divided into small cell and non-small cell lung cancer (NSCLC), the
latter making up the vast majority of cases and the prior being more aggressive. Much like
most metastatic cancers the chemokine receptor family plays a key role in metastatic lung
cancer. CXCR4 is highly upregulated in NSCLCs, and those with the highest expression
had a much higher metastatic potential. Overexpression in NSCLC cell lines showed
increased migration and invasion, which could be ablated with treatment using anti-CXCR4
antibodies in mice through the prevention of CXCL12 activation of the receptor [244]. The
same study also showed that inoculation of lung cancer cells with low CXCR4 expression
resulted in far less metastatic clusters than with high-expressing cells. CXCL12-induced
migration of NSCLCs was shown to be CXCR4- and not CXCR7-dependent. Knockouts of
both were designed in NSCLC lines, and migration was ablated when CXCR4 was knocked
out. Xenografts in mice showed that CXCR4 was necessary for metastasis, not CXCR7 [245].
In a meta-analysis study, it was found that CXCR4 was more highly expressed in NSCLC
than normal tissue, its expression was higher in later stage cancers as well as in metastatic
NSCLC. Patients with higher CXCR4 expression had lower survival rates than those with
low expression [246]. One of the treatments for NSCLC is cisplatin therapy, although
that can cause long term detrimental effects such as the promotion of pro-metastatic
environments. Cisplatin treatment has been shown to reduce tumour size while also
increasing secretion of CXCL12, recruitment of metastasis initiating cells and pro-invasive
CXCR4+ macrophages, that promote spontaneous metastasis. Cotreatment with a CXCR4
antagonist was able to prevent this metastasis and highlights a route for CXCR4 targeted
treatment in NSCLC [247]. The chemokine receptor CXCR2 is described in metastatic lung
cancer. In a mouse model of Lewis lung cancer, depletion of CXCR2 resulted in reduced cell
proliferation and the rate of spontaneous metastasis [248]. These results were replicated
in a model overexpressing CXCR2 with the use of a monoclonal antibody that blocked
CXCR2 activation. Equivalent results were shown in the NSCLC lung adenocarcinoma cell
line, where knocking out CXCR2 or blocking with a small molecule antagonist decreased
invasion and metastasis of cells expressing CXCR2. Samples from humans with lung
adenocarcinoma showed that CXCR2 expression was associated with poor prognosis, a
history of smoking, as well as RAS pathway activation [249]. In a mouse model of lung
cancer overexpressing CXCR2, an increase in the infiltration of TANs was shown, while
an inhibition of CXCR2 ameliorated this infiltration as well as increased antitumor T-cell
activity, through the promotion of CD+ T cell activation. Much like with CXCR4, cisplatin
therapy can lead to CXCR2 mediated immune suppression, and co-treatment with a CXCR2
antagonist was able to show greater antitumor effects than just cisplatin [250].

Lysophosphatidic acid (LPA) receptors are a family of six receptors involved in diverse
cellular processes such as cell proliferation, migration, and differentiation [251]. LPA is the
endogenous ligand for these receptors, and it is produced when LPC is catalysed by ATX
to form LPA. It was shown that the levels of ATX in NSCLC correlated with the tumour
stage and grade, suggesting the role of its receptors in lung cancer progression [252]. It was
shown that using an LPAR1–4 antagonist was able to reduce cell migration and invasion
in vitro, and loss of vasculature and tumour growth in a xenograft model of NSCLC [253].
More recently, the activity of LPA in lung cancer was specifically tied to LPAR1, as this
receptor is overexpressed on CAFs, which are known to promote EMT and migration. By
silencing LPAR1, CAF proliferation in NSCLC can be reduced, showing the therapeutic
potential of targeting LPAR1 for fibrous metastatic lung cancer [171]. LPAR2 contributes
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to the survival of highly metastatic cell lines to cisplatin treatment via adenylyl cyclase
inhibition, whereas LPAR3 was shown to be beneficial in cisplatin treatment [254]. This
shows the intricate nature of cell signalling mediated by GPCRs of the same family. GPR78
is an orphan GPCR that is associated with lung cancer metastasis. It is expressed in lung
cancer cells and mediates actin stress fibres in a RhoA- and Rac1-dependent manner, thus
regulating cell motility. Knocking out GPR78 suppresses cell migration, indicating potential
to target GPR78 therapeutically [149]. The use of miRNA-936 was shown to reduce GPR78
expression and was able to regulate NSCLC proliferation, invasion, and migration [255].

