Treatment Resistance Risk in Patients with Newly Diagnosed Multiple Myeloma Is Associated with Blood Hypercoagulability: The ROADMAP-MM Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Control Group
3. Results
3.1. Hypercoagulability at Diagnosis of Multiple Myeloma Prior to Treatment Initiation
3.2. Biomarkers of Hypercoagulability and Response to the Antimyeloma Treatment at 3 Months
3.3. Biomarkers of Hypercoagulability and Overall Mortality at 3 Months
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ziogas, D.C.; Dimopoulos, M.A.; Kastritis, E. Prognostic factors for multiple myeloma in the era of novel therapies. Expert Rev. Hematol. 2018, 11, 863–879. [Google Scholar] [CrossRef]
- Majithia, N.; Vincent Rajkumar, S.; Lacy, M.Q.; Buadi, F.K.; Dispenzieri, A.; Gertz, M.A.; Hayman, S.R.; Dingli, D.; Kapoor, P.; Hwa, L.; et al. Outcomes of primary refractory multiple myeloma and the impact of novel therapies. Am. J. Hematol. 2015, 90, 981–985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutta, A.K.; Hewett, D.R.; Fink, J.L.; Grady, J.P.; Zannettino, A.C.W. Cutting edge genomics reveal new insights into tumour development, disease progression and therapeutic impacts in multiple myeloma. Br. J. Haematol. 2017, 178, 196–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diamandis, E.P. The failure of protein cancer biomarkers to reach the clinic: Why, and what can be done to address the problem? BMC Med. 2012, 10, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falanga, A.; Russo, L.; Milesi, V.; Vignoli, A. Mechanisms and risk factors of thrombosis in cancer. Crit. Rev. Oncol. Hematol. 2017, 118, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Rousseau, A.; Larsen, A.K.; Van Dreden, P.; Sabbah, M.; Elalamy, I.; Gerotziafas, G.T. Differential contribution of tissue factor and Factor XII to thrombin generation triggered by breast and pancreatic cancer cells. Int. J. Oncol. 2017, 51, 1747–1756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruf, W.; Disse, J.; Carneiro-Lobo, T.C.; Yokota, N.; Schaffner, F. Tissue factor and cell signalling in cancer progression and thrombosis. J. Thromb. Haemost. 2011, 9 (Suppl. S1), 306–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owens, A.P., 3rd; Mackman, N. Microparticles in hemostasis and thrombosis. Circ. Res. 2011, 108, 1284–1297. [Google Scholar] [CrossRef] [PubMed]
- Klemm, F.; Joyce, J.A. Microenvironmental regulation of therapeutic response in cancer. Trends Cell Biol. 2015, 25, 198–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guglietta, S.; Rescigno, M. Hypercoagulation and complement: Connected players in tumor development and metastases. Semin. Immunol. 2016, 28, 578–586. [Google Scholar] [CrossRef] [PubMed]
- Fotiou, D.; Sergentanis, T.N.; Papageorgiou, L.; Stamatelopoulos, K.; Gavriatopoulou, M.; Kastritis, E.; Psaltopoulou, T.; Salta, S.; Van Dreden, P.; Sangare, R.; et al. Longer procoagulant phospholipid-dependent clotting time, lower endogenous thrombin potential and higher tissue factor pathway inhibitor concentrations are associated with increased VTE occurrence in patients with newly diagnosed multiple myeloma: Results of the prospective ROADMAP-MM-CAT study. Blood Cancer J. 2018, 8, 102. [Google Scholar] [PubMed]
