Digital Model in Orthodontics: Is It Really Necessary for Every Treatment Procedure? A Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
3. Diagnosis
4. Orthodontic Treatment
4.1. Treatment Procedures
4.1.1. Direct—Indirect Bonding
4.1.2. Designing and Manufacturing of Devices
4.1.3. Orthodontic Treatment Using Custom-Made Brackets
4.2. Treatment of Impacted Canines
4.3. Cleft Lip and Palate Treatment
4.4. Mini-Implant Placement
4.5. Orthognathic Surgery
4.6. Clear Aligner Design and Printing
5. Retention and Outcome Evaluation
5.1. Retainer Fabrication Using Digital Technology
5.2. Outcome Evaluation
6. Discussion
6.1. Drawbacks and Limitations Concerning the Digital Model in Orthodontics
6.2. Necessity of a Partial 3D Model
6.2.1. Impacted Canines
6.2.2. Aligners
6.2.3. Mini Implants
6.2.4. Cleft Lip and Plate (Initial Stages)
6.3. Necessity of a Full Digital Model
Orthognathic Surgery Cases (Upper and Lower Jaw) and Cleft Lip and Palate Patients (Later Stages)
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Conejo, J.; Dayo, A.F.; Syed, A.Z.; Mupparapu, M. The Digital Clone: Intraoral Scanning, Face Scans and Cone Beam Computed Tomography Integration for Diagnosis and Treatment Planning. Dent. Clin. N. Am. 2021, 65, 529–553. [Google Scholar] [CrossRef] [PubMed]
- Campobasso, A.; Battista, G.; Lo Muzio, E.; Lo Muzio, L. The Virtual Patient in Daily Orthodontics: Matching Intraoral and Facial Scans without Cone Beam Computed Tomography. Appl. Sci. 2022, 12, 9870. [Google Scholar] [CrossRef]
- Palomo, J.M.; Yang, C.-Y.; Hans, M.G. Clinical Application of Three-Dimensional Craniofacial Imaging in Orthodontics. J. Med. Sci. 2005, 25, 269–278. [Google Scholar]
- Carvalho, P.E.G.; Ortega, A.D.O.; Maeda, F.A.; da Silva, L.H.; Carvalho, V.G.G.; Torres, F.C. Digital Scanning in Modern Orthodontics. Curr. Oral. Health Rep. 2019, 6, 269–276. [Google Scholar] [CrossRef]
- Elnagar, M.H.; Aronovich, S.; Kusnoto, B. Digital Workflow for Combined Orthodontics and Orthognathic Surgery. Oral Maxillofac. Surg. Clin. N. Am. 2020, 32, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Almukhtar, A.; Ju, X.; Khambay, B.; McDonald, J.; Ayoub, A. Comparison of the Accuracy of Voxel Based Registration and Surface Based Registration for 3D Assessment of Surgical Change Following Orthognathic Surgery. PLoS ONE 2014, 9, e93402. [Google Scholar] [CrossRef] [PubMed]
- Rangel, F.A.; Maal, T.J.J.; de Koning, M.J.J.; Bronkhorst, E.M.; Bergé, S.J.; Kuijpers-Jagtman, A.M. Integration of Digital Dental Casts in Cone Beam Computed Tomography Scans—A Clinical Validation Study. Clin. Oral Investig. 2018, 22, 1215–1222. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.M.; Ho, C.T.; Lo, L.J. Automatic Superimposition of Palatal Fiducial Markers for Accurate Integration of Digital Dental Model and Cone Beam Computed Tomography. J. Oral Maxillofac. Surg. 2015, 73, 1616.e1–1616.e10. [Google Scholar] [CrossRef] [PubMed]
- Nahm, K.Y.; Kim, Y.; Choi, Y.S.; Lee, J.; Kim, S.H.; Nelson, G. Accurate Registration of Cone-Beam Computed Tomography Scans to 3-Dimensional Facial Photographs. Am. J. Orthod. Dentofac. Orthop. 2014, 145, 256–264. [Google Scholar] [CrossRef]
- Li, M.; Xu, X.; Punithakumar, K.; Le, L.H.; Kaipatur, N.; Shi, B. Automated Integration of Facial and Intra-Oral Images of Anterior Teeth. Comput. Biol. Med. 2020, 122, 103794. [Google Scholar] [CrossRef]
- Taneva, E.; Kusnoto, B.; Evans, C.A.; Taneva, E.; Kusnoto, B.; Evans, C.A. 3D Scanning, Imaging, and Printing in Orthodontics. Issues Contemp. Orthod. 2015, 148, 862–867. [Google Scholar] [CrossRef]
- Bechtold, T.E.; Göz, T.G.; Schaupp, E.; Koos, B.; Godt, A.; Reinert, S.; Berneburg, M. Integration of a Maxillary Model into Facial Surface Stereophotogrammetry. J. Orofac. Orthop. 2012, 73, 126–137. [Google Scholar] [CrossRef] [PubMed]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Francisco, I.; Ribeiro, M.P.; Marques, F.; Travassos, R.; Nunes, C.; Pereira, F.; Caramelo, F.; Paula, A.B.; Vale, F. Application of Three-Dimensional Digital Technology in Orthodontics: The State of the Art. Biomimetics 2022, 7, 23. [Google Scholar] [CrossRef] [PubMed]
