Sickle Cell Disease, a Review
Abstract
:1. Introduction
2. Genetic Background
3. Genetics and Origin
4. Epidemiology, Distribution, Incidence, and Prevalence
5. Pathophysiology
6. Disease Manifestations
6.1. Pain Crises
6.2. Acute Chest Syndrome
6.3. Cardiac Complication
6.4. Genitourinary Complications
6.5. Hepatobiliary Complications
6.6. Infections
6.7. Neurological Complications
6.8. Splenic Sequestration
7. Screening, Diagnosis, and Prevention
7.1. Psychosocial Effects
7.2. Cost of Care for SCD
8. Bases of Treatment
8.1. Treatment Strategies
8.2. Alteration of Coagulation Cascade and Other Therapies
9. Transplantation
10. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Neel, J.V. The Inheritance of Sickle Cell Anemia. Science 1949, 110, 64–66. [Google Scholar] [CrossRef] [PubMed]
- Rees, D.C.; Williams, T.N.; Gladwin, M.T. Sickle-cell disease. Lancet 2010, 376, 2018–2031. [Google Scholar] [CrossRef]
- Ansari, J.; Moufarrej, Y.E.; Pawlinski, R.; Gavins, F.N. Sickle cell disease: A malady beyond a hemoglobin defect in cerebrovascular disease. Expert Rev. Hematol. 2018, 11, 45–55. [Google Scholar] [CrossRef]
- Piel, F.B.; Tatem, A.J.; Huang, Z.; Gupta, S.; Williams, T.N.; Weatherall, D.J. Global migration and the changing distribution of sickle haemoglobin: A quantitative study of temporal trends between 1960 and 2000. Lancet Glob. Health 2014, 2, e80–e89. [Google Scholar] [CrossRef] [Green Version]
- Steinberg, M.H.; Sebastiani, P. Genetic modifiers of sickle cell disease. Am. J. Hematol. 2012, 87, 795–803. [Google Scholar] [CrossRef] [Green Version]
- Mohandas, N.; Evans, E. Adherence of sickle erythrocytes to vascular endothelial cells: Requirement for both cell membrane changes and plasma factors. Blood 1984, 64, 282–287. [Google Scholar] [CrossRef] [Green Version]
- Fawaz, N.A.; Bashawery, L.; Al-Sheikh, I.; Qatari, A.; Al-Othman, S.S.; Almawi, W.Y. Factor V-Leiden, prothrombin G20210A, and MTHFR C677T mutations among patients with sickle cell disease in Eastern Saudi Arabia. Am. J. Hematol. 2004, 76, 307–309. [Google Scholar] [CrossRef]
- Pandey, S.K.; Meena, A.; Kishor, K.; Mishra, R.M.; Pandey, S.; Saxena, R. Prevalence of Factor V Leiden G1691A, MTHFR C677T, and Prothrombin G20210A Among Asian Indian Sickle Cell Patients. Clin. Appl. Thromb. 2011, 18, 320–323. [Google Scholar] [CrossRef]
- Moreira Neto, F.; Lourenço, D.M.; Noguti, M.A.E.; Morelli, V.M.; Gil, I.C.P.; Beltrão, A.C.S.; Figueiredo, M.S. The clinical impact of MTHFR polymorphism on the vascular complications of sickle cell disease. Braz. J. Med. Biol. Res. 2006, 39, 1291–1295. [Google Scholar] [CrossRef]
- Horan, J.; Lerner, N. Prediction of Adverse Outcomes in Children with Sickle Cell Disease. N. Engl. J. Med. 2000, 342, 1612–1613. [Google Scholar] [CrossRef]
- Adekile, A.; Gupta, R.; Yacoub, F.; Sinan, T.; Al-Bloushi, M.; Haider, M. Avascular Necrosis of the Hip in Children with Sickle Cell Disease and High Hb F: Magnetic Resonance Imaging Findings and Influence of α-Thalassemia Trait. Acta Haematol. 2001, 105, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Marouf, R.; Gupta, R.; Haider, M.; Al-Wazzan, H.; Adekile, A. Avascular necrosis of the femoral head in adult Kuwaiti sickle cell disease patients. Acta Haematol. 2003, 110, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Almeida, A.; Roberts, I. Bone involvement in sickle cell disease. Br. J. Haematol. 2005, 129, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Mahadeo, K.M.; Oyeku, S.; Taragin, B.; Rajpathak, S.N.; Moody, K.; Santizo, R.; Driscoll, M.C. Increased prevalence of osteonecrosis of the femoral head in children and adolescents with sickle-cell disease. Am. J. Hematol. 2011, 86, 806–808. [Google Scholar] [CrossRef]
- Tantawy, A.A.; Ibrahim, S.W.; Abdel-Aziz, T.T.; Rabie, A.N.; Makkeyah, S.M.; Ragab, I.A. Inner Ear Complications in Children and Adolescents with Sickle Cell Disease. Hemoglobin 2020, 44, 411–417. [Google Scholar] [CrossRef]
- Burnett, M.W.; Bass, J.W.; Cook, B.A. Etiology of Osteomyelitis Complicating Sickle Cell Disease. Pediatrics 1998, 101, 296–297. [Google Scholar] [CrossRef]
- Neonato, M.G.; Guilloud-Bataille, M.; Beauvais, P.; Bégué, P.; Belloy, M.; Benkerrou, M.; Ducrocq, R.; Maier-Redelsperger, M.; De Montalembert, M.; Quinet, B.; et al. Acute clinical events in 299 homozygous sickle cell patients living in France. Eur. J. Haematol. 2000, 65, 155–164. [Google Scholar] [CrossRef]
- Kirkham, F.J.; DeBaun, M.R. Stroke in children with sickle cell disease. Curr. Treat. Options Neurol. 2004, 6, 357–375. [Google Scholar] [CrossRef]
- Kaul, D.; Hebbel, R. Hypoxia/reoxygenation causes inflammatory response in transgenic sickle mice but not in normal mice. J. Clin. Investig. 2000, 106, 411–420. [Google Scholar] [CrossRef] [Green Version]
- Chiang, E.Y.; Frenette, P.S. Sickle cell vaso-occlusion. Hematol. Oncol. Clin. N. Am. 2002, 9, 771–794. [Google Scholar] [CrossRef]
- Frenette, P.S.; Atweh, G.F. Sickle cell disease: Old discoveries, new concepts, and future promise. J. Clin. Investig. 2007, 117, 850–858. [Google Scholar] [CrossRef] [PubMed]
- Hebbel, R.P.; Osarogiagbon, R.; Kaul, D. The endothelial biology of sickle cell disease: Inflammation and a chronic vasculopathy. Microcirculation 2004, 11, 129–151. [Google Scholar] [CrossRef] [PubMed]
- Elion, J.E.; Brun, M.; Odievre, M.H.; Lapoumeroulie, C.L.; Krishnamoorthy, R. Vaso-occlusion in sickle cell anemia: Role of interactions between blood cells and endothelium. Hematol. J. 2004, 5, S195–S198. [Google Scholar] [CrossRef] [PubMed]
- Solovey, A.; Lin, Y.; Browne, P.; Choong, S.; Wayner, E.; Hebbel, R.P. Circulating Activated Endothelial Cells in Sickle Cell Anemia. N. Engl. J. Med. 1997, 337, 1584–1590. [Google Scholar] [CrossRef]
- Stonestrom, A.J.; Levine, R.L. The hematopoietic saga of clonality in sickle cell disease. J. Clin. Investig. 2022, 132, 158251. [Google Scholar] [CrossRef]
- Mack, A.K.; Kato, G.J. Sickle cell disease and nitric oxide: A paradigm shift? Int. J. Biochem. Cell Biol. 2006, 38, 1237–1243. [Google Scholar] [CrossRef] [Green Version]
- Kato, G.J. Defective nitric oxide metabolism in sickle cell disease. Pediatr. Blood Cancer 2014, 62, 373–374. [Google Scholar] [CrossRef]
- Silva, D.G.H.; Junior, E.B.; de Almeida, E.A.; Bonini-Domingos, C.R. Oxidative stress in sickle cell disease: An overview of erythrocyte redox metabolism and current antioxidant therapeutic strategies. Free Radic. Biol. Med. 2013, 65, 1101–1109. [Google Scholar] [CrossRef]