2.4. Metastatic Prostate Cancer

Prostate cancer is the one of the fastest growing cancers in Europe, and metastatic
prostate cancer has a 5-year survival rate of only 30%, with the current treatment generally
including hormone therapy, surgical resection, or castration [256]. As with many other
cancers, extensive research aims to understand the involvement of GPCRs in order to
develop new therapies. CXCR4 signalling is implicated in the development of metastatic
prostate cancer. CXCR4 is overexpressed in prostate cancer cells, and its expression corre-
lates with later stage tumours as well as metastasis to both the bones and lymph nodes,
a poor prognosis predictor for patients [257]. In prostate cancer, CXCR4 localises to the
nucleus where its active signalling could be a mechanism for continuous CXCR4 activation
in metastatic prostate cancer [258]. CXCR4 has been shown to interact with PI4KIIIα, a
PI4K kinase, and through this interaction on lipid rafts it is able to mediate tumour metas-
tasis, while PI3KIIIα knockouts inhibit CXCR4 mediated prostate cell metastasis [259].
CCR5 signalling is also involved in the metastasis of prostate cancer and is overexpressed
in prostate cancer. Activation by its ligand CCL5 induces proliferation and stimulates
invasion, which is reduced by a CCR5 antagonist [260]. One of the principal organs for
prostate cancer to metastasize to is bone. Studies on CCR5 activation during prostate
cancer metastasis in mouse models and treatment with two small molecule inhibitors of
CCR5 originally designed for HIV-1 therapy Maraviroc and Vicriviroc, which are CCR5
antagonists, reduced the tumour burden in both the bones and prostate [261]. The tumour
suppressor miRNA-455-5p targets CCR5 in prostate cancer, and its overexpression was
able to suppress CCR5 mediated proliferation, migration, and induce apoptosis in prostate
cancer cells [262].

GPRC6A is an orphan GPCR that has recently gained attention for its role in prostate
cancer. GPRC6A transcripts are upregulated in prostate cancer, and in prostate cell lines,
with ligands to GPRC6A such as calcium and arginine showing a dose-dependent stimula-
tion of ERK activity as well as chemotaxis and proliferation [263]. This dose-dependent
response was ablated by silencing GPRC6A. In xenograft models of prostate cancer, cells
expressing GPRC6A promoted cell migration and proliferation after stimulation with
osteocalcin via ERK and AKT signalling, in comparison to knockout cells [264].

2.5. Metastatic Melanoma

Melanoma is another rapidly increasing problem worldwide, and is the fifth most
common cancer type in men, and the sixth in women worldwide [265]. Similarly to other
metastatic cancers, there are many GPCRs involved in melanoma but of those cancers dis-
cussed here, it has the fewest associated receptors identified. As with almost all metastatic
cancers, CXCR4 has been definitively identified as a key driver of metastatic melanoma. It
was discovered early on that CXCR4 expression in melanoma cells was correlated with poor
prognosis and the risk of recurrence was 2.5-fold higher and death 3 times higher than those
with low CXCR4 expression [266]. CXCR4 has been shown to assist melanoma metastatis to
bones, and exosomes from those cells were able to cause the upregulation of CXCR7 a mem-
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ber of the CXCL12/CXCR4/CXCR7 signalling axis to promote them to a more osteotropic
phenotype [267]. In a meta-analysis of melanoma cancer patients, CXCR4 overexpression
in melanoma cells was correlated with ulceration, tumour thickness, and lymph node
metastasis, and is a strong prognostic biomarker for metastatic melanoma [268]. The use
of a CXCR4 antagonist in a murine melanoma model showed antitumor effects that were
additive when used in combination with an anti-PDL1 antibody. They also showed a reduc-
tion in immunosuppressive regulatory T cells and increasing tumour specific CD8+ cells
leading to a reduction in tumour growth [269]. CCR10 is another member of the chemokine
family involved in the metastasis of melanoma, with studies in a mouse melanoma model
that overexpressed CCR10 showing that these cells had a higher rate of proliferation, the
cytoskeleton underwent rearrangement and they had increased migration in response to
CCR10 ligands vs. non CCR10 expressing cells [270]. CCR10 expression in melanoma cells
was correlated with significantly lower survival time and time to progression, as well as a
higher chance of cerebral metastasis [271]. CCR10 influences the immune system, allowing
melanoma cells to evade immunosurveillance. T lymphocyte density is inversely correlated
with CCR10 expression and lymph node metastasis are shown to have a higher expression
of CCR10 [272].