- De Stefano, V.; Za, T.; Rossi, E. Venous thromboembolism in multiple myeloma. Semin. Thromb. Hemost. 2014, 40, 338–347. [Google Scholar] [PubMed]
- Crowley, M.P.; Eustace, J.A.; O’Shea, S.I.; Gilligan, O.M. Venous thromboembolism in patients with myeloma: Incidence and risk factors in a “real-world” population. Clin. Appl. Thromb. Hemost. 2014, 20, 600–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palumbo, A.; Rajkumar, S.V.; Dimopoulos, M.A.; Richardson, P.G.; San Miguel, J.; Barlogie, B.; Harousseau, J.; Zonder, J.A.; Cavo, M.; Zangari, M.; et al. Prevention of thalidomide- and lenalidomide-associated thrombosis in myeloma. Leukemia 2008, 22, 414–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terpos, E.; Kleber, M.; Engelhardt, M.; Zweegman, S.; Gay, F.; Kastritis, E.; van de Donk, N.W.; Bruno, B.; Sezer, O.; Broijl, A.; et al. European Myeloma Network guidelines for the management of multiple myeloma-related complications. Haematologica 2015, 100, 1254–1266. [Google Scholar] [CrossRef] [Green Version]
- Rajkumar, S.V.; Dimopoulos, M.A.; Palumbo, A.; Blade, J.; Merlini, G.; Mateos, M.V.; Kumar, S.; Hillengass, J.; Kastritis, E.; Richardson, P.; et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014, 15, e538–e548. [Google Scholar] [CrossRef]
- Van Dreden, P.; Rousseau, A.; Fontaine, S.; Woodhams, B.J.; Exner, T. Clinical evaluation of a new functional test for detection of plasma procoagulant phospholipids. Blood Coagul. Fibrinolysis 2009, 20, 494–502. [Google Scholar] [CrossRef]
- Van Dreden, P.; Rousseau, A.; Savoure, A.; Lenormand, B.; Fontaine, S.; Vasse, M. Plasma thrombomodulin activity, tissue factor activity and high levels of circulating procoagulant phospholipid as prognostic factors for acute myocardial infarction. Blood Coagul. Fibrinolysis 2009, 20, 635–641. [Google Scholar] [CrossRef]
- Schneider, P.; Dreden, P.V.; Rousseau, A.; Kassim, Y.; Legrand, E.; Vannier, J.P.; Vasse, M. Increased levels of tissue factor activity and procoagulant phospholipids during treatment of children with acute lymphoblastic leukaemia. Br. J. Haematol. 2010, 148, 582–592. [Google Scholar] [CrossRef]
- Rousseau, A.; Favier, R.; Van Dreden, P. Elevated circulating soluble thrombomodulin activity, tissue factor activity and circulating procoagulant phospholipids: New and useful markers for pre-eclampsia? Eur. J. Obstet. Gynecol. Reprod. Biol. 2009, 146, 46–49. [Google Scholar] [CrossRef]
