Future Prospects and Challenges in Additive Manufacturing for Complete Dentures: A Narrative Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search Strategy
2.2. Study Inclusion and Exclusion Criteria
2.2.1. Inclusion Criteria
- (1)
- In vitro studies regarding materials for removable dentures;
- (2)
- Clinical studies regarding digital technology and the properties of denture base materials;
- (3)
- Studies that utilize the advantages and disadvantages of denture base materials;
- (4)
- Studies that use mechanical and chemical testing devices for investigation of the qualities of removable dentures.
2.2.2. Exclusion Criteria
- (1)
- Non-English articles.
- (2)
- Studies that investigate removable partial dentures;
- (3)
- Studies on CAD/CAM technology, used for other materials;
- (4)
- Studies on animals;
- (5)
- Full articles unavailable;
- (6)
- Case reports, conference papers, book chapters, patents, and letters to the editor, which are not related to dentistry.
3. Workflow of Digital Removable Dentures
4. Clinical Implications of Digital Removable Dentures
5. Challenges and Drawbacks of Digital Complete Dentures
5.1. Integration into Dental Laboratories and Clinics
5.2. Current Limitations of the Digital Approaches
5.2.1. Material Limitations
5.2.2. Fabrication Challenges
5.2.3. Developments and Challenges between Milled and Printed Dentures
- Milled Dentures
- 3D Printed Dentures
- Challenges and Considerations
6. Results and Discussion
7. Conclusions
- It enables the incorporation of both well-established conventional methods in clinical practice and recent progress in CAD/CAM techniques in dental laboratories;
- Evolving digital technology holds promising prospects for the dental industry, potentially reaching unprecedented levels;
- However, pursuing this pathway requires careful consideration and thorough preparation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AM | Additive manufacturing |
CAD/CAM | Computer-aided design/computer-aided manufacturing |
CD | Complete dentures |
DR | Digital relining |
ISO | International Organization of Standardization |
PMMA | Polymethyl methacrylate |
RPD | Removable partial denture |
STL | Stereolithography, standard triangle language, standard tessellation language |
3D | Three-dimensional |
References
- Gharechahi, J.N.; Asadzadeh, F.; Shahabian, M. Gharechahi Dimensional Changes of Acrylic Resin Denture Bases: Conventional Versus Injection-Molding Technique. J. Dent. Tehran Univ. Med. Sci. 2014, 11, 4. [Google Scholar]
- Goodacre, B.C.; Goodacre, C.J.; Baba, N.Z.; Kattadiyil, M.T. Comparison of denture base adaptation between CAD-CAM and conventional fabrication techniques. J. Prosthet. Dent. 2016, 116, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Hristov, I.L. Contemporary Analysis of Soft Rebasing Materials and Ways to Deal with Their Shortcomings. Ph.D. Thesis, Faculty of Dental Medicine, Plovdiv, Bulgaria, 2017. [Google Scholar]
- Keenan, J.P.; Radford, R.K.; Clark, M. Dimensional change in complete dentures fabricated by injection molding and microwave processing. J. Prosthet. Dent. 2013, 89, 1. [Google Scholar] [CrossRef] [PubMed]
- Dimitrova, M.; Chuchulska, B.; Zlatev, S.; Kazakova, R. Colour Stability of 3D-Printed and Prefabricated Denture Teeth after Immersion in Different Colouring Agents—An In Vitro Study. Polymers 2022, 14, 3125. [Google Scholar] [CrossRef] [PubMed]
- Alla, R.K. Dental Materials Science; Jaypee Brothers Medical Publishing: New Delhi, India, 2013. [Google Scholar]