Another family of GPCRs that have been shown to be involved in metastasis are the
pyrimidinergic receptors (P2YRs), that participate in the signalling of nucleotides such
as ATP and UTP, which have been shown to affect inflammation and the composition of
the tumour microenvironment [273,274]. The GPCR P2Y6 has been shown to be involved
in other metastatic cancers such as breast cancer [275], and has also been implicated in
melanoma. In a mouse model for melanoma transplantation of B16F10 cells in a P2Y6
knockout, there were a significantly reduced number of metastatic lung tumours, and
increased survival rates vs. the wild type [276]. Knockout of P2Y6 had no effect on tumour
growth, only the ability to metastasize [277]. Expression of P2Y1/2 and 6 in melanoma
cells showed that the addition of a P2Y1 agonist reduced cell proliferation and number,
while a P2Y2 agonist was shown to increase cell growth and proliferation.

3. Biologics Targeting GPCRs in Cancer
Due to the increasingly well-understood role of GPCRs in cancer progression, a large

field of work has been developed to identify therapeutic agents to ameliorate the effects of
their aberrant expression and signalling, with a shift toward biologics over small molecules
in the last decade. To effectively target these receptor structures embedded in the membrane,
biologics must be able to specifically target the extracellular region of the receptor, and
depending on where they bind in the receptor, they can have different effects on GPCR
signalling. In a recent study, Peters et al. proposed an annotation scheme for naming GPCR
binding sites clearly and meaningfully. The name of a binding site consists of the GPCR
Class, the location (IH: intrahelical EH: extrahelical, IC: intracellular, and EC: extracellular
with respect to transmembrane (TM) helices), and the binding site location with respect
to the membrane (ext: exterior, mid: middle, and int: interior) (Figure 3). Biologics such
as mAbs have a greater specificity and potential efficacy than standard small molecules
that allow for precision targeting of GPCRs. There remains a significant unmet need
for therapies targeting the vast majority of GPCRs, with very few passing clinical trial
stages. In fact, there are only 13 currently approved drugs, of which 10 can be considered
biologics (Table 2). Nanobodies, engineered proteins, and peptides are other classes of
biologics which are an increasingly promising area for targeting GPCRs, their comparatively
smaller size relative to mAbs allow better penetration and access. Engineered proteins
and peptides possess a structural design rationale related to the target that can allow for
increased efficacy.
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Figure 3. Schematic representation of GPCR structure in the cell membrane with ligand binding sites
annotated. (A) GPCR binding site annotation starts with GPCR Class (A, B1, C) followed by position
with respect to the transmembrane domain (EC: extracellular, IH: intrahelical, ECV: extracellular
vestibule, IC: intracellular, and EH: extrahelical). For extrahelical binding sites, the annotation is
tagged with membrane position along the vertical axis (ext: exterior, mid: middle, or int: interior).
Adapted from Peters et al., 2024 [278].

Table 2. Table of approved drugs targeting GPCRs for cancer treatment. Sorted by drug type including
monoclonal antibodies, peptides, and small molecule drugs, showing their target, mechanism,
and indication.

Name Target
Receptor Drug Type Status Mechanism Type of Cancer Reference

Mogamulizumab CCR4 Monoclonal
Antibody Approved Antagonist

Mycosis
fungoides/Sezary

syndrome
[279]

Talquetamab GPRC5D Bispecific
Antibody Approved Agonist Multiple Myeloma [280]

Motixafortide CXCR4 Peptide Approved Antagonist
Hematopoietic Stem
Cell Mobilisation in
Multiple Myeloma

[281]

Goserlin GNRHR Synthetic
Peptide Approved Agonist

Advanced
Prostate/Breast

Cancer
[282]

Lanreotide SSR2 Synthetic
Peptide Approved Agonist

Metastatic/Advanced
Pancreatic

Neuroendocrine
Tumours

[283]
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Table 2. Cont.