- Reiter, C.D.; Wang, X.; Tanus-Santos, J.E.; Hogg, N.; Cannon, R.O.; Schechter, A.N.; Gladwin, M.T. Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease. Nat. Med. 2002, 8, 1383–1389. [Google Scholar] [CrossRef]
- Morris, C.R.; Kato, G.J.; Poljakovic, M.; Wang, X.; Blackwelder, W.C.; Sachdev, V.; Hazen, S.L.; Vichinsky, E.P.; Morris, S.M.; Gladwin, M.T. Dysregulated arginine metabolism, hemolysis-associated pulmonary hypertension, and mortality in sickle cell disease. JAMA 2005, 294, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.-Y.; Wang, Y.; Telen, M.J.; Chi, J.-T. The Genomic Analysis of Erythrocyte microRNA Expression in Sickle Cell Diseases. PLoS ONE 2008, 3, e2360. [Google Scholar] [CrossRef] [PubMed]
- Kato, G.J.; Gladwin, M.T.; Steinberg, M. Deconstructing sickle cell disease: Reappraisal of the role of hemolysis in the development of clinical subphenotypes. Blood Rev. 2007, 21, 37–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, D. Thrombosis in sickle cell disease. J. Lab. Clin. Med. 1999, 134, 329–330. [Google Scholar] [CrossRef]
- Kurantsin-Mills, J.; Ofosu, F.A.; Safa, T.K.; Siegel, R.S.; Lessin, L.S. Plasma factor VII and thrombin–antithrombin III levels indicate increased tissue factor activity in sickle cell patients. Br. J. Haematol. 1992, 81, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Peters, M.; Plaat, B.; Cate, H.T.; Wolters, H.J.; Weening, R.S.; Brandjes, D.P. Enhanced thrombin generation in children with sickle cell disease. Thromb. Haemost. 1994, 71, 169–172. [Google Scholar]
- Hagger, D.; Wolff, S.; Owen, J.; Samson, D. Changes in coagulation and fibrinolysis in patients with sickle cell disease compared with healthy Black controls. Blood Coagul. Fibrinolysis 1995, 6, 93–99. [Google Scholar] [CrossRef]
- Nsiri, B.; Gritli, N.; Bayoudh, F.; Messaoud, T.; Fattoum, S.; Machghoul, S. Abnormalities of coagulation and fibrinolysis in homozygous sickle cell disease. Hematol. Cell Ther. 1996, 38, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Key, N.S.; Slungaard, A.; Dandelet, L.; Nelson, S.C.; Moertel, C.; Styles, L.A.; Kuypers, F.A.; Bach, R.R. Whole blood tissue factor procoagulant activity is elevated in patients with sickle cell disease. Blood 1998, 91, 4216–4223. [Google Scholar] [CrossRef]
- Westerman, M.P.; Green, D.; Gilman-Sachs, A.; Beaman, K.; Freels, S.; Boggio, L.; Allen, S.; Zuckerman, L.; Schlegel, R.; Williamson, P. Antiphospholipid antibodies, proteins C and S, and coagulation changes in sickle cell disease. J. Lab. Clin. Med. 1999, 134, 352–362. [Google Scholar] [CrossRef]
- Setty, B.N.Y.; Rao, A.K.; Stuart, M.J. Thrombophilia in sickle cell disease: The red cell connection. Blood 2001, 98, 3228–3233. [Google Scholar] [CrossRef] [Green Version]
- Noubouossie, D.; Key, N.S.; Ataga, K.I. Coagulation abnormalities of sickle cell disease: Relationship with clinical outcomes and the effect of disease modifying therapies. Blood Rev. 2016, 30, 245–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomer, A.; Harker, L.A.; Kasey, S.; Eckman, J.R. Thrombogenesis in sickle cell disease. J. Lab. Clin. Med. 2001, 137, 398–407. [Google Scholar] [CrossRef] [PubMed]
- Stuart, M.J.; Nagel, R.L. Sickle-cell disease. Lancet 2004, 364, 1343–1360. [Google Scholar] [CrossRef]
- Odièvre, M.-H.; Verger, E.; Silva-Pinto, A.C.; Elion, J. Pathophysiological insights in sickle cell disease. Indian J. Med. Res. 2011, 134, 532–537. [Google Scholar] [PubMed]
- Booth, C.; Inusa, B.; Obaro, S.K. Infection in sickle cell disease: A review. Int. J. Infect. Dis. 2010, 14, e2–e12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messonnier, L.A. Mitochondrial function in sickle cell disease. Blood 2022, 139, 1616–1617. [Google Scholar] [CrossRef]
- Dosunmu-Ogunbi, A.; Yuan, S.; Reynolds, M.; Giordano, L.; Sanker, S.; Sullivan, M.; Stolz, D.B.; Kaufman, B.A.; Wood, K.C.; Zhang, Y.; et al. SOD2 V16A amplifies vascular dysfunction in sickle cell patients by curtailing mitochondria complex IV activity. Blood 2022, 139, 1760–1765. [Google Scholar] [CrossRef]
- Platt, O.S.; Brambilla, D.J.; Rosse, W.F.; Milner, P.F.; Castro, O.; Steinberg, M.H.; Klug, P.P. Mortality in sickle cell disease: Life expectancy and risk factors for early death. N. Engl. J. Med. 1994, 330, 1639. [Google Scholar] [CrossRef]
- Lanzkron, S.; Carroll, C.P.; Haywood, C., Jr. Mortality Rates and Age at Death from Sickle Cell Disease: U.S., 1979–2005. Public Health Rep. 2013, 128, 110–116. [Google Scholar] [CrossRef]
- Ngo, D.; Bae, H.; Steinberg, M.H.; Sebastiani, P.; Solovieff, N.; Baldwin, C.T.; Melista, E.; Safaya, S.; Farrer, L.A.; Al-Suliman, A.M.; et al. Fetal hemoglobin in sickle cell anemia: Genetic studies of the Arab-Indian haplotype. Blood Cells Mol. Dis. 2013, 51, 22–26. [Google Scholar] [CrossRef] [Green Version]
- Akinsheye, I.; Alsultan, A.; Solovieff, N.; Ngo, D.; Baldwin, C.T.; Sebastiani, P.; Chui, D.H.K.; Steinberg, M.H. Fetal hemoglobin in sickle cell anemia. Blood 2011, 118, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q.; Wyszynski, D.F.; Farrell, J.J.; Kutlar, A.; Farrer, L.; Baldwin, C.T.; Steinberg, M. Fetal hemoglobin in sickle cell anemia: Genetic determinants of response to hydroxyurea. Pharm. J. 2007, 7, 386–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tewari, S.; Brousse, V.; Piel, F.B.; Menzel, S.; Rees, D.C. Environmental determinants of severity in sickle cell disease. Haematologica 2015, 100, 1108–1116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Italia, K.; Kangne, H.; Shanmukaiah, C.; Nadkarni, A.H.; Ghosh, K.; Colah, R.B. Variable phenotypes of sickle cell disease in India with the Arab-Indian haplotype. Br. J. Haematol. 2014, 168, 156–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, S.; Duncan, E.R.; Thomas, N.; Walters, J.; Dick, M.C.; Height, S.E.; Stephens, A.D.; Thein, S.L.; Rees, D.C. Windy weather and low humidity are associated with an increased number of hospital admissions for acute pain and sickle cell disease in an urban environment with a maritime temperate climate. Br. J. Haematol. 2005, 131, 530–533. [Google Scholar] [CrossRef] [PubMed]
- Piel, F.B.; Patil, A.P.; Howes, R.E.; Nyangiri, O.A.; Gething, P.W.; Dewi, M.; Temperley, W.H.; Williams, T.N.; Weatherall, D.J.; Hay, S.I. Global epidemiology of sickle haemoglobin in neonates: A contemporary geostatistical model-based map and population estimates. Lancet 2013, 381, 142–151. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention. The National Center on Birth Defects and Developmental Disabilities; Centers for Disease Control and Prevention: Atlanta, GA, USA, 21 October 2019.