- Figuerôa, R.M.S.; Conterno, B.; Arrais, C.A.G.; Sugio, C.Y.C.; Urban, V.M.; Neppelenbroek, K.H. Porosity, water sorption and solubility of denture base acrylic resins polymerized conventionally or in microwave. J. Appl. Oral Sci. 2018, 26, e20170383. [Google Scholar] [CrossRef] [PubMed]
- Artopoulos, A.; Andrzej, C.; Juszczyk, J.; Rodriguez, R.K.F.; Clark, D.R. Radford. Three-dimensional processing deformation of three denture base materials. J. Prosthet. Dent. 2011, 110, 6. [Google Scholar]
- Anadioti, E.; Musharbash, L.; Blatz, G.; Papavasiliou, P.; Kamposiora, M. 3D printed complete removable dental. BMC Oral Health. 2020, 343, 20. [Google Scholar]
- Anusavice, K.J.C.; Shen, R.; Rawls, H. Phillip’s Science of Dental Materials; Elsevier: Amsterdam, The Netherlands, 2013; Volume 12, pp. 99–103. [Google Scholar]
- Dimitrova, M.; Vlahova, A.; Kazakova, R.; Chuchulska, B.; Urumova, M. Water Sorption and Water Solubility of 3D Printed and Conventional PMMA Denture Base Polymers. J. IMAB 2023, 29, 4939–4942. [Google Scholar] [CrossRef]
- Al-Qarni, F.D.; Goodacre, C.J.; Kattadiyili, M.T.; Baba, N.Z.; Paravina, R.D. Stainability of acrylic resin materials used in CAD-CAM and conventional complete dentures. J Prosthet. Dent. 2020, 10, 880–887. [Google Scholar] [CrossRef]
- Jain, S.; Sayed, M.; Ahmed, W.M.; Halawi, A.H.A.; Najmi, N.M.A.; Aggarwal, A.; Bhandi, S.; Patil, S. An in-vitro study to evaluate the effect of denture cleansing agents on color stability of denture bases fabricated using CAD/CAM milling, 3D-printing and conventional techniques. Coatings 2021, 11, 962. [Google Scholar] [CrossRef]
- Einarsdottir, R.E.; Geminiani, K.; Chochlidakis, K. Dimensional stability of double-processed complete denture bases fabricated with compression molding, injection molding and CAD/CAM substraction filling. J. Prosthet. Dent. 2019, 124, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Zhang, Y.; Ramanujan, D.; Ramani, K.; Chen, Y.; Williams, C.B.; Zavattieri, P.D. The status, challenges, and future of additive manufacturing in engineering CAD/CAM. Comput. Aided Des. 2015, 14, 65–89. [Google Scholar] [CrossRef]
- Dimitrova, M.; Corsalini, M.; Kazakova, R.; Vlahova, A.; Barile, G.; Dell’Olio, F.; Tomova, Z.; Kazakov, S.; Capodiferro, S. Color Stability Determination of CAD/CAM Milled and 3D Printed Acrylic Resins for Denture Bases: A Narrative Review. J. Compos. Sci. 2022, 6, 201. [Google Scholar] [CrossRef]
- Revilla-León, M.; Meyers, M.J.; Zandinejad, A.; Özcan, M. A review on chemical composition, mechanical properties, and manufacturing work flow of additively manufactured current polymers for interim dental restorations. J. Esthet. Restor. Dent. 2019, 31, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Arslan, M.; Murat, S.; Alp, G.; Zaimoglu, A. Evaluation of flexural strength and surface properties of prepolymerized CAD/CAM PMMA-based polymers used for digital 3D complete dentures. Int. J. Comput. Dent. 2018, 21, 31–40. [Google Scholar]
- Hada, T.; Suzuki, T.; Minakuchi, S.; Takahashi, H. Reduction in maxillary complete denture deformation using framework material made by computer-aided design and manufacturing systems. J. Mech. Behav. Biomed. Mater. 2020, 103, 103514. [Google Scholar] [CrossRef]
- Dimitrova, M.; Corsalini, M.; Kazakova, R.; Vlahova, A.; Chuchulska, B.; Barile, G.; Capodiferro, S.; Kazakov, S. Comparison between Conventional PMMA and 3D Printed Resins for Denture Bases: A Narrative Review. J. Compos. Sci. 2022, 6, 87. [Google Scholar] [CrossRef]
- Choi, J.J.E.; Uy, C.E.; Plaksina, P.; Ramani, R.S.; Ganjigatti, R.; Waddell, J.N. Bond strength of denture teeth to heat-cured, CAD/CAM and 3D printed denture acrylics. J. Prosthodont. 2020, 29, 415–421. [Google Scholar] [CrossRef]