- Gerotziafas, G.T.; Depasse, F.; Busson, J.; Leflem, L.; Elalamy, I.; Samama, M.M. Towards a standardization of thrombin generation assessment: The influence of tissue factor, platelets and phospholipids concentration on the normal values of Thrombogram-Thrombinoscope assay. Thromb. J. 2005, 3, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spronk, H.M.; Dielis, A.W.; De Smedt, E.; van Oerle, R.; Fens, D.; Prins, M.H.; Hamulyák, K.; Ten Cate, H. Assessment of thrombin generation II: Validation of the Calibrated Automated Thrombogram in platelet-poor plasma in a clinical laboratory. Thromb. Haemost. 2008, 100, 362–364. [Google Scholar] [PubMed]
- Dargaud, Y.; Wolberg, A.S.; Luddington, R.; Regnault, V.; Spronk, H.; Baglin, T.; Lecompte, T.; Ten Cate, H.; Negrier, C. Evaluation of a standardized protocol for thrombin generation measurement using the calibrated automated thrombogram: An international multicentre study. Thromb. Res. 2012, 130, 929–934. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Paiva, B.; Anderson, K.C.; Durie, B.; Landgren, O.; Moreau, P.; Munshi, N.; Lonial, S.; Bladé, J.; Mateos, M.V.; et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016, 17, e328–e346. [Google Scholar] [CrossRef]
- Peduzzi, P.; Concato, J.; Kemper, E.; Holford, T.R.; Feinstein, A.R. A simulation study of the number of events per variable in logistic regression analysis. J. Clin. Epidemiol. 1996, 49, 1373–1379. [Google Scholar] [CrossRef]
- Wasson, J.H.; Sox, H.C.; Neff, R.K.; Goldman, L. Clinical prediction rules. Applications and methodological standards. N. Engl. J. Med. 1985, 313, 793–799. [Google Scholar] [CrossRef] [PubMed]
- Gavriatopoulou, M.; Musto, P.; Caers, J.; Merlini, G.; Kastritis, E.; van de Donk, N.; Gay, F.; Hegenbart, U.; Hajek, R.; Zweegman, S.; et al. European myeloma network recommendations on diagnosis and management of patients with rare plasma cell dyscrasias. Leukemia 2018, 32, 1883–1898. [Google Scholar] [CrossRef]
- Falanga, A.; Marchetti, M. Hemostatic biomarkers in cancer progression. Thromb. Res. 2018, 164 (Suppl. S1), S54–S61. [Google Scholar] [CrossRef] [PubMed]
- Streetly, M.; Hunt, B.J.; Parmar, K.; Jones, R.; Zeldis, J.; Schey, S. Markers of endothelial and haemostatic function in the treatment of relapsed myeloma with the immunomodulatory agent Actimid (CC-4047) and their relationship with venous thrombosis. Eur. J. Haematol. 2005, 74, 293–296. [Google Scholar] [CrossRef]
- Gerotziafas, G.T.; Galea, V.; Mbemba, E.; Khaterchi, A.; Sassi, M.; Baccouche, H.; Prengel, C.; van Dreden, P.; Hatmi, M.; Bernaudin, J.F.; et al. Tissue factor over-expression by human pancreatic cancer cells BXPC3 is related to higher prothrombotic potential as compared to breast cancer cells MCF7. Thromb. Res. 2012, 129, 779–786. [Google Scholar] [CrossRef] [PubMed]
- Patil, R.; Ghosh, K.; Shetty, S. A simple clot based assay for detection of procoagulant cell-derived microparticles. Clin. Chem. Lab. Med. 2016, 54, 799–803. [Google Scholar] [CrossRef] [PubMed]
- Riedl, J.; Kaider, A.; Marosi, C.; Prager, G.; Eichelberger, B.; Koder, S.; Panzer, S.; Pabinger, I.; Ay, C. PO-63-Exhausted platelets in cancer patients with high risk of venous thromboembolism and poor prognosis. Thromb. Res. 2016, 140 (Suppl. S1), S199–S200. [Google Scholar] [CrossRef]