- World Health Organization. “Sickle cell anemia. Agenda item 11.4”, in 59th World Health Assembly, 27 May 2006; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Diallo, D.; Tchernia, G. Sickle cell disease in Africa. Curr. Opin. Hematol. 2002, 9, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Chakravorty, S.; Williams, T.N. Sickle cell disease: A neglected chronic disease of increasing global health importance. Arch. Dis. Child. 2015, 100, 48–53. [Google Scholar] [CrossRef] [Green Version]
- Kato, G.J.; Piel, F.B.; Reid, C.D.; Gaston, M.H.; Ohene-Frempong, K.; Krishnamurti, L.; Smith, W.R.; Panepinto, J.A.; Weatherall, D.J.; Costa, F.F.; et al. Sickle cell disease. Nat. Rev. Dis. Primers 2018, 4, 18010. [Google Scholar] [CrossRef] [Green Version]
- Aidoo, M.; Terlouw, D.J.; Kolczak, M.S.; McElroy, P.D.; ter Kuile, F.O.; Kariuki, S.; Nahlen, B.L.; Lal, A.A.; Udhayakumar, V. Protective effects of the sickle cell gene against malaria morbidity and mortality. Lancet 2002, 359, 1311–1312. [Google Scholar] [CrossRef]
- Enevold, A.; Lusingu, J.P.; Mmbando, B.; Alifrangis, M.; Lemnge, M.M.; Bygbjerg, I.C.; Theander, T.G.; Vestergaard, L.S. Reduced risk of uncomplicated malaria episodes in children with alpha+-thalassemia in Northeastern Tanzania. Am. J. Trop. Med. Hyg. 2008, 78, 714–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, T.N.; Wambua, S.; Uyoga, S.; Macharia, A.; Mwacharo, J.K.; Newton, C.; Maitland, K. Both heterozygous and homozygous α+ thalassemias protect against severe and fatal Plasmodium falciparum malaria on the coast of Kenya. Blood 2005, 106, 368–371. [Google Scholar] [CrossRef] [PubMed]
- Beighton, P.; Botha, M.C. Inherited disorders in the black population of southern Africa. Part I. Historical and demographic background; genetic haematological conditions. S. Afr. Med. J. 1986, 69, 247–249. [Google Scholar] [PubMed]
- World Health Organisation, Genomics and World Health. Report of the Advisory Committee on Health Research; World Health Organisation: Geneva, Switzerland, 2002. [Google Scholar]
- Trabuchet, G.; Elion, J.; Baudot, G.; Pagnier, J.; Bouhass, R.; Nigon, V.M.; Labie, D.; Krishnamoorthy, R. Origin and spread of beta-globin gene mutations in India, Africa, and Mediterranea: Analysis of the 5′ flanking and intragenic sequences of beta S and beta C genes. Hum. Biol. 1991, 63, 241–252. [Google Scholar] [PubMed]
- Zago, M.A.; Silva, W.A., Jr.; Dalle, B.; Gualandro, S.; Hutz, M.H.; Lapoumeroulie, C.; Tavella, M.H.; Araujo, A.G.; Krieger, J.E.; Elion, J.; et al. Atypical βS haplotypes are generated by diverse genetic mechanisms. Am. J. Hematol. 2000, 63, 79–84. [Google Scholar] [CrossRef]
- Kulozik, A.E.; Wainscoat, J.S.; Serjeant, G.R.; Kar, B.C.; Al-Awamy, B.; Essan, G.J.F.; Falusi, A.G.; Haque, S.K.; Hilali, A.M.; Kate, S.; et al. Geographical survey of βs-globin gene haplotypes: Evidence for an independent Asian origin of the sickle-cell mutation. Am. J. Hum. Genet. 1986, 39, 239–244. [Google Scholar]
- Colah, R.; Mukherjee, M.; Ghosh, K. Sickle cell disease in India. Curr. Opin. Hematol. 2014, 21, 215–223. [Google Scholar] [CrossRef]
- Rao, V.R. Genetics and epidemiology of sickle cell anemia in India. Indian J. Med. Sci. 1988, 42, 87–90. [Google Scholar]
- Serjeant, G.R.; Ghosh, K.; Patel, J. Sickle cell disease in India: A perspective. Indian J. Med. Res. 2016, 143, 21–24. [Google Scholar] [CrossRef]
- Hockham, C.; Bhatt, S.; Colah, R.; Mukherjee, M.B.; Penman, B.; Gupta, S.; Piel, F.B. The spatial epidemiology of sickle-cell anaemia in India. Sci. Rep. 2018, 8, 17685. [Google Scholar] [CrossRef] [Green Version]
- Arbefeville, E.F.; Tebbi, C.K.; Chrostowski, L.; Adams, V.I. Sudden Death After Exercise in an Adolescent with Hemoglobin SE. Am. J. Forensic Med. Pathol. 2011, 32, 341–343. [Google Scholar] [CrossRef] [PubMed]
- Vos, T.; Allen, C.; Arora, M.; Barber, R.M.; Bhutta, Z.A.; Brown, A.; Carter, A.; Casey, D.C.; Charlson, F.J.; Chen, A.Z.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1545–1602. [Google Scholar] [CrossRef] [Green Version]
- Vos, T.; Barber, R.M.; Bell, B.; Bertozzi-Villa, A.; Biryukov, S.; Bolliger, I.; Charlson, F.; Davis, A.; Degenhardt, L.; Dicker, D.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015, 386, 743–800. [Google Scholar] [CrossRef] [Green Version]
- Jastaniaha, W. Epidemiology of sickle cell disease in Saudi Arabia. Ann. Saudi Med. 2011, 31, 289–293. [Google Scholar] [CrossRef]
- Livingstone, F.B. Anthropological Implications of Sickle Cell Gene Distribution in West Africa1. Am. Anthr. 1958, 60, 533–562. [Google Scholar] [CrossRef] [Green Version]
- Chebloune, Y.; Pagnier, J.; Trabuchet, G.; Faure, C.; Verdier, G.; Labie, D.; Nigon, V. Structural analysis of the 5’ flanking region of the beta-globin gene in African sickle cell anemia patients: Further evidence for three origins of the sickle cell mutation in Africa. Proc. Natl. Acad. Sci. USA 1988, 85, 4431–4435. [Google Scholar] [CrossRef] [Green Version]
- Darbari, D.S.; Wang, Z.; Kwak, M.; Hildesheim, M.; Nichols, J.; Allen, D.; Seamon, C.; Peters-Lawrence, M.; Conrey, A.; Hall, M.K.; et al. Severe Painful Vaso-Occlusive Crises and Mortality in a Contemporary Adult Sickle Cell Anemia Cohort Study. PLoS ONE 2013, 8, e79923. [Google Scholar] [CrossRef]
- Rogers, S.C.; Ross, J.G.C.; D’Avignon, A.; Gibbons, L.B.; Gazit, V.; Hassan, M.N.; McLaughlin, D.; Griffin, S.; Neumayr, T.; DeBaun, M.; et al. Sickle hemoglobin disturbs normal coupling among erythrocyte O2 content, glycolysis, and antioxidant capacity. Blood 2013, 121, 1651–1662. [Google Scholar] [CrossRef] [Green Version]
- Dagur, P.K.; McCoy, J.P.; Nichols, J.; Mendelsohn, L.; Seamon, C.; Kato, G.J.; Van Beers, E.J. Haem augments and iron chelation decreases toll-like receptor 4 mediated inflammation in monocytes from sickle cell patients. Br. J. Haematol. 2017, 181, 552–554. [Google Scholar] [CrossRef]
- Sundd, P.; Gladwin, M.T.; Novelli, E.M. Pathophysiology of Sickle Cell Disease. Annu. Rev. Pathol. Mech. Dis. 2019, 14, 263–292. [Google Scholar] [CrossRef]
- Zhang, D.; Xu, C.; Manwani, D.; Frenette, P.S. Neutrophils, platelets, and inflammatory pathways at the nexus of sickle cell disease pathophysiology. Blood 2016, 127, 801–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domingos, I.F.; Pereira-Martins, D.A.; Sobreira, M.J.V.C.; Oliveira, R.T.D.; Alagbe, A.E.; Lanaro, C.; Albuquerque, D.M.; Blotta, M.H.S.L.; Araujo, A.S.; Costa, F.F.; et al. High levels of proinflammatory cytokines IL-6 and IL-8 are associated with a poor clinical outcome in sickle cell anemia. Ann. Hematol. 2020, 99, 947–953. [Google Scholar] [CrossRef] [PubMed]