- Berli, C.; Thieringer, F.; Sharma, N.; Müller, J.; Dedem, P.; Fischer, J.; Rohr, N. Comparing the mechanical properties of pressed, milled, and 3D-printed resins for occlusal devices. J. Prosthet. Dent. 2020, 124, 780–786. [Google Scholar] [CrossRef]
- Arai, T.; Ueda, T.; Sugiyama, T.; Sakurai, K. Inhibiting microbial adhesion to denture base acrylic resin by titanium dioxide coating. J Oral Rehabil. 2009, 36, 902–908. [Google Scholar] [CrossRef]
- Tsuji, M.; Ueda, T.; Sawaki, K.; Kawaguchi, M.; Sakurai, K. Biocompatibility of a titanium dioxide-coating method for denture base acrylic resin. Gerodontology 2016, 33, 539–544. [Google Scholar] [CrossRef]
- Kattadiyil, M.T.; Goodacre, C.J.; Baba, N.Z. CAD/CAM complete dentures: A review of two commercial fabrication systems. J. Calif. Dent. Assoc. 2013, 41, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Kanazawa, M.; Inokoshi, M.; Minakuchi, S.; Ohbayashi, N. Trial of a CAD/CAM system for fabricating complete dentures. Dent. Mater. J. 2011, 30, 93–96. [Google Scholar] [CrossRef] [PubMed]
- Katase, H.; Kanazawa, M.; Inokoshi, M.; Minakuchi, S. Face simulation system for complete dentures by applying rapid prototyping. J. Prosthet. Dent. 2013, 109, 353–360. [Google Scholar] [CrossRef]
- Zhang, Y.D.; Jiang, J.G.; Liang, T.; Hu, W.P. Kinematics modeling and experimentation of the multi-manipulator tooth-arrangement robot for full denture manufacturing. J. Med. Syst. 2011, 35, 1421–1429. [Google Scholar] [CrossRef] [PubMed]
- Goodacre, C.J.; Garbacea, A.; Naylor, W.P.; Daher, T.; Marchack, C.B.; Lowry, J. CAD/CAM fabricated complete dentures: Concepts and clinical methods of obtaining required morphological data. J. Prosthet. Dent. 2012, 107, 34–46. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, M.; Cantin, Y.; Mehl, A.; Gjengedal, H.; Müller, F.; Schimmel, M. CAD/CAM milled removable complete dentures: An in vitro evaluation of trueness. Clin. Oral Investig. 2017, 21, 2007–2019. [Google Scholar] [CrossRef]
- Punj, A. Digital Dentistry for Complete Dentures a Review of Digital Dentistry Versus Conventional Approaches to Complete Dentures. Decis. Dent. 2020, 26, 12–20. [Google Scholar]
- Bilgin, M.S.; Erdem, A.; Aglarci, O.S.; Dilber, E. Fabricating Complete Dentures with CAD/CAM and RP Technologies. J. Prosthodont. 2015, 24, 576–579. [Google Scholar] [CrossRef]
- Janeczek, M.; Szymczyk, P.; Dobrzynski, M.; Parulska, O.; Szymonowicz, M.; Kuropka, P.; Rybak, Z.; Zywicka, B.; Ziolkowski, G.; Marycz, K.; et al. Influence of surface modifications of a nanostructured implant on osseointegration capacity- preliminary in vivo study. RSC Adv. 2018, 8, 15533–15546. [Google Scholar] [CrossRef]
- Liang, X.; Liao, W.; Cai, H.; Jiang, S.; Chen, S. 3D-printed artificial teeth: Accuracy and application in root canal therapy. J. Biomed. Nanotechnol. 2018, 14, 1477–1485. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Buchanan, F.; Mitchell, C.; Dunne, N. Printability of calcium phosphate: Calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 38, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Gibson, I.; Rosen, D.W.; Stucker, B. Additive Manufacturing Technologies, 2nd ed.; Springer: Boston, MA, USA, 2015; pp. 63–106. [Google Scholar]
- Takeda, Y.; Lau, J.; Nouh, H.; Hirayama, H. A 3D printing replication technique for fabricating digital dentures. J. Prosthet. Dent. 2019, 124, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Berman, B. 3-D printing: The new industrial revolution. Bus. Horiz. 2012, 55, 155–162. [Google Scholar] [CrossRef]