- Mannucci, P.M.; Cattaneo, M.; Canciani, M.T.; Maniezzo, M.; Vaglini, M.; Cascinelli, N. Early presence of activated (‘exhausted’) platelets in malignant tumors (breast adenocarcinoma and malignant melanoma). Eur. J. Cancer Clin. Oncol. 1989, 25, 1413–1417. [Google Scholar] [CrossRef]
- Lemancewicz, D.; Bolkun, L.; Mantur, M.; Semeniuk, J.; Kloczko, J.; Dzieciol, J. Bone marrow megakaryocytes, soluble P-selectin and thrombopoietic cytokines in multiple myeloma patients. Platelets 2014, 25, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Stenberg, P.E.; McEver, R.P.; Shuman, M.A.; Jacques, Y.V.; Bainton, D.F. A platelet alpha-granule membrane protein (GMP-140) is expressed on the plasma membrane after activation. J. Cell. Biol. 1985, 101, 880–886. [Google Scholar] [CrossRef] [PubMed]
- Coenen, D.M.; Mastenbroek, T.G.; Cosemans, J. Platelet interaction with activated endothelium: Mechanistic insights from microfluidics. Blood 2017, 130, 2819–2828. [Google Scholar] [CrossRef] [PubMed]
- Chimen, M.; Evryviadou, A.; Box, C.L.; Harrison, M.J.; Hazeldine, J.; Dib, L.H.; Kuravi, S.J.; Payne, H.; Price, J.M.; Kavanagh, D.; et al. Appropriation of GPIbalpha from platelet-derived extracellular vesicles supports monocyte recruitment in systemic inflammation. Haematologica 2020, 105, 1248–1261. [Google Scholar] [CrossRef] [PubMed]
- Owen, W.G.; Esmon, C.T. Functional properties of an endothelial cell cofactor for thrombin-catalyzed activation of protein C. J. Biol. Chem. 1981, 256, 5532–5535. [Google Scholar] [CrossRef]
- Cacoub, P.; Karmochkine, M.; Dorent, R.; Nataf, P.; Piette, J.C.; Godeau, P.; Gandjbakhch, I.; Boffa, M.C. Plasma levels of thrombomodulin in pulmonary hypertension. Am. J. Med. 1996, 101, 160–164. [Google Scholar] [CrossRef]
- Ay, C.; Dunkler, D.; Pirker, R.; Thaler, J.; Quehenberger, P.; Wagner, O.; Zielinski, C.; Pabinger, I. High D-dimer levels are associated with poor prognosis in cancer patients. Haematologica 2012, 97, 1158–1164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chalayer, E.; Tardy-Poncet, B.; Karlin, L.; Chapelle, C.; Montmartin, A.; Piot, M.; Guyotat, D.; Collet, P.; Lecompte, T.; Tardy, B. Thrombin generation in newly diagnosed multiple myeloma during the first three cycles of treatment: An observational cohort study. Res Pr. Thromb. Haemost. 2019, 3, 89–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, T.; Kristensen, S.R.; Gregersen, H.; Teodorescu, E.M.; Pedersen, S. Prothrombotic abnormalities in patients with multiple myeloma and monoclonal gammopathy of undetermined significance. Thromb. Res. 2021, 202, 108–118. [Google Scholar] [CrossRef]
- Baccouche, H.; Hadhri, M.; Aissi, W.; Chakroun, A.; Bahri, D.; Mahjoub, S.; Ben Romdhane, N. The hypercoagulable state in multiple myeloma: The contribution of thrombin generation test. Int. J. Lab. Hematol. 2019, 41, 684–690. [Google Scholar] [CrossRef]
- Tiong, I.S.; Rodgers, S.E.; Lee, C.H.; McRae, S.J. Baseline and treatment-related changes in thrombin generation in patients with multiple myeloma. Leuk. Lymphoma. 2017, 58, 941–949. [Google Scholar] [CrossRef]