- Barabino, G.A.; Platt, M.O.; Kaul, D.K. Sickle Cell Biomechanics. Annu. Rev. Biomed. Eng. 2010, 12, 345–367. [Google Scholar] [CrossRef] [PubMed]
- Ware, R.E.; de Montalembert, M.; Tshilolo, L.; Abboud, M.R. Sickle cell disease. Lancet 2017, 390, 311–323. [Google Scholar] [CrossRef]
- El-Shanshory, M.; Badraia, I.; Donia, A.; Abd El-hameed, F.; Mabrouk, M. Asymmetric dimethylarginine levels in children with sickle cell disease and its correlation to tricuspid regurgitant jet velocity. Eur. J. Haematol. 2013, 91, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Elhawary, E.E.; Khedr, S.F.; Nagy, H.M.; El-Bradey, M.H.; Elshanshory, M.R. Correlation of Asymmetric Dimethyl Arginine Level to Sickle Retinopathy in Children with Sickle Cell Disease. J. Pediatr. Hematol. 2022. [Google Scholar] [CrossRef]
- Kaul, D.K.; Finnegan, E.; Barabino, G. Sickle Red Cell–Endothelium Interactions. Microcirculation 2009, 16, 97–111. [Google Scholar] [CrossRef] [Green Version]
- Kato, G.; Steinberg, M.H.; Gladwin, M.T. Intravascular hemolysis and the pathophysiology of sickle cell disease. J. Clin. Investig. 2017, 127, 750–760. [Google Scholar] [CrossRef]
- Platt, O.S.; Thorington, B.D.; Brambilla, D.J.; Milner, P.F.; Rosse, W.F.; Vichinsky, E.; Kinney, T.R. Pain in sickle cell disease. Rates and risk factors. N. Engl. J. Med. 1991, 325, 11–16. [Google Scholar] [CrossRef]
- Gualandro, S.F.M.; Fonseca, G.H.H.; Yokomizo, I.K.; Gualandro, D.M.; Suganuma, L.M. Cohort study of adult patients with haemoglobin SC disease: Clinical characteristics and predictors of mortality. Br. J. Haematol. 2015, 171, 631–637. [Google Scholar] [CrossRef] [Green Version]
- Dampier, C.; Ely, B.; Brodecki, D.; O’Neal, P. Characteristics of pain managed at home in children and adolescents with sickle cell disease by using diary self-reports. J. Pain 2002, 3, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Diggs, L.W. The Crisis in Sickle Cell Anemia. Hematologic Studies. Am. J. Clin. Pathol. 1956, 26, 1109–1118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballas, S.K.; Gupta, K.; Adams-Graves, P. Sickle cell pain: A critical reappraisal. Blood 2012, 120, 3647–3656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballas, S.K.; Bauserman, R.L.; McCarthy, W.F.; Castro, O.L.; Smith, W.R.; Waclawiw, M.A. Hydroxyurea and Acute Painful Crises in Sickle Cell Anemia: Effects on Hospital Length of Stay and Opioid Utilization During Hospitalization, Outpatient Acute Care Contacts, and at Home. J. Pain Symptom Manag. 2010, 40, 870–882. [Google Scholar] [CrossRef] [PubMed]
- Darbari, D.S.; Ballas, S.K.; Clauw, D.J. Thinking beyond sickling to better understand pain in sickle cell disease. Eur. J. Haematol. 2014, 93, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Darbari, D.S.; Sheehan, V.A.; Ballas, S.K. The vaso-occlusive pain crisis in sickle cell disease: Definition, pathophysiology, and management. Eur. J. Haematol. 2020, 105, 237–246. [Google Scholar] [CrossRef]
- Franck, L.S.; Treadwell, M.; Jacob, E.; Vichinsky, E. Assessment of Sickle Cell Pain in Children and Young Adults Using the Adolescent Pediatric Pain Tool. J. Pain Symptom Manag. 2002, 23, 114–120. [Google Scholar] [CrossRef]
- Brandow, A.M.; Farley, R.A.; Panepinto, J.A. Existence of Neuropathic Pain in Patients with Sickle Cell Disease. Blood 2012, 120, 4254. [Google Scholar] [CrossRef]
- Darbari, D.S.; Onyekwere, O.; Nouraie, M.; Minniti, C.P.; Luchtman-Jones, L.; Rana, S.; Sable, C.; Ensing, G.; Dham, N.; Campbell, A.; et al. Markers of Severe Vaso-Occlusive Painful Episode Frequency in Children and Adolescents with Sickle Cell Anemia. J. Pediatr. 2012, 160, 286–290. [Google Scholar] [CrossRef] [Green Version]
- Adesina, O.; Brunson, A.; Keegan, T.H.; Wun, T. Osteonecrosis of the femoral head in sickle cell disease: Prevalence, comorbidities, and surgical outcomes in California. Blood Adv. 2017, 1, 1287–1295. [Google Scholar] [CrossRef] [Green Version]
- Zempsk, W.T. Evaluation and Treatment of Sickle Cell Pain in the Emergency Department: Paths to a Better Future. Clin. Pediatr. Emerg. Med. 2010, 11, 265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballas, S.K. The sickle cell painful crisis in adults: Phases and objective signs. Hemoglobin 1995, 19, 323. [Google Scholar] [CrossRef] [PubMed]
- Uwaezuoke, S.N.; Ayuk, A.C.; Ndu, I.K.; Eneh, C.I.; Mbanefo, N.R.; Ezenwosu, O.U. Vaso-occlusive crisis in sickle cell disease: Current paradigm on pain management. J. Pain Res. 2018, 11, 3141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gil, K.M.; Abrams, M.R.; Phillips, G.; Keefe, F.J. Sickle cell disease pain: Relation of coping strategies to adjustment. J. Consult. Clin. Psychol. 1989, 57, 725. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, L.J.; Swinson, G.I.; Nagel, R.L. Sickle cell anemia day hospital: An approach for the management of uncomplicated painful crises. Blood 2000, 95, 1130–1136. [Google Scholar] [CrossRef] [PubMed]
- Tanabe, P.; Hafner, J.W.; Martinovich, Z.; Artz, N. Adult Emergency Department Patients with Sickle Cell Pain Crisis: Results From a Quality Improvement Learning Collaborative Model to Improve Analgesic Management. Acad. Emerg. Med. 2012, 19, 430–438. [Google Scholar] [CrossRef]
- Kavanagh, P.L.; Sprinz, P.G.; Wolfgang, T.L.; Killius, K.; Champigny, M.; Sobota, A.; Dorfman, D.; Barry, K.; Miner, R.; Moses, J.M. Improving the Management of Vaso-Occlusive Episodes in the Pediatric Emergency Department. Pediatrics 2015, 136, e1016–e1025. [Google Scholar] [CrossRef] [Green Version]
- McClish, D.K.; Smith, W.R.; Dahman, B.A.; Levenson, J.L.; Roberts, J.D.; Penberthy, L.T.; Aisiku, I.P.; Roseff, S.D.; Bovbjerg, V.E. Pain site frequency and location in sickle cell disease: The PiSCES project. Pain 2009, 145, 246–251. [Google Scholar] [CrossRef] [Green Version]
- Charache, S. “Acute chest syndrome” in adults with sickle cell anemia. Microbiology, treatment, and prevention. Arch. Intern. Med. 1979, 139, 67–69. [Google Scholar] [CrossRef]
- Barrett-Connor, E. Acute pulmonary disease and sickle cell anemia. Am. Rev. Respir. Dis. 1971, 104, 159–165. [Google Scholar] [CrossRef]
- Gray, A.; Anionwu, E.N.; Davies, S.C.; Brozovic, M. Patterns of mortality in sickle cell disease in the United Kingdom. J. Clin. Pathol. 1991, 44, 459–463. [Google Scholar] [CrossRef] [Green Version]
- Babiker, M.A.; Obeid, H.A.; Ashong, E.F. Acute reversible pulmonary ischemia: A cause of the acute chest syndrome in sickle cell disease. Clin. Pediatr. 1985, 24, 716–718. [Google Scholar] [CrossRef] [PubMed]
