Bulk-Fill Direct Restorative Materials: An In Vitro Assessment of Their Physio-Mechanical Properties
Abstract
:1. Introduction
2. Experimental Section
2.1. Flexural Strength Testing
2.2. Elastic Modulus and Hardness
2.3. Depth of Cure
2.4. Wearing Testing
2.5. Translucency
2.6. Statistics
3. Results
4. Discussion
5. Conclusions
- Bulk-fill composites were found to have significantly higher flexural strength compared to conventional composite resin, Fuji IX and EQUIA Forte.
- Fuji IX had the highest elastic modulus follow by EF no coat, CR and BF.
- Filtek bulk-fill has sufficient DC at 4 mm with both 20 s and 40 s light-curing time, but significantly improved DC at 40 s.
- CR and BF had a TP value closest to that of enamel.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chan, K.H.S.; Mai, Y.; Kim, H.; Tong, K.C.T.; Ng, D.; Hsiao, J.C.M. Review: Resin Composite Filling. Materials 2010, 3, 1228–1243. [Google Scholar] [CrossRef]
- AlShaafi, M.M. Factors affecting polymerization of resin-based composites: A literature review. Saudi Dent. J. 2017, 29, 48–58. [Google Scholar] [CrossRef]
- Yadav, K.D.; Prasad, R.S.; Chaganti, H.; Saleem, M.; Pai, A. Techniques in Direct Composite Restoration. Mod. Approaches Dent. Oral Heal. Care 2018, 3, 307–309. [Google Scholar] [CrossRef]
- Versluis, A.; Douglas, W.; Cross, M.; Sakaguchi, R. Does an Incremental Filling Technique Reduce Polymerization Shrinkage Stresses? J. Dent. Res. 1996, 75, 871–878. [Google Scholar] [CrossRef]
- Menees, T.S.; Lin, C.P.; Kojic, D.D.; Burgess, J.O.; Lawson, N.C. Depth of cure of bulk fill composites with monowave and polywave curing lights. Am. J. Dent. 2015, 28, 357–361. [Google Scholar]
- Ravi, R.; Mandava, J.; Vegesna, D.-P.; Uppalapati, L.-V.; Ghazanfaruddin, M.D.; Boddeda, M.-R. Microtensile bond strength of bulk-fill restorative composites to dentin. J. Clin. Exp. Dent. 2017, 9, e1023–e1028. [Google Scholar]
- 3M Dental Products, FiltekTM One Bulk Fill Restorative, Technical Product Profile. 2016. Available online: https://multimedia.3m.com/mws/media/1317671O/3m-filtek-one-bulk-fill-restorative-technical-product-profile.pdf (accessed on 20 August 2020).
- Mitra, S.B.; Wu, D.; Holmes, B.N. An application of nanotechnology in advanced dental materials. J. Am. Dent. Assoc. 2003, 134, 1382–1390. [Google Scholar] [CrossRef] [Green Version]
- Yazici, A.R.; Antonson, S.A.; Kutuk, Z.B.; Ergin, E. Thirty-Six-Month Clinical Comparison of Bulk Fill and Nanofill Composite Restorations. Oper. Dent. 2017, 42, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Moshaverinia, M.; Navas, A.; Jahedmanesh, N.; Shah, K.C.; Moshaverinia, A.; Ansari, S. Comparative evaluation of the physical properties of a reinforced glass ionomer dental restorative material. J. Prosthet. Dent. 2019, 122, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Ausiello, P.; Piva, A.D.; Borges, A.; Lanzotti, A.; Zamparini, F.; Epifania, E.; Tribst, J.M. Effect of Shrinking and No Shrinking Dentine and Enamel Replacing Materials in Posterior Restoration: A 3D-FEA Study. Appl. Sci. 2021, 11, 2215. [Google Scholar] [CrossRef]
- Fuhrmann, D.; Murchison, D.; Whipple, S.; Vandewalle, K. Properties of New Glass-Ionomer Restorative Systems Marketed for Stress-Bearing Areas. Oper. Dent. 2020, 45, 104–110. [Google Scholar] [CrossRef]
- Ilie, N.; Bucuta, S.; Draenert, M. Bulk-fill Resin-based Composites: An In Vitro Assessment of Their Mechanical Performance. Oper. Dent. 2013, 38, 618–625. [Google Scholar] [CrossRef]
- Leprince, J.G.; Palin, W.M.; Vanacker, J.; Sabbagh, J.; Devaux, J.; Leloup, G. Physico-mechanical characteristics of commercially available bulk-fill composites. J. Dent. 2014, 42, 993–1000. [Google Scholar] [CrossRef]