- Unkovskiy, A.; Bui, P.H.; Schille, C.; Geis-Gerstorfer, J.; Huettig, F.; Spintzyk, S. Objects build orientation, positioning, and curing influence dimensional accuracy and flexural properties of stereolithographically printed resin. Dent. Mater. 2018, 34, e324–e333. [Google Scholar] [CrossRef] [PubMed]
- Tahayeri, A.; Morgan, M.; Fugolin, A.P.; Bompolaki, D.; Athirasala, A.; Pfeifer, C.S.; Ferracane, J.L.; Bertassoni, L.E. 3D printed versus conventionally cured provisional crown and bridge dental materials. Dent. Mater. 2018, 34, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, T.; Hotta, Y.; Kunii, J.; Kuriyama, S.; Tamaki, Y. A review of dental CAD/CAM: Current status and future perspectives from 20 years of experience. Dent. Mater. J. 2009, 28, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Bidra, A.S.; Taylor, T.D.; Agar, J.R. Computer-aided technology for fabricating complete dentures: Systematic review of historical background, current status, and future perspectives. J. Prosthet. Dent. 2013, 109, 361–366. [Google Scholar] [CrossRef]
- Kawahata, N.; Ono, H.; Nishi, Y.; Hamano, T.; Nagaoka, E. Trial of duplication procedure for complete dentures by CAD/CAM. J. Oral Rehabil. 1997, 24, 540–548. [Google Scholar] [CrossRef]
- Dimitrova, M.; Vlahova, A.; Kalachev, Y.; Zlatev, S.; Kazakova, R.; Capodiferro, S. Recent Advances in 3D Printing of Polymers for Application in Prosthodontics. Polymers 2023, 15, 4525. [Google Scholar] [CrossRef]
- Dentsply Sirona Inc., Charlotte. Dentsply Sirona Support: Introducing Lucitone Digital Dentures. 2019. Available online: https://lp.dentsplysirona.com/en-us/lucitone-digital-print.html (accessed on 7 January 2020).
- Formlabs Inc., Somerville. Formlabs Support: 3D Printed Digital Dentures. 2019. Available online: https://formlabs.com/uk/dental/digital-dentures/ (accessed on 7 January 2020).
- Fullerton, J.N.; Frodsham, G.C.M.; Day, R.M. 3D printing for the many, not the few. Nat. Biotechnol. 2014, 32, 1086–1087. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, N.; Osman, R.B.; Wismeijer, D. Factors influencing the dimensional accuracy of 3D-printed full-coverage dental restorations using stereolithography technology. Int. J. Prosthodont. 2016, 29, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Osman, R.B.; Alharbi, N.; Wismeijer, D. Build Angle: Does it influence the accuracy of 3D-printed dental restorations using digital light-processing technology? Int. J. Prosthodont. 2017, 30, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Ide, Y.; Nayar, S.; Logan, H.; Gallagher, B.; Wolfaardt, J. The effect of the angle of acuteness of additive manufactured models and the direction of printing on the dimensional fidelity: Clinical implications. Odontology 2017, 105, 108–115. [Google Scholar] [CrossRef] [PubMed]
- ISO 5725-1:1998; Accuracy (Trueness and Precision) of Measurement Methods and Results–Part 1: General Principles and Definitions. International Organization of Standardization: Geneva, Switzerland, 1998. Available online: https://www.iso.org/obp/ui/#iso:std:iso:5725:-1:ed-1:v1:en (accessed on 9 January 2020).
- Arnold, C.; Monsees, D.; Hey, J.; Schweyen, R. Surface quality of 3D-printed models as a function of various printing parameters. Materials 2019, 12, 1970. [Google Scholar] [CrossRef] [PubMed]
- Formlabs Inc., Somerville. Formlabs Support: What Does Resolution Mean in 3D Printing? Pt. 2. 2016. Available online: https://formlabs.com/blog/horizontal-resolution-meaning-3d-printing/ (accessed on 26 November 2019).