- Aldrich, T.K.; Dhuper, S.K.; Patwa, N.S.; Makolo, E.; Suzuka, S.M.; Najeebi, S.A.; Santhanakrishnan, S.; Nagel, R.L.; Fabry, M.E. Pulmonary entrapment of sickle cells: The role of regional alveolar hypoxia. J. Appl. Physiol. 1996, 80, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, S.; Ghafuri, D.L.; Glassberg, J.; Kassim, A.A.; Rodeghier, M.; DeBaun, M.R. Rapidly progressive acute chest syndrome in individuals with sickle cell anemia: A distinct acute chest syndrome phenotype. Am. J. Hematol. 2016, 91, 1185–1190. [Google Scholar] [CrossRef] [PubMed]
- Bhalla, M.; Abboud, M.R.; McLoud, T.C.; Shepard, J.A.; Munden, M.M.; Jackson, S.M.; Beaty, J.R.; Laver, J.H. Acute chest syndrome in sickle cell disease: CT evidence of microvascular occlusion. Radiology 1993, 187, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Nur, E.; Gaartman, A.E.; Van Tuijn, C.F.J.; Tang, M.W.; Biemond, B.J. Vaso-occlusive crisis and acute chest syndrome in sickle cell disease due to 2019 novel coronavirus disease (COVID-19). Am. J. Hematol. 2020, 95, 725–726. [Google Scholar] [CrossRef]
- Vichinsky, E.P.; Neumayr, L.D.; Earles, A.N.; Illiams, R.O.W.; Lennette, E.T.; Ean, D.E.D.; Ickerson, B.R.N.; Rringer, E.U.O.; Ie, V.I.M.C.K.; Ellevue, R.I.B.; et al. Causes and Outcomes of the Acute Chest Syndrome in Sickle Cell Disease. N. Engl. J. Med. 2000, 342, 1855–1865. [Google Scholar] [CrossRef] [Green Version]
- Graham, L.M., Jr. The effect of sickle cell disease on the lung. Clin. Pulm. Med. 2004, 11, 369. [Google Scholar] [CrossRef]
- Powars, D.; Weidman, J.A.; Odom-Maryon, T.; Niland, J.C.; Johnson, C. Sickle cell chronic lung disease: Prior morbidity and the risk of pulmonary failure. Medicine 1988, 67, 66–76. [Google Scholar] [CrossRef]
- Castro, O.; Brambilla, D.J.; Thorington, B.; Reindorf, C.A.; Scott, R.B.; Gillette, P.; Vera, J.C.; Levy, P.S. The acute chest syndrome in sickle cell disease: Incidence and risk factors. Blood 1994, 84, 643–649. [Google Scholar] [CrossRef] [Green Version]
- Vichinsky, E.P.; Styles, L.A.; Colangelo, L.H.; Wright, E.C.; Castro, O.; Nickerson, B. Acute chest syndrome in sickle cell disease: Clinical presentation and course. Cooperative Study of Sickle Cell Disease. Blood 1997, 89, 1787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howard, J.; Hart, N.; Roberts-Harewood, M.; Cummins, M.; Awogbade, M.; Davis, B. The BCSH Committee Guideline on the management of acute chest syndrome in sickle cell disease. Br. J. Haematol. 2015, 169, 492–505. [Google Scholar] [CrossRef] [PubMed]
- Harris, M.; Clark, J.; Coote, N.; Fletcher, P.; Harnden, A.; Mckean, M.; Thomson, A. On behalf of the British Thoracic Society Standards of Care Committee British Thoracic Society guidelines for the management of community acquired pneumonia in children: Update 2011. Thorax 2011, 66 (Suppl. S2), ii1–ii23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, W.S.; Baudouin, S.V.; George, R.C.; Hill, A.T.; Jamieson, C.; Le Jeune, I.; Macfarlane, J.T.; Read, R.C.; Roberts, H.J.; Levy, M.L.; et al. BTS guidelines for the management of community acquired pneumonia in adults: Update 2009. Thorax 2009, 64, iii1–iii55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sachdev, V.; Rosing, D.R.; Thein, S.L. Cardiovascular complications of sickle cell disease. Trends Cardiovasc. Med. 2020, 31, 187–193. [Google Scholar] [CrossRef]
- Lester, L.A.; Sodt, P.C.; Hutcheon, N.; Arcilla, R.A. Cardiac Abnormalities in Children with Sickle Cell Anemia. Chest 1990, 98, 1169–1174. [Google Scholar] [CrossRef]
- Grossman, W.; Jones, D.; McLaurin, L.P. Wall stress and patterns of hypertrophy in the human left ventricle. J. Clin. Investig. 1975, 56, 56–64. [Google Scholar] [CrossRef] [Green Version]
- Gerry, J.L.; Baird, M.G.; Fortuin, N.J. Evaluation of left ventricular function in patients with sickle cell anemia. Am. J. Med. 1976, 60, 968–972. [Google Scholar] [CrossRef]
- Balfour, I.C.; Covitz, W.; Arensman, F.W.; Eubig, C.; Garrido, M.; Jones, C. Left ventricular filling in sickle cell anemia. Am. J. Cardiol. 1988, 61, 395–399. [Google Scholar] [CrossRef]
- Hankins, J.S.; McCarville, M.B.; Hillenbrand, C.; Loeffler, R.; Ware, R.E.; Song, R.; Smeltzer, M.P.; Joshi, V. Ventricular diastolic dysfunction in sickle cell anemia is common but not associated with myocardial iron deposition. Pediatr. Blood Cancer 2010, 55, 495–500. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.C.; Kirkham, F.; Redline, S.; Rosen, C.L.; Yan, Y.; Roberts, I.; Gruenwald, J.; Marek, J.; DeBaun, M.R. Left ventricular hypertrophy and diastolic dysfunction in children with sickle cell disease are related to asleep and waking oxygen desaturation. Blood 2010, 116, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Chinawa, J.M.; Chukwu, B.F.; Chinawa, A.T.; Ossai, E.N.; Ikefuna, A.N.; Aronu, A.E.; Obidike, E.O. Right ventricular function among South East Nigeria children with sickle cell anaemia. BMC Pediatr. 2020, 20, 240. [Google Scholar] [CrossRef] [PubMed]
- Osegbe, D.N. Haematuria and sickle cell disease: A report of 12 cases and review of the literature. Trop. Geogr. Med. 1990, 42, 22–27. [Google Scholar] [PubMed]
- Scheinman, J.I. Sickle cell disease and the kidney. Nat. Clin. Pract. Nephrol. 2009, 5, 78–88. [Google Scholar] [CrossRef]
- Pandya, K.K.; Koshy, M.; Brown, N.; Presman, D. Renal Papillary Necrosis in Sickle Cell Hemoglobinopathies. J. Urol. 1976, 115, 497–501. [Google Scholar] [CrossRef]
- Odita, J.C.; Ugbodaga, C.I.; Okafor, L.A.; Ojogwu, L.I.; Ogisi, O.A. Urographic changes in homozygous sickle cell disease. Diagn Imaging 1983, 52, 259–263. [Google Scholar]
- Walker, T.M.; Serjeant, G.R. Increased renal reflectivity in sickle cell disease: Prevalence and characteristics. Clin. Radiol. 1995, 50, 56669. [Google Scholar] [CrossRef]
- Baddam, S.; Aban, I.; Hilliard, L.; Howard, T.; Askenazi, D.; Lebensburger, J.D. Acute kidney injury during a pediatric sickle cell vaso-occlusive pain crisis. Pediatr. Nephrol. 2017, 32, 1451–1456. [Google Scholar] [CrossRef]
- Anele, U.; Burnett, A.L. Erectile Dysfunction after Sickle Cell Disease–Associated Recurrent Ischemic Priapism: Profile and Risk Factors. J. Sex. Med. 2015, 12, 713–719. [Google Scholar] [CrossRef] [Green Version]
- Mantadakis, E.; Cavender, J.D.; Rogers, Z.R.; Ewalt, D.H.; Buchanan, G.R. Prevalence of Priapism in Children and Adolescents With Sickle Cell Anemia. J. Pediatr. Hematol. 1999, 21, 518–522. [Google Scholar] [CrossRef]
- Kato, G.J. Priapism in Sickle-Cell Disease: A Hematologist’s Perspective. J. Sex. Med. 2012, 9, 70–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexander-Reindorf, C.; Nwaneri, R.U.; Worrell, R.G.; Ogbonna, A.; Uzoma, C. The significance of gallstones in children with sickle cell anemia. J. Natl. Med. Assoc. 1990, 82, 645–650. [Google Scholar] [PubMed]