- Paar, M.; Rossmann, C.; Nusshold, C.; Wagner, T.; Schlagenhauf, A.; Leschnik, B.; Oettl, K.; Koestenberger, M.; Cvirn, G.; Hallström, S. Anticoagulant action of low, physiologic, and high albumin levels in whole blood. PLoS ONE 2017, 12, e0182997. [Google Scholar] [CrossRef]
- Palumbo, J.S.; Kombrinck, K.W.; Drew, A.F.; Grimes, T.S.; Kiser, J.H.; Degen, J.L.; Bugge, T.H. Fibrinogen is an important determinant of the metastatic potential of circulating tumor cells. Blood 2000, 96, 3302–3309. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Godavarthy, P.S.; Krause, D.S. The bone marrow microenvironment in health and disease at a glance. J. Cell. Sci. 2018, 131, jcs201707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawano, Y.; Moschetta, M.; Manier, S.; Glavey, S.; Görgün, G.T.; Roccaro, A.M.; Anderson, K.C.; Ghobrial, I.M. Targeting the bone marrow microenvironment in multiple myeloma. Immunol. Rev. 2015, 263, 160–172. [Google Scholar] [CrossRef] [PubMed]
- Falanga, A.; Marchetti, M.; Russo, L. Hemostatic Biomarkers and Cancer Prognosis: Where Do We Stand? Semin. Thromb. Hemost. 2021, 47, 962–971. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, L.; Hussen, K.A.; Thouroude, S.; Mbemba, E.; Cost, H.; Garderet, L.; Elalamy, I.; Larsen, A.; Van Dreden, P.; Dimopoulos, M.A.; et al. Modelization of Blood-Borne Hypercoagulability in Myeloma: A Tissue-Factor-Bearing Microparticle-Driven Process. TH Open. 2019, 3, e340–e347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AmraneDjedidi, R.; Rousseau, A.; Larsen, A.K.; Elalamy, I.; Van Dreden, P.; Gerotziafas, G.T. Extracellular vesicles derived from pancreatic cancer cells BXPC3 or breast cancer cells MCF7 induce a permanent procoagulant shift to endothelial cells. Thromb. Res. 2020, 187, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Faulkner, L.G.; Alqarni, S.; Maraveyas, A.; Madden, L.A. Isolated tumour microparticles induce endothelial microparticle release in vitro. Blood Coagul. Fibrinolysis 2020, 31, 35–42. [Google Scholar] [CrossRef] [PubMed]
Patient Clinical Characteristics | ||
Responders (n = 111) | Non-Responders (n = 33) | |
Age (years) | 66.0 ± 12.0 (37–86) | 65.0 ± 11.0 (36–82) |
Male/female | 59/52 (53%/47%) | 17/16 (51%/49%) |
BSA (m2) | 1.84 ± 0.19 (1.41–2.50) | 1.87 ± 0.20 (1.46–2.30) |
BMI (kg/m2) | 25.9 ± 5.3 (17.2–44.8) | 24.6 ± 4.9 (17.9–43.4) |
ISS stage—n (%) | ||
I | 35 (31%) | 11 (33%) |
II | 26 (24%) | 7 (21%) |
III | 50 (45%) | 15 (46%) |
Anti-myeloma Treatment—n(%) | ||
PI-based | 73 (65%) VCD (65), VMP (7), ICD (1) | 19 (58%) VCD (15), VD (2), VMP (1), ICD (1) |
IMiD-based | 35 (32%) RAD (23), CTD (5), Rd (4), VRD (2), VTD (1) | 11 (33%) RAD (5), CTD (1), Rd (5) |
Other | 3 (3%) MDex (3) | 3 (9%) CD (2), MDex (1) |
ECOG Performance Status—n(%) | ||
0 | 50 (45) | 7 (21) |
1 | 45 (41) | 14 (43) |
2 | 12 (11) | 11 (33) |
3 | 3 (2) | 1 (3) |
4 | 1 (1) | 0 (0) |