- Jaiswal, P.; Patel, J.; Rai, R. Build orientation optimization for additive manufacturing of functionally graded material objects. Int. J. Adv. Manuf. Technol. 2018, 96, 223–235. [Google Scholar] [CrossRef]
- Pandey, P.M.; Reddy, N.V.; Dhande, S.G. Slicing procedures in layered manufacturing: A review. Rapid Prototyp. J. 2003, 9, 274–288. [Google Scholar] [CrossRef]
- Cheng, W.; Fuh, J.Y.H.; Nee, A.Y.C.; Wong, Y.S.; Loh, H.T.; Miyazawa, T. Multi-objective optimization of part-building orientation in stereolithography. Rapid Prototyp. J. 1995, 1, 12–23. [Google Scholar] [CrossRef]
- Choi, J.W.; Ahn, J.J.; Son, K.; Huh, J.B. Three-dimensional evaluation on accuracy of conventional and milled gypsum models and 3D printed photopolymer models. Materials 2019, 12, 3499. [Google Scholar] [CrossRef]
- Alexander, P.; Allen, S.; Dutta, D. Part orientation and build cost determination in layered manufacturing. Comput. Aided Des. 1998, 30, 343–356. [Google Scholar] [CrossRef]
- Matos, M.A.; Rocha, A.M.A.C.; Pereira, A.I. Improving additive manufacturing performance by build orientation optimization. Int. J. Adv. Manuf. Technol. 2020, 107, 1993–2005. [Google Scholar] [CrossRef]
- Dolenc, A.; Mäkelä, I. Slicing procedures for layered manufacturing techniques. Comput. Aided Des. 1994, 26, 119–126. [Google Scholar] [CrossRef]
- Oh, K.C.; Lee, B.; Park, Y.B.; Moon, H.S. Accuracy of three digitization methods for the dental arch with various tooth preparation designs: An in vitro study. J. Prosthodont. 2019, 28, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Congalton, R.G. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, 3rd ed.; CRC: Boca Raton, FL, USA, 2008; pp. 49–61. [Google Scholar]
- Stierman, B.; Afful, J.; Carroll, M.D.; Chen, T.C.; Davy, O.; Fink, S.; Fryar, C.D.; Gu, Q.; Hales, C.M.; Hughes, J.P.; et al. National Health and Nutrition Examination Survey 2017–March 2020 Prepandemic Data Files-Development of Files and Prevalence Estimates for Selected Health Outcomes. National Health Statistics Reports. 2021. Available online: https://stacks.cdc.gov/view/cdc/106273 (accessed on 13 February 2023).
- Zitzmann, N.U.; Scherrer, S.S.; Weiger, R.; Lang, N.P.; Walter, C. Preferences of dental care providers in maintaining compromised teeth in relation to their professional status: Implants instead of periodontally involved maxillary molars? Clin. Oral Implants Res. 2011, 22, 143–150. [Google Scholar] [CrossRef]
- Driscoll, C.F.; Freilich, M.A.; Guckes, A.D.; Knoernschild, K.L.; Mcgarry, T.J.; Goldstein, G.; Goodacre, C.; Guckes, A.; Mor, S.; Rosenstiel, S.; et al. The Glossary of Prosthodontic Terms. J. Prosthet. Dent. 2017, 117, C1-e105. [Google Scholar]
No. | Article | Year of Publication | Reasons for Inclusion |
---|---|---|---|
1. | Goodacre, B.J.; Goodacre, C.J.; Baba, N.Z.; Kattadiyil, M.T. Comparison of denture base adaptation between CAD-CAM and conventional fabrication techniques. J. Prosthet. Dent. 2016, 116, 249–256. [2] | 2016 | CAD/CAM technology used for complete dentures |
2. | Artopoulos, A.; Andrzej, C.; Juszczyk, J.; Rodriguez, R. K.F.; Clark, D.R. Radford. Three-dimensional processing deformation of three denture base materials. J. Prosthet. Dent. 2011, Vol. 110, 6. [8] | 2015 | CAD/CAM technology used for complete dentures |