- Martins, R.A.; Soares, R.S.; De Vito, F.B.; Barbosa, V.D.F.; Silva, S.S.; Moraes-Souza, H.; Martins, P.R.J. Cholelithiasis and its complications in sickle cell disease in a university hospital. Rev. Bras. Hematol. Hemoter. 2017, 39, 28–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obaro, S.K.; Iroh Tam, P.Y. Preventing Infections in Sickle Cell Disease: The Unfinished Business. Pediat Blood Cancer 2016, 63, 781–785. [Google Scholar] [CrossRef] [PubMed]
- De Ceulaer, K.; Pagliuca, A.; Forbes, M.; Maude, G.; Serjeant, B.; Serjeant, G. Recurrent infections in sickle cell disease: Haematological and immune studies. Clin. Chim. Acta 1985, 148, 161–165. [Google Scholar] [CrossRef]
- Switzer, J.A.; Hess, D.C.; Nichols, F.T.; Adams, R.J. Pathophysiology and treatment of stroke in sickle-cell disease: Present and future. Lancet Neurol. 2006, 5, 501–512. [Google Scholar] [CrossRef]
- Anson, J.A.; Koshy, M.; Ferguson, L.; Crowell, R.M. Subarachnoid hemorrhage in sickle-cell disease. J. Neurosurg. 1991, 75, 552–558. [Google Scholar] [CrossRef]
- De Baun, M.R.; Kirkham, F.J. Central nervous system complications and management in sickle cell disease. Blood 2016, 127, 829–838. [Google Scholar] [CrossRef] [Green Version]
- De Baun, M.R.; Armstrong, F.D.; McKinstry, R.C.; Ware, R.E.; Vichinsky, E.; Kirkham, F. Silent cerebral infarcts: A review on a prevalent and progressive cause of neurologic injury in sickle cell anemia. Blood 2012, 119, 4587–4596. [Google Scholar] [CrossRef]
- Ohene-Frempong, K.; Weiner, S.J.; Sleeper, L.A.; Miller, S.T.; Embury, S.; Moohr, J.W.; Wethers, D.L.; Pegelow, C.H.; Gill, F.M. Cerebrovascular accidents in sickle cell disease: Rates and risk factors. Blood 1998, 91, 288–294. [Google Scholar]
- Musallam, K.; Khoury, R.A.; Abboud, M.R. Cerebral Infarction in Children with Sickle Cell Disease: A Concise Overview. Hemoglobin 2011, 35, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.J.; McKie, V.C.; Hsu, L.; Files, B.; Vichinsky, E.; Pegelow, C.; Abboud, M.; Gallagher, D.; Kutlar, A.; Nichols, F.T.; et al. Prevention of a First Stroke by Transfusions in Children with Sickle Cell Anemia and Abnormal Results on Transcranial Doppler Ultrasonography. N. Engl. J. Med. 1998, 339, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.J.; Brambilla, D. Optimizing Primary Stroke Prevention in Sickle Cell Anemia (STOP 2) Trial Investigators Discontinuing Prophylactic Transfusions Used to Prevent Stroke in Sickle Cell Disease. N. Engl. J. Med. 2005, 353, 2769–2778. [Google Scholar] [CrossRef] [PubMed]
- Ware, R.E.; Helms, R.W.; Investigators, S.W. Stroke with transfusions changing to hydroxyurea (SWiTCH). Blood 2012, 119, 3925–3932. [Google Scholar] [CrossRef] [PubMed]
- De Baun, M.R.; Gordon, M.; Mc Kinstry, R.C.; Noetzel, M.J.; White, D.; Sarnaik, S.A.; Meier, E.R.; Howard, T.H.; Majumdar, S.; Inusa, B.; et al. Controlled Trial of Transfusions for Silent Cerebral Infarcts in Sickle Cell Anemia. N. Engl. J. Med. 2014, 371, 699–710. [Google Scholar] [CrossRef] [Green Version]
- Basran, R.K.; Patterson, M.; Walker, L.; Nakamura, L.M.; Eng, B.; Chui, D.H.; Waye, J.S. Prenatal Diagnosis of Hemoglobinopathies in Ontario, Canada. Ann. N. Y. Acad. Sci. 2005, 1054, 507–510. [Google Scholar] [CrossRef]
- Hoppe, C.C. Newborn screening for non-sickling hemoglobinopathies. Hematology 2009, 2009, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Hoppe, C.C. Newborn Screening for Hemoglobin Disorders. Hemoglobin 2011, 35, 556–564. [Google Scholar] [CrossRef]
- Hoppe, C.C. Prenatal and newborn screening for hemoglobinopathies. Int. J. Lab. Hematol. 2013, 35, 297–305. [Google Scholar] [CrossRef]
- Lo, Y.D.; Chiu, R.W. Noninvasive Approaches to Prenatal Diagnosis of Hemoglobinopathies Using Fetal DNA in Maternal Plasma. Hematol. Clin. N. Am. 2010, 24, 1179–1186. [Google Scholar] [CrossRef]
- Mc Gann, P.T.; Schaefer, B.A.; Paniagua, M.; Howard, T.A.; Ware, R.E. Characteristics of a rapid, point-of-care lateral flow immunoassay for the diagnosis of sickle cell disease. Am. J. Hematol. 2016, 91, 205–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuliev, A.; Rechitsky, S.; Verlinsky, O.; Strom, C.; Verlinsky, Y. Pre-embryonic diagnosis for sickle cell disease. Mol. Cell. Endocrinol. 2001, 183, S19–S22. [Google Scholar] [CrossRef]
- Yenilmez, E.D.; Tuli, A. New Perspectives in Prenatal Diagnosis of Sickle Cell Anemia. In Sickle Cell Disease—Pain and Common Chronic Complications; InTech: Rijeka, Croatia, 2016. [Google Scholar]
- Thuret, I.; Sarles, J.; Merono, F.; Suzineau, E.; Collomb, J.; Lena-Russo, D.; Levy, N.; Bardakdjian, J.; Badens, C. Neonatal screening for sickle cell disease in France: Evaluation of the selective process. J. Clin. Pathol. 2010, 63, 548–551. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.M.; Corrons, J.-L.V. Neonatal haemoglobinopathy screening in Spain. J. Clin. Pathol. 2008, 62, 22–25. [Google Scholar] [CrossRef] [PubMed]
- Colah, R.B.; Mukherjee, M.B.; Martin, S.; Ghosh, K. Sickle cell disease in tribal populations in India. Indian. J. Med. Res. 2015, 141, 509–515. [Google Scholar] [CrossRef]
- Brandelise, S.; Pinheiro, V.; Gabetta, C.S.; Hambleton, I.; Serjeant, B. Newborn screening for sickle cell disease in Brazil: The Campinas experience. Int. J. Lab. Hematol. 2004, 26, 15–19. [Google Scholar] [CrossRef]
- Streetly, A.; Latinovic, R.; Henthorn, J. Positive screening and carrier results for the England-wide universal newborn sickle cell screening programme by ethnicity and area for 2005-07. J. Clin. Pathol. 2010, 63, 626–629. [Google Scholar] [CrossRef] [Green Version]
- Colombatti, R.; Perrotta, S.; Samperi, P.; Casale, M.; Masera, N.; Palazzi, G.; Sainati, L.; Russo, G. Organizing national responses for rare blood disorders: The Italian experience with sickle cell disease in childhood. Orphanet J. Rare Dis. 2013, 8, 169. [Google Scholar] [CrossRef] [Green Version]
- Kunz, J.B.; Awad, S.; Happich, M.; Muckenthaler, L.; Lindner, M.; Gramer, G.; Okun, J.G.; Hoffmann, G.F.; Bruckner, T.; Muckenthaler, M.U.; et al. Significant prevalence of sickle cell disease in Southwest Germany: Results from a birth cohort study indicate the necessity for newborn screening. Ann. Hematol. 2015, 95, 397–402. [Google Scholar] [CrossRef]
- Anie, K.A. Psychological complications in sickle cell disease. Br. J. Haematol. 2005, 129, 723–729. [Google Scholar] [CrossRef]
- Vinjamur, D.S.; Bauer, D.E.; Orkin, S.H. Recent progress in understanding and manipulating haemoglobin switching for the haemoglobinopathies. Br. J. Haematol. 2018, 180, 630–643. [Google Scholar] [CrossRef] [PubMed]