Dialysis at diagnosis—n (%) | 12 (11%) | 2 (6%) |
Bone disease present—n (%) | 79 (71%) | 23 (70%) |
High risk cytogenetics—n (%) | 21 (19%) | 6 (18%) |
Thromboprophylaxis after Enrolment in the Study—n (%) | ||
None | 30 (27) | 17 (51) |
Aspirin | 61 (55) | 13 (39) |
LMWH (tinzaparin) | 20 (18) | 3 (10) |
Patients’ Biological Data(mean ± SD; range) | ||
β2-microglobulin (mg/dl) | 7.6 ± 8.0 (0.06–39) | 8.5 ± 8.7 (2.5–48.5) |
M-peak (g/dl) | 2.7 ± 2.6 (0–7.6) | 3.4 ± 2.8 (0–9) |
U-peak (mg/24 h) | 313 ± 880 (0–5987) | 413 ± 980 (0–6667) |
Bone marrow infiltration (%) | 61.0 ± 26.4 (0–100) | 64 ± 23.0 (0–100) |
Total protein (g/dl) | 8.2 ± 2.4 (5.1–12.0) | 8.7 ± 1.9 (5.4–14.3) |
Creatinine (mg/dl) | 1.77 ± 3.2 (0.47–15.0) | 1.98 ± 2.9 (0.9–28.0) |
Urea (mg/dl) | 56.1 ± 40.0 (5–180) | 60.4 ± 43.9 (5–276) |
GFR (mL/min) | 73.0 ± 43.0 (4.2–230.0) | 73.0 ± 43.0 (4.2–230.0) |
LDH (U/L) | 190 ± 96 (70–690) | 211 ± 93 (99–789) |
ALT (U/L) | 24.1 ± 21.2 (7–162) | 24.6 ± 19.9 (6–159) |
AST (U/L) | 23.8 ± 24.0 (7–169) | 24.3 ± 23.0 (6–178) |
Albumin (g/dl) | 3.9 ± 0.84 (2.4–6.7) | 3.6 ± 0.9 (2.1–6.8) |
Calcium (mg/dl) | 9.5 ± 1.3 (6.7–13.0) | 9.8 ± 1.7 (6.9–13.4) |
Hb (g/dl) | 10.4 ± 2.1 (7.0–16.0) | 10.6 ± 2.0 (7.3–17.5) |
White blood cell count (×106/μL) | 7.1 ± 4.0 (0.58–18.0) | 6.0 ± 2.9 (0.48–18.8) |
Neutrophils (×106/μL) | 4.4 ± 2.4 (0.2–10.0) | 4.0 ± 2.3 (0.3–12.6) |
Platelets (×103/μL) | 260 ± 120 (34–879) | 250 ± 119 (26–760) |
Normal Reference Range | Healthy Subjects (n = 30) | MM (n = 144) | p | Non-Responders (n = 33) | Responders (n = 111) | |
---|---|---|---|---|---|---|
Cellular-derived Hypercoagulability | ||||||
Procoag-PPL® (s) | 42–85 | 62.8 ± 8.6 | 45.6 ± 0.22.6 | <0.0001 | 51.9 ± 24.1 | 43.8 ± 21.9 |
TFa (ng/mL) | 0.02–0.45 | 0.26 ± 0.13 | 3.9 ± 13.1 | <0.0001 | 2.4 ± 3.8 | 4.4 ± 14.8 |
Heparanase (ng/mL) | 0.08–0.16 | 0.13 ± 0.03 | 0.3 ± 0.5 | 0.476 | 0.4 ± 0.8 | 0.4 ± 0.5 |
TM (ng/mL) | 70–120 | 90.1 ± 18.1 | 73.2 ± 68.1 | <0.05 | 68.2 ± 88.1 | 74.7 ± 77.0 |
P-selectin (μg/mL) | 82–42 | 62.6 ± 103.9 | 38.1 ± 31.8 | <0.0001 | 31.6 ± 32.7 | 40.1 ± 31.5 |
TFPI (ng/mL) | 15–26 | 18.2 ± 4.0 | 31 ± 18.5 | 0.02 | 37.1 ± 18.6 | 34.4 ± 16.3 |
Blood Coagulation Factors and Natural Inhibitors | ||||||
FVIIa (U/mL) | 73–29 | 50.9 ± 10.6 | 74.1 ± 147.6 | 0.022 | 51.6 ± 47.7 | 75.1 ± 161.3 |
FV (%) | 70–120 | 90.0 ± 12.0 | 78.0 ± 11.0 | 0.23 | 80.5 ± 35.4 | 91.7 ± 34.6 |
AT (%) | 70–120 | 92.0 ± 12.0 | 95.4 ± 17.7 | <0.005 | 95.3 ± 15.3 | 95.4 ± 18.4 |
In vivo Fibrin Formation/lysis | ||||||
D-Dimer (μg/mL) | <0.50 | 0.31 ± 0.08 | 1.80 ± 3.41 | <0.0001 | 2.5 ± 3.8 | 1.6 ± 3.3 |
FM (μg/mL) | 0.5–5.50 | 2.5 ± 0.5 | 14.29 ± 31.8 | <0.0001 | 20.4 ± 40.7 | 19.6 ± 34.8 |
Thrombogram Parameters | ||||||
Lag-time (min) | 2.1–3.8 | 2.5 ± 0.4 | 4.2 ± 2.2 | <0.0001 | 3.9 ± 1.2 | 4.3 ± 2.4 |
ttPeak (min) | 4.0–6.6 | 5.3 ± 0.7 | 7.3 ± 2.8 | <0.0001 | 6.9 ± 1.7 | 7.5 ± 3.1 |
Peak (nM) | 222–330 | 287.8 ± 35.7 | 214.4 ± 80.1 | <0.0001 | 218.1 ± 58.2 | 213.4 ± 85.9 |