Name Target
Receptor Drug Type Status Mechanism Type of Cancer Reference

Abralelix GNRHR Synthetic
Peptide Approved Antagonist Advanced Prostate

Cancer [284]

Leuprolide GNRHR Synthetic
Peptide Approved Agonist Advanced Prostate

Cancer [285]

Degarelix GNRHR Synthetic
Peptide Approved Antagonist Advanced Prostate

Cancer [286]

Histrelin GNRHR Synthetic
Peptide Approved Agonist Advanced Prostate

Cancer [287]

Triptorelin GNRHR Synthetic
Peptide Approved Agonist Advanced Prostate

Cancer [288]

Vismodegib SMO Small
Molecule Approved Antagonist Metastatic/Advanced

Basal Cell Carcinoma [289,290]

Sonidegib SMO Small
Molecule Approved Antagonist Locally Advanced

Basal Cell Carcinoma [291]

Plerixafor CXCR4 Small
Molecule Approved Antagonist

Hematopoietic Stem
Cell Mobilisation in

Multiple
Myeloma/Non-

Hodgkins Lymphoma

[292,293]

3.1. Mononclonal Antibodies

Monoclonal antibodies over the last few decades have revolutionised cancer research
and therapies. Since the first approved monoclonal antibody, Rituximab in 1997 [294], over
197 antibodies have been approved by the FDA/EMA, and over 90 of those have been
indicated for cancer [295]. Trastuzumab (Herceptin) is a mAb that targets the tyrosine
kinase receptor HER2. HER2 is overexpressed in 20–30% of breast cancers, and prior to the
discovery of trastuzumab, HER2 positive breast cancer had a poor overall survival [296].
This discovery improved the outcome of patients with HER2 positive cancer, although
many patients with early-stage breast cancer relapse and those with metastatic breast cancer
develop resistance within a decade [296,297]. Another blockbuster mAb is Pembrolizumab
(Keytruda) which is a checkpoint inhibitor targeting PD-L1, and is indicated for many
cancers such as multiple myeloma and NSCLC [298]. The success of this discovery has led
to it being one of the top biologic blockbuster drugs, earning close to 20$ bn USD annually.

To date, there are only three approved mAb treatments targeting GPCRs, of which two
are indicated for cancer. Erenumab is a calcitonin gene-related peptide receptor antagonist
that is approved for the treatment of migraines [299]. It was found to greatly reduce
monthly migraine time and begins its effects within the first week of treatment. It works by
preventing binding of the CGRP peptide to the receptor, thereby decreasing vasodilation
and inflammation associated with migraines [300]. The other two approved antibodies are
Mogamulizumab and Talquetamab. Mogamulizumab is an anti-CCR4 mAb that has been
approved for the treatment of T-cell lymphomas mycosis fungoides and Sézary syndrome,
two of the most common T-cell lymphomas [301]. Prior to the discovery of Mogamulizumab,
the only treatment was allo-HSCT, which has a high morbidity with overall survival being
between 30 and 40% [281]. In a phase 3 international trial, Mogamulizumab was compared
to Vorinostat, a standard treatment for T-cell lymphoma, in patients with early-stage
mycosis fungoides. It was found that Mogamulizumab had a median progression-free
survival of 6.7 months compared to 3.8 months in the Vorinostat group and had a higher
proportion of patients who had an overall response [302]. Despite these promising results,
patients can eventually develop resistance to Mogamulizumab treatment. Resistance
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usually develops as patients lose the target antigen CCR4, rendering Mogamulizumab
ineffective, but there is another unknown mechanism of resistance in which patients retain
high expression of CCR4 [303]. Talquetamab is a bispecific mAb that targets CD3 and
GPRC5D and was approved for the treatment of multiple myeloma in August 2023 [304].
Most patients with multiple myeloma relapse and those who relapse have poor overall
survival of roughly 12% [280]. Talquetamab can bind to GPRC5D, a biomarker associated
with high-risk myeloma, and CD3, and induces T-cell mediated death of myeloma cells
expressing GPRC5D via recruitment and maturation of T-cells [305]. In a phase I/II study
of patients with triple and penta-refractory multiple myeloma, Talquetamab showed an
overall response rate of around 70% up to 18 months after treatment. Interestingly, results
were similar for the cohort who had previously received other bispecific antibody or CAR
T treatments, suggesting the potential use of this in combination with those treatments to
overcome resistance [306,307]. One caveat is that almost all patients had adverse effects
of grade 3 or higher, although none died, with the most common being cytokine-release
syndrome and infections [307]. Another mAb of interest that has not yet received approval
but has reached late-stage clinical trials for its potential use in HIV and COVID-19 treatment
is Leronlimab. Leronlimab is a CCR5 antagonist mAb. Leronlimab is currently in phase
III clinical trials for preventing HIV infection [308], but has previously shown promise in
treating breast cancer. In triple negative breast cancer lines, Leronlimab was shown to
reduce migration, calcium signalling, as well as enhance the effect of doxorubicin in killing
breast cancer cells. Furthermore, in xenograft mice models it was able to reduce tumour
burden of > 95% after 6 weeks of treatments [309].