- Mvundura, M.; Amendah, D.; Kavanagh, P.L.; Sprinz, P.G.; Grosse, S.D. Health care utilization and expenditures for privately and publicly insured children with sickle cell disease in the United States. Pediatr. Blood Cancer 2009, 53, 642–646. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Jordan, R.; Hanlon, C. Economic Impact of Sickle Cell Hospitalization. Blood 2014, 124, 5971. [Google Scholar] [CrossRef]
- Murray, C.J.L.; Vos, T.; Lozano, R.; Naghavi, M.; Flaxman, A.D.; Michaud, C.; Ezzati, M.; Shibuya, K.; Salomon, J.A.; Abdalla, S.; et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2197–2223. [Google Scholar] [CrossRef]
- Ashley-Koch, A.; Yang, Q.; Olney, R.S. Sickle Hemoglobin (Hb S) Allele and Sickle Cell Disease: A HuGE Review. Am. J. Epidemiol. 2000, 151, 839–845. [Google Scholar] [CrossRef] [PubMed]
- Charache, S.; Terrin, M.L.; Moore, R.D.; Dover, G.J.; Barton, F.B.; Eckert, S.V.; McMahon, R.P.; Bonds, D.R.; The Investigators of the Multicenter Study of Hydroxyurea in Sickle Cell Anemia. Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. N. Engl. J. Med. 1995, 332, 1317–1322. [Google Scholar] [CrossRef]
- Steinberg, M.H.; Barton, F.; Castro, O.; Pegelow, C.H.; Ballas, S.K.; Kutlar, A.; Orringer, E.; Bellevue, R.; Olivieri, N.; Eckman, J.; et al. Effect of hydroxyurea on mortality and morbidity in adult sickle cell anemia: Risks and benefits up to 9 years of treatment. JAMA 2003, 289, 1645–1651. [Google Scholar] [CrossRef]
- King, S.B. N-hydroxyurea and acyl nitroso compounds as nitroxyl (HNO) and nitric oxide (NO) donors. Curr. Top. Med. Chem. 2005, 5, 665–673. [Google Scholar] [CrossRef]
- Herity, L.B.; Vaughan, D.M.; Rodriguez, L.R.; Lowe, D.K. Voxelotor: A Novel Treatment for Sickle Cell Disease. Ann. Pharmacother. 2021, 55, 240–245. [Google Scholar] [CrossRef]
- Vichinsky, E.; Bernaudin, F.; Forni, G.L.; Gardner, R.; Hassell, K.; Heeney, M.; Inusa, B.; Kutlar, A.; Lane, P.; Mathias, L.; et al. Long-term safety and efficacy of deferasirox (Exjade®) for up to 5 years in transfusional iron-overloaded patients with sickle cell disease. Br. J. Haematol. 2011, 154, 387–397. [Google Scholar] [CrossRef]
- Metcalf, B.; Chuang, C.; Dufu, K.; Patel, M.P.; Silva-Garcia, A.; Johnson, C.; Lu, Q.; Partridge, J.R.; Patskovska, L.; Patskovsky, Y.; et al. Discovery of GBT440, an Orally Bioavailable R-State Stabilizer of Sickle Cell Hemoglobin. ACS Med. Chem. Lett. 2017, 8, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Vichinsky, E.; Hoppe, C.C.; Ataga, K.I.; Ware, R.E.; Nduba, V.; El-Beshlawy, A.; Hassab, H.; Achebe, M.M.; Al Kindi, S.; Brown, R.C.; et al. A Phase 3 Randomized Trial of Voxelotor in Sickle Cell Disease. N. Engl. J. Med. 2019, 381, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Oksenberg, D.; Dufu, K.; Patel, M.P.; Chuang, C.; Li, Z.; Xu, Q.; Silva-Garcia, A.; Zhou, C.; Hutchaleelaha, A.; Patskovska, L.; et al. GBT 440 increases haemoglobin oxygen affinity, reduces sickling and prolongs RBC half-life in a murine model of sickle cell disease. Br. J. Haematol. 2016, 175, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Ataga, K.I.; Kutlar, A.; Kanter, J.; Liles, D.; Cancado, R.; Friedrisch, J.; Guthrie, T.H.; Knight-Madden, J.; Alvarez, O.A.; Gordeuk, V.R.; et al. Crizanlizumab for the Prevention of Pain Crises in Sickle Cell Disease. N. Engl. J. Med. 2017, 376, 429–439. [Google Scholar] [CrossRef] [PubMed]
- Machado, R.F.; Martyr, S.; Kato, G.; Barst, R.J.; Anthi, A.; Robinson, M.R.; Hunter, L.; Coles, W.; Nichols, J.; Hunter, C.; et al. Sildenafil therapy in patients with sickle cell disease and pulmonary hypertension. Br. J. Haematol. 2005, 130, 445–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massenio, P.; D’altilia, N.; Sanguedolce, F.; Carrieri, G.; Cormio, L. Daily tadalafil for the chronic phase of stuttering priapism: A case report. BMC Urol. 2018, 18, 54. [Google Scholar] [CrossRef] [Green Version]
- Niihara, Y.; Miller, S.T.; Kanter, J.; Lanzkron, S.; Smith, W.R.; Hsu, L.L.; Gordeuk, V.R.; Viswanathan, K.; Sarnaik, S.; Osunkwo, I.; et al. A Phase 3 Trial ofl-Glutamine in Sickle Cell Disease. N. Engl. J. Med. 2018, 379, 226–235. [Google Scholar] [CrossRef]
- Howard, J. Sickle cell disease: When and how to transfuse. Hematology 2016, 2016, 625–631. [Google Scholar] [CrossRef] [Green Version]
- Chou, S.T.; Evans, P.; Vege, S.; Coleman, S.L.; Friedman, D.F.; Keller, M.; Westhoff, C.M. RH genotype matching for transfusion support in sickle cell disease. Blood 2018, 132, 1198–1207. [Google Scholar] [CrossRef]
- Chou, S.T.; Jackson, T.; Vege, S.; Smith-Whitley, K.; Friedman, D.F.; Westhoff, C.M. High prevalence of erythrocyte alloimmunization in sickle cell disease despite transfusion from Rh-matched minority donors. Blood 2013, 122, 1062–1071. [Google Scholar] [CrossRef] [Green Version]
- Eaton, W.A.; Bunn, H.F. Treating sickle cell disease by targeting HbS polymerization. Blood 2017, 129, 2719–2726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Čokić, V.; Smith, R.D.; Beleslin-Cokic, B.B.; Njoroge, J.M.; Miller, J.L.; Gladwin, M.T.; Schechter, A.N. Hydroxyurea induces fetal hemoglobin by the nitric oxide–dependent activation of soluble guanylyl cyclase. J. Clin. Investig. 2003, 111, 231–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nevitt, S.J.; Jones, A.P.; Howard, J. Hydroxyurea (hydroxycarbamide) for sickle cell disease. Cochrane Database Syst. Rev. 2017, 2017, CD002202. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.C.; Ware, R.E.; MillerS, T.; Iyer, R.V.; Casella, J.F.; Minniti, C.P.; Rana, S.; Thornburg, C.D.; Rogers, Z.R.; Kalpatthi, R.V.; et al. Hydroxycarbamide in very young children with sickle-cell anaemia: A multicentre, randomised, controlled trial (BABY HUG). Lancet 2011, 377, 1663–1672. [Google Scholar] [CrossRef] [Green Version]
- Ware, R.E.; Davis, B.R.; Schultz, W.H.; Brown, R.C.; Aygun, B.; Sarnaik, S.; Odame, I.; Fuh, B.; George, A.; Owen, W.; et al. Hydroxycarbamide versus chronic transfusion for maintenance of transcranial doppler flow velocities in children with sickle cell anaemia—TCD With Transfusions Changing to Hydroxyurea (TWiTCH): A multicentre, open-label, phase 3, non-inferiority trial. Lancet 2016, 387, 661–670. [Google Scholar] [CrossRef] [Green Version]
- McArthur, J.G.; Svenstrup, N.; Chen, C.; Fricot, A.; Carvalho, C.; Nguyen, J.; Nguyen, P.; Parachikova, A.; Abdulla, F.; Vercellotti, G.M.; et al. A novel, highly potent and selective phosphodiesterase-9 inhibitor for the treatment of sickle cell disease. Haematologica 2020, 105, 623–631. [Google Scholar] [CrossRef] [Green Version]
- Demirci, S.; Uchida, N.; Tisdale, J.F. Gene therapy for sickle cell disease: An update. Cytotherapy 2018, 20, 899–910. [Google Scholar] [CrossRef]