- Guimarães, T.; Gushiken, N.; Braga, R. Degree of conversion, flexural modulus and polymerization stress of “Bulk Fill” composites. Dent. Mater. 2013, 29, 43. [Google Scholar] [CrossRef]
- Yap, A.U.J.; Pandya, M.; Toh, W.S. Depth of cure of contemporary bulk-fill resin-based composites. Dent. Mater. J. 2016, 35, 503–510. [Google Scholar] [CrossRef] [Green Version]
- Oliver, W.; Pharr, G. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Chung, S.M.; Yap, A.U.J.; Koh, W.K.; Tsai, K.T.; Lim, C.T. Measurement of Poisson’s ratio of dental composite restorative materials. Biomaterials 2004, 25, 2455–2460. [Google Scholar] [CrossRef]
- Suit, S.R.; Gibbs, C.H.; Benz, S.T. Study of Gliding Tooth Contacts during Mastication. J. Periodontol. 1976, 47, 331–334. [Google Scholar] [CrossRef]
- Heintze, S.D. How to qualify and validate wear simulation devices and methods. Dent. Mater. 2006, 22, 712–734. [Google Scholar] [CrossRef]
- Lohbauer, U. Dental Glass Ionomer Cements as Permanent Filling Materials?—Properties, Limitations and Future Trends. Materials 2009, 3, 76–96. [Google Scholar] [CrossRef]
- Prosser, H.; Powis, D.; Wilson, A. Glass-ionomer Cements of Improved Flexural Strength. J. Dent. Res. 1986, 65, 146–148. [Google Scholar] [CrossRef] [PubMed]
- Yap, A.U.J.; Teoh, S.H. Comparison of flexural properties of composite restoratives using the ISO and mini-flexural tests. J. Oral Rehabilitation 2003, 30, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Junior, S.A.R.; Zanchi, C.H.; De Carvalho, R.V.; Demarco, F.F. Flexural strength and modulus of elasticity of different types of resin-based composites. Braz. Oral Res. 2007, 21, 16–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asmussen, E.; Peutzfeldt, A. Influence of UEDMA, BisGMA and TEGDMA on selected mechanical properties of experimental resin composites. Dent. Mater. 1998, 14, 51–56. [Google Scholar] [CrossRef]
- Monteiro, G.Q.D.M.; Montes, M.A.J.R. Evaluation of linear polymerization shrinkage, flexural strength and modulus of elasticity of dental composites. Mater. Res. 2010, 13, 51–55. [Google Scholar] [CrossRef] [Green Version]
- 3M Dental Products, Filtek XTE Technical Product Profile. Available online: https://multimedia.3m.com/mws/media/922726O/filtek-supreme-xte-technical-product-profile-anz.pdf (accessed on 2 February 2021).
- Czasch, P.; Ilie, N. In vitro comparison of mechanical properties and degree of cure of bulk fill composites. Clin. Oral Investig. 2012, 17, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Ilie, N.; Rencz, A.; Hickel, R. Investigations towards nano-hybrid resin-based composites. Clin. Oral Investig. 2012, 17, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Zorzin, J.; Maier, E.; Harre, S.; Fey, T.; Belli, R.; Lohbauer, U.; Petschelt, A.; Taschner, M. Bulk-fill resin composites: Polymerization properties and extended light curing. Dent. Mater. 2015, 31, 293–301. [Google Scholar] [CrossRef]
- McCabe, J.; Carrick, T. A statistical approach to the mechanical testing of dental materials. Dent. Mater. 1986, 2, 139–142. [Google Scholar] [CrossRef]
- Della Bona, A.; Anusavice, K.J.; DeHoff, P.H. Weibull analysis and flexural strength of hot-pressed core and veneered ceramic structures. Dent. Mater. 2003, 19, 662–669. [Google Scholar] [CrossRef]
- Junior, S.A.R.; Ferracane, J.L.; Della Bona, Á. Flexural strength and Weibull analysis of a microhybrid and a nanofill composite evaluated by 3- and 4-point bending tests. Dent. Mater. 2008, 24, 426–431. [Google Scholar] [CrossRef]