Leronlimab has also shown success in early clinical trials; a phase I trial showed that it
was well-tolerated in combination with carboplatin and showed early signs of anti-tumour
activity [310]. In a basket study of advanced and metastatic solid tumours, Leronlimuab
showed a median progression free survival of 6 months in greater than 75% of patients,
along with a reduction in circulating tumour associated cells [311].

Monoclonal antibodies have revolutionised the oncology field and have become the
gold standard of care in many cases, yet advancements have yet to be fully realised with
GPCR targets, with many of the promising therapies failing due to adverse off target effects,
lack of efficacy, or development of resistance.

3.2. Protein/Peptides

Protein and peptide therapies are the largest group of biological molecules targeting
GPCRs. From hormone replacement to engineered protein analogues and mimetics, small
polypeptides have become a staple in treating many diseases. For proteins and peptides, the
most well-known success story for targeting GPCRs is in the treatment of type 2 diabetes
via GLP-1R agonists. The first of these being exenatide, a synthetic peptide that naturally
occurs in lizards’ salivary glands. It has a 53% amino acid sequence identity with GLP-1,
the natural ligand for GLP-1R, but has a greater than 1000-fold potency for the receptor. In
phase 3 clinical trials, roughly 40% of patients had a reduction in HbA1c levels of ≤7% [312].
This was then approved for the treatment of type 2 diabetes in 2005, although it has been
gradually phased out due to the emergence of superior protein therapies such as liraglutide,
and semaglutide. These therapies are GLP-1 analogues that have superior half-life and
potency for the receptor both showing greater glucose lowering and weight loss effects,
leading to their approval in 2009, and 2017, respectively [313].
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In terms of targeting GPCRs for use in cancer therapies there are eight therapies
currently approved and many in clinical trials. Those that are approved mainly target
three different receptor groups, gonadotropin-releasing hormone receptors, somatostatin
receptors, and glycoprotein hormone receptors. Abaraelix is the first synthetic decapeptide
GnRH antagonist developed, and is approved for the use in advanced prostate cancer.
It works by inhibiting the activation of GnRH, preventing the secretion of LH and FSH,
which thereby reduces testosterone levels, a key driver of prostate cancer. It was first
approved in 2004 due to its ability to achieve medical castration quickly and well-tolerated
without having testosterone flare ups which can impede treatment [314]. Lanreotide is
a somatostatin analogue and is indicated for use in locally or metastatically advanced
neuroendocrine tumours and is the only currently approved protein/peptide therapy for
metastatic cancer [315]. The last class of currently approved protein/peptide therapies
is goserelin, which in men is used for prostate cancer, and in women is used for breast
cancer treatment. It is a synthetic analogue of luteinizing hormone-releasing hormone and
antagonises LsHR to prevent the secretion of both testosterone and oestrogen [316]. The
only peptide currently approved that does not target one of the three previously mentioned
receptors is Motixafortide, which recently gained approval in September 2023 for its use in
autologous stem cell transplantation in patients with multiple myeloma. Motixafortide is a
cyclic synthetic peptide CXCR4 antagonist that causes haematopoietic stem and progenitor
cells to mobilise rapidly and for a sustained duration. It was shown in a phase 3 trial in
combination with G-CSF to increase the amount of mobilising CD34+ cells vs. G-CSF alone
after just one apheresis, 92.5% vs. 26.2%, respectively [317]. It has also shown some promise
for the treatment of metastatic diseases. In a phase II trial for metastatic pancreatic ductal
adenocarcinoma (mPDAC) it was shown in use with pembrolizumab and chemotherapy to
be well-tolerated and showed signs of efficacy in an aggressive disease [318]. It is now being
assessed in another phase II trial for metastatic pancreatic dual adenocarcinoma where they
are testing its effect on progression free survival [319]. Although there are few approved
protein/peptide therapies, there are many more promising ones in clinical trials. One such
example is Ctce-9908 (PTX-9908) a CXCR4 antagonist an analogue of its ligand CXCL12.
It was shown to reduce tumour burden in a mouse model of breast cancer seven-fold, as
well as greatly reducing metastasis [320]. It was then shown in a phase I/II trial for solid
tumours to be well-tolerated, and showed early signs of efficacy in ovarian cancer, and then
in 2005, it was granted orphan drug status for young adults with osteosarcoma [321,322].
Currently recruiting for a phase I/II trial for patients with non-resectable hepatocellular
carcinoma [323].