MRI (nM/min) | 60–120 | 109.9 ± 24.5 | 80.2 ± 45.7 | <0.0001 | 80.8 ± 34.6 | 80.1 ± 48.7 |
ETP (nMxmin) | 1600–1178 | 1496.8 ± 191.4 | 1181.8 ± 398 | <0.0001 | 1150.6 ± 247.1 | 1191.4 ± 434.7 |
Compared Categories | OR (95% CI) | |
---|---|---|
Cellular-derived Hypercoagulability | ||
Procoag-PPL® (s) | ≥41.7 vs. <41.7 | 3.41 (1.45–8.03) |
TFa (ng/mL) | ≥0.6 vs. <0.6 | 0.63 (0.28–1.41) |
Heparanase (ng/mL) | ≥0.373 vs. <0.373 | 0.41 (0.13–1.27) |
TMa (%) | ≥43 vs. <43 | 0.36 (0.10–1.28) |
P-selectin (pg/mL) | ≥23477 vs. <23477 | 0.23 (0.08–0.65) |
TFPI (ng/mL) | ≥35.71 vs. <35.71 | 1.57 (0.61–4.03) |
Blood Coagulation Factors and Natural Inhibitors | ||
FVIIa (ng/mL) | ≥23.31 vs. <23.31 | 1.95 (0.69–5.54) |
FV (%) | ≥92 vs. <92 | 0.50 (0.18–1.36) |
ATIII (%) | ≥94 vs. <94 | 0.62 (0.28–1.37) |
In vivo Thrombin Generation | ||
D-Dimer (μg/mL) | ≥1.44 vs. <1.44 | 3.21 (1.43–7.22) |
FM (μg/mL) | ≥5.46 vs. <5.46 | 1.52 (0.59–3.90) |
Thrombogram Parameters | ||
Lag-time (min) | ≥2.75 vs. <2.75 | 0.59 (0.23–1.52) |
ETP (Mxmin) | ≥1188.03 vs. <1188.03 | 0.51 (0.22–1.22) |
Peak (nM) | ≥181.66 vs. <181.66 | 2.73 (1.03–7.23) |
ttPeak (min) | ≥7.74 vs. <7.74 | 0.49 (0.18–1.30) |
MRI (nM/min) | ≥50.46 vs. <50.46 | 2.14 (0.81–5.70) |
Compared Categories | Adjusted OR (95% CI) | |
---|---|---|
Procoag-PPL® (s) | ≥41.7 vs. <41.7 | 4.06 (1.59–10.38) |
D-Dimer (μg/mL) | ≥1.44 vs. <1.44 | 2.52 (1.06–6.01) |
Peak (nM) | ≥181.66 vs. <181.66 | 3.29 (1.17–9.26) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerotziafas, G.T.; Fotiou, D.; Sergentanis, T.N.; Papageorgiou, L.; Fareed, J.; Falanga, A.; Sabbah, M.; Garderet, L.; Terpos, E.; Elalamy, I.; et al. Treatment Resistance Risk in Patients with Newly Diagnosed Multiple Myeloma Is Associated with Blood Hypercoagulability: The ROADMAP-MM Study. Hemato 2022, 3, 188-203. https://doi.org/10.3390/hemato3010016
Gerotziafas GT, Fotiou D, Sergentanis TN, Papageorgiou L, Fareed J, Falanga A, Sabbah M, Garderet L, Terpos E, Elalamy I, et al. Treatment Resistance Risk in Patients with Newly Diagnosed Multiple Myeloma Is Associated with Blood Hypercoagulability: The ROADMAP-MM Study. Hemato. 2022; 3(1):188-203. https://doi.org/10.3390/hemato3010016
Chicago/Turabian StyleGerotziafas, Grigorios T., Despina Fotiou, Theodoros N. Sergentanis, Loula Papageorgiou, Jawed Fareed, Anna Falanga, Michèle Sabbah, Laurent Garderet, Evangelos Terpos, Ismail Elalamy, and et al. 2022. "Treatment Resistance Risk in Patients with Newly Diagnosed Multiple Myeloma Is Associated with Blood Hypercoagulability: The ROADMAP-MM Study" Hemato 3, no. 1: 188-203. https://doi.org/10.3390/hemato3010016
APA StyleGerotziafas, G. T., Fotiou, D., Sergentanis, T. N., Papageorgiou, L., Fareed, J., Falanga, A., Sabbah, M., Garderet, L., Terpos, E., Elalamy, I., Van Dreden, P., & Dimopoulos, M. A. (2022). Treatment Resistance Risk in Patients with Newly Diagnosed Multiple Myeloma Is Associated with Blood Hypercoagulability: The ROADMAP-MM Study. Hemato, 3(1), 188-203. https://doi.org/10.3390/hemato3010016