- Gurgan, S.; Kutuk, Z.B.; Ergin, E.; Oztas, S.S.; Cakir, F.Y. Clinical performance of a glass ionomer restorative system: A 6-year evaluation. Clin. Oral Investig. 2016, 21, 2335–2343. [Google Scholar] [CrossRef]
- Diem, V.T.K.; Tyas, M.J.; Ngo, H.C.; Phuong, L.H.; Khanh, N.D. The effect of a nano-filled resin coating on the 3-year clinical performance of a conventional high-viscosity glass-ionomer cement. Clin. Oral Investig. 2013, 18, 753–759. [Google Scholar] [CrossRef]
- Türkün, L.S.; Kanik, Ö. A Prospective Six-Year Clinical Study Evaluating Reinforced Glass Ionomer Cements with Resin Coating on Posterior Teeth: Quo Vadis? Oper. Dent. 2016, 41, 587–598. [Google Scholar] [CrossRef] [PubMed]
- Combe, E.; Shaglouf, A.-M.; Watts, D.; Wilson, N. Mechanical properties of direct core build-up materials. Dent. Mater. 1999, 15, 158–165. [Google Scholar] [CrossRef]
- Ong, J.; Yap, A.U.; Hong, J.Y.; Eweis, A.H.; Yahya, N.A. Viscoelastic Properties of Contemporary Bulk-fill Restoratives: A Dynamic-mechanical Analysis. Oper. Dent. 2018, 43, 307–314. [Google Scholar] [CrossRef]
- Moore, B.K.; Platt, J.A.; Borges, G.; Chu, T.-M.G.; Katsilieri, I. Depth of Cure of Dental Resin Composites: ISO 4049 Depth and Microhardness of Types of Materials and Shades. Oper. Dent. 2008, 33, 408–412. [Google Scholar] [CrossRef] [Green Version]
- Sideridou, I.; Tserki, V.; Papanastasiou, G. Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins. Biomaterials 2002, 23, 1819–1829. [Google Scholar] [CrossRef]
- Flury, S.; Hayoz, S.; Peutzfeldt, A.; Hüsler, J.; Lussi, A. Depth of cure of resin composites: Is the ISO 4049 method suitable for bulk fill materials? Dent. Mater. 2012, 28, 521–528. [Google Scholar] [CrossRef]
- Alrahlah, A.; Silikas, N.; Watts, D. Post-cure depth of cure of bulk fill dental resin-composites. Dent. Mater. 2014, 30, 149–154. [Google Scholar] [CrossRef]
- Alshali, R.Z.; Silikas, N.; Satterthwaite, J.D. Degree of conversion of bulk-fill compared to conventional resin-composites at two time intervals. Dent. Mater. 2013, 29, e213–e217. [Google Scholar] [CrossRef] [PubMed]
- Ogle, R.E.; Davis, E.L. Clinical wear study of three commercially available artificial tooth materials: Thirty-six month results. J. Prosthet. Dent. 1998, 79, 145–151. [Google Scholar] [CrossRef]
- Miličević, A.; Goršeta, K.; Van Duinen, R.N.; Glavina, D. Surface Roughness of Glass Ionomer Cements after Application of Different Polishing Techniques. Acta Stomatol. Croat. 2018, 52, 314–321. [Google Scholar] [CrossRef]
- Turssi, C.P.; Ferracane, J.L.; Vogel, K. Filler features and their effects on wear and degree of conversion of particulate dental resin composites. Biomaterials 2005, 26, 4932–4937. [Google Scholar] [CrossRef]
- Barkmeier, W.; Takamizawa, T.; Erickson, R.; Tsujimoto, A.; Latta, M.; Miyazaki, M. Localized and Generalized Simulated Wear of Resin Composites. Oper. Dent. 2015, 40, 322–335. [Google Scholar] [CrossRef] [Green Version]
- Lazaridou, D.; Belli, R.; Krämer, N.; Petschelt, A.; Lohbauer, U. Dental materials for primary dentition: Are they suitable for occlusal restorations? A two-body wear study. Eur. Arch. Paediatr. Dent. 2014, 16, 165–172. [Google Scholar] [CrossRef]
- Hotta, M.; Hirukawa, H. Abrasion Resistance of Restorative Glass-Ionomer Cements with a Light-cured Surface Coating. Oper. Dent. 1994, 19, 42–46. [Google Scholar]
- Arsecularatne, J.; Chung, N.; Hoffman, M. An in vitro study of the wear behaviour of dental composites. Biosurf. Biotribol. 2016, 2, 102–113. [Google Scholar] [CrossRef] [Green Version]
- Peutzfeldt, A.; García-Godoy, F.; Asmussen, E. Surface hardness and wear of glass ionomers and compomers. Am. J. Dent. 1997, 10, 15–17. [Google Scholar]