3.3. Nanobodies

Nanobodies are a unique class of biologics, derived from camelid antibodies. Caemilds
produce a class of unique antibody consisting of only heavy chains, and it is this single
variable antigen-binding (VHH) fragment that makes up a nanobody [324]. Nanobodies
have distinct structural characteristics that give them an advantage over monoclonal
antibodies. Their small size (~15 kDa), convex shape, and their extended CDR3 allow
them to bind onto what would be classically considered obstructed structures that mAbs
would be unable to reach, giving them exclusive access to targeting these sites [324,325].
They are also quite stable and resistant to harsh conditions such as pH and heat; this
gives them potential use in the tumour microenvironment as well as in combination with
radiotherapy [326].
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Due to these useful characteristics, research into their use as therapeutics has grown
significantly over the last 20 years. This has resulted in the approval of the first nanobody-
based therapy in Caplacizumab for the treatment of acquired thrombotic thrombocytopenic
purpura (TTP). It works by targeting the von-Willebrand factor and preventing its interac-
tion with platelet glycoprotein receptors. It was shown in a phase 3 trial to reduce the time
for platelet normalisation, the incidence of TTP-related death as well as recurrence during
the trial [327]. Recently another nanobody-based therapy was approved for the treatment
of cancer. Ciltacabtagene, which is a chimeric antigen receptor (CAR) T-cell therapy that
employs nanobodies as the targeting domain rather than the usual scFv domain [328]. It
has been approved for use in patients with relapsed/refractory multiple myeloma after
showing in clinical trials an overall response rate of 97.8% with a duration of response
of 21.8 months [329]. As of yet, there are no approved nanobody-based therapies that
target GPCRs, in fact there are currently only three nanobody-based therapies that have
undergone clinical trials for targeting GPCRs and only one of them was for use in cancer
therapy. The first to enter clinical trials was ALX-0651, a biparatopic anti-CXCR4 nanobody
for use in cancer therapy that was selected from a library generated from peripheral blood
mononuclear cells of llamas that were immunised with HEK293T cells expressing CXCR4.
From this library, two nanobodies were selected and joined via GGGGS linker to form
ALX-0651. In HIV models, it impeded CXCR4-mediated entry of HIV into MT-4 cells, and
in monkeys it was able to mobilise stem cells in a comparable manner to plerixafor, an
approved CXCR4 antagonist [330,331]. It was terminated after phase I clinical trials, as
although it was well-tolerated and effective, preclinical data suggested that it would not
surpass current standard care [332,333]. The second nanobody targeting GPCRs in clinical
trials is the Anti-CXCR2 Biparatopic nanobody, currently being developed by Novartis
for use in inflammatory disorders [334]. Biparatopic antibodies have already shown some
preclinical promise as they were able to produce monovalent antibodies targeting CXCR2
that could selectively target and inhibit the activation of CXCR2 through both CXCL1 and
CXCL8 binding. A biparatopic version was created by combining the top two candidates
that bound distinct epitopes and showed that this increased the overall potency of the
nanobody [335]. Finally, BI 665088 is a bivalent nanobody that targets CX3CR1. It was
developed from a library of PBMCs from llamas immunised with CX3CR1 DNA, then
followed by immunisation with Caki cells overexpressing CX3CR1, then immunisation
with peptides derived from the extracellular loops of CX3CR1. From this library the top
four lead candidates were chosen from competitive binding assays and turned into bivalent
constructs from which BI 665088 emerged as the most promising. In murine atherosclerosis
models, BI 665088 was able to reduce aortic plaque formation by 62% in 6 weeks, showing
for the first time the effect of a CX3CR1 antagonist in vivo [336]. It has since been shown in
phase I clinical trials to be well-tolerated in humans, with little to no adverse effects [337].