- Hoban, M.D.; Orkin, S.H.; Bauer, D.E. Genetic treatment of a molecular disorder: Gene therapy approaches to sickle cell disease. Blood 2016, 127, 839–848. [Google Scholar] [CrossRef]
- Abraham, A.A.; Tisdale, J.F. Gene therapy for sickle cell disease: Moving from the bench to the bedside. Blood 2021, 138, 932–941. [Google Scholar] [CrossRef]
- Frangoul, H.; Altshuler, D.; Cappellini, M.D.; Chen, Y.-S.; Domm, J.; Eustace, B.K.; Foell, J.; De La Fuente, J.; Grupp, S.; Handgretinger, R.; et al. CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia. N. Engl. J. Med. 2021, 384, 252–260. [Google Scholar] [CrossRef]
- Orkin, S.H.; Bauer, D.E. Emerging Genetic Therapy for Sickle Cell Disease. Annu. Rev. Med. 2019, 70, 257–271. [Google Scholar] [CrossRef] [PubMed]
- Esrick, E.B.; Bauer, D.E. Genetic therapies for sickle cell disease. Semin. Hematol. 2018, 55, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Negre, O.; Eggimann, A.V.; Beuzard, Y.; Ribeil, J.A.; Bourget, P.; Borwornpinyo, S.; Hongeng, S.; Hacein-Bey, S.; Cavazzana, M.; Leboulch, P.; et al. Gene therapy of the β-hemoglobinopathies by lentiviral transfer of the βA (T87Q)-globin gene. Hum. Gene Therapy 2016, 27, 148–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olowoyeye, A.; Okwundu, C.I. Gene therapy for sickle cell disease. Cochrane Database Syst. Rev. 2020, 11, CD007652. [Google Scholar] [CrossRef] [PubMed]
- Masuda, T.; Wang, X.; Maeda, M.; Canver, M.C.; Sher, F.; Funnell, A.P.W.; Fisher, C.; Suciu, M.; Martyn, G.E.; Norton, L.J.; et al. Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin. Science 2016, 351, 285–289. [Google Scholar] [CrossRef] [Green Version]
- Liu, N.; Hargreaves, V.V.; Zhu, Q.; Kurland, J.V.; Hong, J.; Kim, W.; Sher, F.; Trevino, C.M.; Rogers, J.M.; Kurita, R.; et al. Direct Promoter Repression by BCL11A Controls the Fetal to Adult Hemoglobin Switch. Cell 2018, 173, 430–442.e17. [Google Scholar] [CrossRef] [Green Version]
- Verma, I.M.; Naldini, L.; Kafri, T.; Miyoshi, H.; Takahashi, M.; Blömer, U.; Somia, N.; Wang, L.; Gage, F.H. Gene Therapy: Promises, Problems and Prospects. In Genes and Resistance to Disease; Springer: Berlin, Germany, 2000; pp. 147–157. [Google Scholar]
- Goyal, S.; Tisdale, J.; Schmidt, M.; Kanter, J.; Jaroscak, J.; Whitney, D.; Bitter, H.; Gregory, P.D.; Parson, S.G.; Foos, M.; et al. Acute Myeloid Leukemia Case after Gene Therapy for Sickle Cell Disease. N. Engl. J. Med. 2022, 386, 138–147. [Google Scholar] [CrossRef]
- Leonard, A.; Tisdale, J.; Abraham, A. Curative options for sickle cell disease: Haploidentical stem cell transplantation or gene therapy? Br. J. Haematol. 2020, 189, 408–423. [Google Scholar] [CrossRef]
- Liggett, L.A.; Cato, L.D.; Weinstock, J.S.; Zhang, Y.; Nouraie, S.M.; Gladwin, M.T.; Garrett, M.E.; Ashley-Koch, A.; Telen, M.J.; Custer, B.; et al. Clonal hematopoiesis in sickle cell disease. J. Clin. Investig. 2022, 132, e156060. [Google Scholar] [CrossRef]
- Brunson, A.; Lei, A.; Rosenberg, A.; White, R.H.; Keegan, T.; Wun, T. Increased incidence of VTE in sickle cell disease patients: Risk factors, recurrence and impact on mortality. Br. J. Haematol. 2017, 178, 319–326. [Google Scholar] [CrossRef] [Green Version]
- Sparkenbaugh, E.; Pawlinski, R. Interplay between coagulation and vascular inflammation in sickle cell disease. Br. J. Haematol. 2013, 162, 3–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Telen, M.J. Beyond hydroxyurea: New and old drugs in the pipeline for sickle cell disease. Blood 2016, 127, 810–819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Telen, M.J.; Malik, P.; Vercellotti, G.M. Therapeutic strategies for sickle cell disease: Towards a multi-agent approach. Nat. Rev. Drug Discov. 2019, 18, 139–158. [Google Scholar] [CrossRef] [PubMed]
- Glaros, A.K.; Razvi, R.; Shah, N.; Zaidi, A.U. Voxelotor: Alteration of sickle cell disease pathophysiology by a first-in-class polymerization inhibitor. Ther. Adv. Hematol. 2021, 12, 20406207211001136. [Google Scholar] [CrossRef] [PubMed]
- Hutchaleelaha, A.; Patel, M.; Washington, C.; Siu, V.; Allen, E.; Oksenberg, D.; Lehrer-Graiwer, J. Pharmacokinetics and pharmacodynamics of voxelotor (GBT440) in healthy adults and patients with sickle cell disease. Br. J. Clin. Pharmacol. 2019, 85, 1290–1302. [Google Scholar] [CrossRef] [Green Version]
- Nasimuzzaman, M.; Malik, P. Role of the coagulation system in the pathogenesis of sickle cell disease. Blood Adv. 2019, 3, 3170–3180. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, M.H. Pathophysiology of sickle cell disease. Baillière’s Clin. Haematol. 1998, 11, 163–184. [Google Scholar] [CrossRef]
- Casella, J.F.; Barton, B.A.; Kanter, J.; Black, L.V.; Majumdar, S.; Inati, A.; Wali, Y.; Drachtman, R.A.; Abboud, M.R.; Kilinc, Y.; et al. Effect of Poloxamer 188 vs Placebo on Painful Vaso-Occlusive Episodes in Children and Adults with Sickle Cell Disease: A Randomized Clinical Trial. JAMA 2021, 325, 1513–1523. [Google Scholar] [CrossRef]
- Gluckman, E.; Cappelli, B.; Bernaudin, F.; Labopin, M.; Volt, F.; Carreras, J.; Simões, B.P.; Ferster, A.; Dupont, S.; de la Fuente, J.; et al. Sickle cell disease: An international survey of results of HLA-identical sibling hematopoietic stem cell transplantation. Blood 2017, 129, 1548–1556. [Google Scholar] [CrossRef] [Green Version]
- Walters, M.C.; Hardy, K.; Edwards, S.; Adamkiewicz, T.; Barkovich, J.; Bernaudin, F.; Buchanan, G.R.; Bunin, N.; Dickerhoff, R.; Giller, R.; et al. Pulmonary, Gonadal, and Central Nervous System Status after Bone Marrow Transplantation for Sickle Cell Disease. Biol. Blood Marrow Transplant. 2010, 16, 263–272. [Google Scholar] [CrossRef] [Green Version]
Genotype | Hb (g/dL) | % Hemoglobins A, A2, and F | %Hb S |
---|---|---|---|
Hb SS | ~6–9 | Hb A 0% Hb A2 < 3.5% Hb F < 10% | >90% |
Hb Sβ0 thal | ~7–9 | Hb A2 > 3.5% Hb F < 20% | >80% |
Hb Sβ+ thal | ~9–12 | Hb A 10–30% Hb A2 > 3.5% Hb F < 20% | >60% |
Hb SC | ~9–14 | Hb C~45% Hb A2 < 3.5% HbF ≤ 1.0 | 50% |
Prevention |
---|
|
Management |
|
Transfusion |
|
Pharmacotherapy |
|
Modification of patient’s genotype |
|
Gene therapy |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tebbi, C.K. Sickle Cell Disease, a Review. Hemato 2022, 3, 341-366. https://doi.org/10.3390/hemato3020024
Tebbi CK. Sickle Cell Disease, a Review. Hemato. 2022; 3(2):341-366. https://doi.org/10.3390/hemato3020024
Chicago/Turabian StyleTebbi, Cameron K. 2022. "Sickle Cell Disease, a Review" Hemato 3, no. 2: 341-366. https://doi.org/10.3390/hemato3020024
APA StyleTebbi, C. K. (2022). Sickle Cell Disease, a Review. Hemato, 3(2), 341-366. https://doi.org/10.3390/hemato3020024