- Lee, Y.-K. Criteria for clinical translucency evaluation of direct esthetic restorative materials. Restor. Dent. Endod. 2016, 41, 159. [Google Scholar] [CrossRef] [Green Version]
- Villarroel, M.; Fahl, N.; De Sousa, A.M.; De Oliveira, O.B. Direct Esthetic Restorations Based on Translucency and Opacity of Composite Resins. J. Esthet. Restor. Dent. 2011, 23, 73–87. [Google Scholar] [CrossRef]
- Pekkan, G. Radiopacity of Dental Materials: An Overview. Avicenna J. Dent. Res. 2016, 8. [Google Scholar] [CrossRef] [Green Version]
Material (Manufecturer) | Composition | Powder to Liquid Ratio (g) | Particle Size (µm) |
---|---|---|---|
Fuji IX (GC, Tokyo, Japan) | Powder:
| 0.35:0.10 | 10 |
EQUIA Forte Fil (GC) | Powder:
| 0.40:0.13 | 10 |
EQUIA Coat (GC) |
| ||
Resin matrix (Photoinitiator) | Filler | Filler fraction (wt%/vol%) | |
Filtek One bulk fill restorative (3M ESPE, Seedfeld, Germany) | UDMA, 1,12-DDMA, AFM, AUDMA (CQ) | 76.5/58.4 | 20 nm silica, 4–11 nm zirconia, ytterbium trifluoride filler consisting of agglomerate 100 nm particles |
Filtek Z350 composite (3M ESPE) | Bis-GMA, UDMA, TEGDMA, PEGDMA, Bis-EMA (CQ) | 78.5/63.3 | 20 nm silica, 4–11 nm zirconia, 0.6–10 microns cluster |
Material | Mean Hardness Value (Gpa ± S.D) |
---|---|
EF | 0.47 ± 0.02 |
EF no coat | 0.38 ± 0.10 |
Fuji IX | 0.79 ± 0.13 |
BF | 0.85 ± 0.03 |
CR | 1.05 ± 0.05 |
Material | Thickness (mm) | Curing Time (s) | Bottom Hardness (Gpa ± S.D) | Top Hardness (Gpa ± S.D) | Hardness Ratio (HVBottom-Top Ratio)% |
---|---|---|---|---|---|
BF | 4 | 40 | 0.80 ± 0.05 | 0.83 ± 0.08 | 96.8 |
4 | 20 | 0.72 ± 0.02 | 0.85 ± 0.03 | 85.0 | |
3 | 20 | 0.80 ± 0.04 | 0.90 ± 0.04 | 88.3 | |
2 | 20 | 0.81 ± 0.05 | 0.89 ± 0.03 | 90.3 | |
CR | 2 | 20 | 0.84 ± 0.07 | 1.05 ± 0.05 | 80.0 |
Material | Month(s) | Mass Loss (g) | Coefficient of Friction (±S.D) | Wear Loss (mm ± S.D) |
---|---|---|---|---|
Fuji IX | 3 | 0.01 | 0.002 ± 0.001 | 0.045 ± 0.022 |
6 | 0.01 | 0.011 ± 0.003 | 0.066 ± 0.019 | |
12 | 0.02 | 0.003 ± 0.003 | 0.167 ± 0.023 | |
EF | 3 | 0.01 | 0.010 ± 0.009 | 0.130 ± 0.014 |
6 | 0.01 | 0.024 ± 0.001 | 0.100 ± 0.013 | |
12 | 0.01 | 0.011 ± 0.001 | 0.015 ± 0.009 | |
BF | 3 | 0 | 0.003 ± 0.002 | 0.020 ± 0.006 |
6 | 0 | 0.015 ± 0.002 | 0.001 ± 0.007 | |
12 | 0 | 0.014 ± 0.002 | 0.047 ± 0.006 | |
CR | 3 | 0 | 0.010 ± 0.009 | 0.013 ± 0.020 |
6 | 0 | 0.013 ± 0.002 | 0.080 ± 0.009 | |
12 | 0 | 0.018 ± 0.002 | 0.002 ± 0.007 |
Material | Translucency Parameter |
---|---|
EF | 5.30 |
Fuji IX | 3.22 |
BF | 15.73 |
CR | 16.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeo, H.W.; Loo, M.Y.; Alkhabaz, M.; Li, K.C.; Choi, J.J.E.; Barazanchi, A. Bulk-Fill Direct Restorative Materials: An In Vitro Assessment of Their Physio-Mechanical Properties. Oral 2021, 1, 75-87. https://doi.org/10.3390/oral1020008
Yeo HW, Loo MY, Alkhabaz M, Li KC, Choi JJE, Barazanchi A. Bulk-Fill Direct Restorative Materials: An In Vitro Assessment of Their Physio-Mechanical Properties. Oral. 2021; 1(2):75-87. https://doi.org/10.3390/oral1020008
Chicago/Turabian StyleYeo, Hui Woon, May Yeh Loo, Mariam Alkhabaz, Kai Chun Li, Joanne Jung Eun Choi, and Abdullah Barazanchi. 2021. "Bulk-Fill Direct Restorative Materials: An In Vitro Assessment of Their Physio-Mechanical Properties" Oral 1, no. 2: 75-87. https://doi.org/10.3390/oral1020008
APA StyleYeo, H. W., Loo, M. Y., Alkhabaz, M., Li, K. C., Choi, J. J. E., & Barazanchi, A. (2021). Bulk-Fill Direct Restorative Materials: An In Vitro Assessment of Their Physio-Mechanical Properties. Oral, 1(2), 75-87. https://doi.org/10.3390/oral1020008