Despite the potential of nanobodies, they are yet to show any impact in the therapeutic
targeting of GPCRs, although where they have been able to make an impact is in their
use in stabilising GPCRs for X-ray crystallography and Cryo-EM, allowing for structural
determination of various receptors and the mapping of their binding regions. This has
been performed by developing nanobodies that recognise the intracellular parts of GPCRs,
allowing them to stabilise GPCR conformations allowing for the generation of agonist-
bound GPCR crystal structures [338]. This gives us valuable insight into the activation
mechanism of GPCRs and can allow for structure lead drug design.
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4. Conclusions
The targeting of G protein-coupled receptors (GPCRs) in metastatic cancer presents

a promising frontier in cancer therapeutics. As integral players in cell signalling, GPCRs
engage in many key processes that promote tumour growth, invasion, and metastasis,
such as angiogenesis, immune modulation, and cell migration. Notably, GPCRs from
the chemokine receptor family such as CXCR4, CXCR2, CCR7 are of great interest due
to their role in tumorigenesis, but many other receptors as shown have a role such as
receptors from the LPA and frizzled receptor families. Despite noteworthy progress,
there are still several challenges to overcome in the development of biologics targeting
GPCRs. The complex structure of GPCRs, which often includes multiple ligand-binding
sites and the potential for biased signalling, as well as the formation of oligomers and
receptors homo/heterodimerizing, complicates drug design. Additionally, the widespread
expression of GPCRs across various tissues poses a risk for off-target effects, raising safety
concerns. Therefore, a more refined understanding of GPCR signalling dynamics and tissue-
specific receptor expression is essential for improving therapeutic precision and minimising
adverse effects, and translating promising pre-clinical data into working therapeutics. The
use of nanobodies and their ability to stabilise GPCRs for structural and functional analysis
is one such method to help elucidate these issues. Nanoparticles/carrier systems also
show promise in this area. These are colloidal nano-scale systems capable of carrying small
molecules as well as larger macromolecules such as genes or proteins. These can protect
biologics from the in vivo environment, preventing early degradation and accumulation
in non-specific areas. They also can increase accumulation in tumours leading to greater
cytotoxic effects [339]. Examples of these include liposomes similar to a cell membrane
with a hydrophilic core and hydrophobic shell facilitating passive targeting, biomimetics
which include cell membranes, extra cellular vesicles and viruses allowing evidence of the
immune system and long circulation times, and lastly polymeric nanoparticles, which use
alginate or gelatine to make nanogel spheres, yet these are still in early development with
pharmacokinetics and biosafety still unclear [340].

The successes achieved with GPCR-targeted biologics, such as the inhibition of
CXCR4/CCR4 by monoclonal antibodies, demonstrate the therapeutic potential of these
receptors. However, the heterogeneity of GPCR expression in different tumour microenvi-
ronments necessitates further exploration of context-dependent targeting strategies. For
future research, more in-depth studies into GPCR signalling bias are needed. Some GPCRs
can signal through multiple intracellular pathways, with certain pathways being more
oncogenic than others. By developing biologics that selectively target harmful signalling
routes (biased agonism or antagonism), it may be possible to minimise off-target effects,
while maximising therapeutic efficacy.

In conclusion, while the development of biologics targeting GPCRs in metastatic cancer
has shown promise, there is still a need for more targeted, selective approaches to fully
exploit their therapeutic potential. Continued research into GPCR signalling mechanisms
and the TME will be crucial for translating these biologics into effective clinical treatments.
As our understanding of GPCR biology expands, so too will the opportunities for novel
interventions, potentially transforming the landscape of metastatic cancer treatment.
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