3. | Anadioti, E.; Musharbash, L.; Blatz, G.; Papavasiliou, P.; Kamposiora. M. 3D printed complete removable denture. BMC Oral Health. 2020, Vol. 343, 20. [9] | 2020 | 3D-printing technology used for complete removable dentures |
4. | Kattadiyil, M.T.; Goodacre, C.J.; Baba, N.Z. CAD/CAM complete dentures: A review of two commercial fabrication systems. J. Calif. Dent. Assoc. 2013, 41, 407–416. [25] | 2013 | CAD/CAM technology used for complete removable dentures |
5. | Kanazawa, M.; Inokoshi, M.; Minakuchi, S.; Ohbayashi, N. Trial of a CAD/CAM system for fabricating complete dentures. Dent. Mater. J. 2011, 30, 93–96. [26] | 2011 | CAD/CAM technology used for complete removable dentures |
6. | Katase, H.; Kanazawa, M.; Inokoshi, M.; Minakuchi, S. Face simulation system for complete dentures by applying rapid prototyping. J. Prosthet. Dent. 2013, 109, 353–360. [27] | 2013 | CAD/CAM technology used for complete dentures |
7. | Zhang, Y.D.; Jiang, J.G.; Liang, T.; Hu, W.P. Kinematics modeling and experimentation of the multi-manipulator tooth-arrangement robot for full denture manufacturing. J. Med. Syst. 2011, 35, 1421–1429. [28] | 2011 | CAD/CAM technology used for complete dentures |
8. | Goodacre, C.J.; Garbacea, A.; Naylor, W.P.; Daher, T.; Marchack, C.B.; Lowry, J. CAD/CAM fabricated complete dentures: Concepts and clinical methods of obtaining required morphological data. J. Prosthet. Dent. 2012, 107, 34–46. [29] | 2012 | CAD/CAM technology used for complete removable dentures |
9. | Srinivasan, M.; Cantin, Y.; Mehl, A.; Gjengedal, H.; Müller, F.; Schimmel, M. CAD/CAM milled removable complete dentures: An in vitro evaluation of trueness. Clin. Oral Investig. 2017, 21, 2007–2019. [30] | 2017 | CAD/CAM technology used for complete dentures |
10. | Punj, A. Digital Dentistry for Complete Dentures a Review of Digital Dentistry Versus Conventional Approaches to Complete Dentures. Decis. Dent. 2020, 12–20. [31] | 2020 | 3D printing of complete dentures |
11. | Bilgin, M.S.; Erdem, A.; Aglarci, O.S.; Dilber, E. Fabricating Complete Dentures with CAD/CAM and RP Technologies. J. Prosthodont. 2015, 24, 576–579. [32] | 2015 | CAD/CAM technology used for complete dentures |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimitrova, M.; Vlahova, A.; Kalachev, Y.; Kazakova, R.; Capodiferro, S. Future Prospects and Challenges in Additive Manufacturing for Complete Dentures: A Narrative Review. Oral 2024, 4, 23-35. https://doi.org/10.3390/oral4010003
Dimitrova M, Vlahova A, Kalachev Y, Kazakova R, Capodiferro S. Future Prospects and Challenges in Additive Manufacturing for Complete Dentures: A Narrative Review. Oral. 2024; 4(1):23-35. https://doi.org/10.3390/oral4010003
Chicago/Turabian StyleDimitrova, Mariya, Angelina Vlahova, Yavor Kalachev, Rada Kazakova, and Saverio Capodiferro. 2024. "Future Prospects and Challenges in Additive Manufacturing for Complete Dentures: A Narrative Review" Oral 4, no. 1: 23-35. https://doi.org/10.3390/oral4010003
APA StyleDimitrova, M., Vlahova, A., Kalachev, Y., Kazakova, R., & Capodiferro, S. (2024). Future Prospects and Challenges in Additive Manufacturing for Complete Dentures: A Narrative Review. Oral, 4(1), 23-35. https://doi.org/10.3390/oral4010003