- Machado, G.L. CBCT Imaging—A Boon to Orthodontics. Saudi Dent. J. 2015, 27, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Damstra, J.; Fourie, Z.; Ren, Y. Evaluation and Comparison of Postero-Anterior Cephalograms and Cone-Beam Computed Tomography Images for the Detection of Mandibular Asymmetry. Eur. J. Orthod. 2013, 35, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Baan, F.; de Waard, O.; Bruggink, R.; Xi, T.; Ongkosuwito, E.M.; Maal, T.J.J. Virtual Setup in Orthodontics: Planning and Evaluation. Clin. Oral Investig. 2020, 24, 2385–2393. [Google Scholar] [CrossRef] [PubMed]
- Fawaz, P.; Sayegh, P.E.; Vannet, B. Vande. What Is the Current State of Artificial Intelligence Applications in Dentistry and Orthodontics? J. Stomatol. Oral Maxillofac. Surg. 2023, 124, 101524. [Google Scholar] [CrossRef]
- Mahmood, T.M.A.; Noori, A.J.; Aziz, Z.H.; Rauf, A.M.; Kareem, F.A. Scan Aided Dental Arch Width Prediction via Internationally Recognized Formulas and Indices in a Sample of Kurdish Population/Iraq. Diagnostics 2023, 13, 1900. [Google Scholar] [CrossRef]
- El-Timamy, A.M.; El-Sharaby, F.A.; Eid, F.H.; Mostafa, Y.A. Three-Dimensional Imaging for Indirect-Direct Bonding. Am. J. Orthod. Dentofac. Orthop. 2016, 149, 928–931. [Google Scholar] [CrossRef]
- Kwon, S.Y.; Kim, Y.; Ahn, H.W.; Kim, K.B.; Chung, K.R.; Kim, S.H. Computer-Aided Designing and Manufacturing of Lingual Fixed Orthodontic Appliance Using 2D/3D Registration Software and Rapid Prototyping. Int. J. Dent. 2014, 2014, 164164. [Google Scholar] [CrossRef]
- Graf, S.; Cornelis, M.A.; Hauber Gameiro, G.; Cattaneo, P.M. Computer-Aided Design and Manufacture of Hyrax Devices: Can We Really Go Digital? Am. J. Orthod. Dentofac. Orthop. 2017, 152, 870–874. [Google Scholar] [CrossRef] [PubMed]
- Vasoglou, G.; Lyros, I.; Patatou, A.; Vasoglou, M. Orthodontic Treatment of Palatally Impacted Maxillary Canines with the Use of a Digitally Designed and 3D-Printed Metal Device. Dent. J. 2023, 11, 102. [Google Scholar] [CrossRef]
- Panayi, N.C. In-House Three-Dimensional Designing and Printing Customized Brackets. J. World Fed. Orthod. 2022, 11, 190–196. [Google Scholar] [CrossRef]
- Barone, S.; Paoli, A.; Razionale, A.V. Creation of 3D Multi-Body Orthodontic Models by Using Independent Imaging Sensors. Sensors 2013, 13, 2033–2050. [Google Scholar] [CrossRef] [PubMed]
- Dalessandri, D.; Tonni, I.; Laffranchi, L.; Migliorati, M.; Isola, G.; Bonetti, S.; Visconti, L.; Paganelli, C. Evaluation of a Digital Protocol for Pre-Surgical Orthopedic Treatment of Cleft Lip and Palate in Newborn Patients: A Pilot Study. Dent. J. 2019, 7, 111. [Google Scholar] [CrossRef]
- Ahmed, M.K.; Ahsanuddin, S.; Retrouvey, J.M.; Koka, K.S.; Qureshi, H.; Bui, A.H.; Taub, P.J. Fabrication of Nasoalveolar Molding Devices for the Treatment of Cleft Lip and Palate, Using Stereolithography Additive Manufacturing Processes and Computer-Aided Design Manipulation Software. J. Craniofac. Surg. 2019, 30, 2604–2608. [Google Scholar] [CrossRef]
- Seo, H.J.; Denadai, R.; Pai, B.C.J.; Lo, L.J. Digital Occlusion Setup Is Quantitatively Comparable with the Conventional Dental Model Approach: Characteristics and Guidelines for Orthognathic Surgery in Patients with Unilateral Cleft Lip and Palate. Ann. Plast. Surg. 2020, 85, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Choi, Y.S.; Hwang, E.H.; Chung, K.R.; Kook, Y.A.; Nelson, G. Surgical Positioning of Orthodontic Mini-Implants with Guides Fabricated on Models Replicated with Cone-Beam Computed Tomography. Am. J. Orthod. Dentofac. Orthop. 2007, 131 (Suppl. S4), S82–S89. [Google Scholar] [CrossRef]
- Yu, J.J.; Kim, G.T.; Choi, Y.S.; Hwang, E.H.; Paek, J.; Kim, S.H.; Huang, J.C. Accuracy of a Cone Beam Computed Tomography–Guided Surgical Stent for Orthodontic Mini-Implant Placement. Angle Orthod. 2012, 82, 275–283. [Google Scholar] [CrossRef]
- Liu, H.; Liu, D.X.; Wang, G.; Wang, C.L.; Zhao, Z. Accuracy of Surgical Positioning of Orthodontic Miniscrews with a Computer-Aided Design and Manufacturing Template. Am. J. Orthod. Dentofac. Orthop. 2010, 137, 728.e1–728.e10. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.; Haruyama, N.; Suzuki, S.; Yamada, D.; Obayashi, N.; Kurabayashi, T.; Moriyama, K. Accuracy of Orthodontic Miniscrew Implantation Guided by Stereolithographic Surgical Stent Based on Cone-Beam CT-Derived 3D Images. Angle Orthod. 2012, 82, 284–293. [Google Scholar] [CrossRef] [PubMed]
- Bae, M.J.; Kim, J.Y.; Park, J.T.; Cha, J.Y.; Kim, H.J.; Yu, H.S.; Hwang, C.J. Accuracy of Miniscrew Surgical Guides Assessed from Cone-Beam Computed Tomography and Digital Models. Am. J. Orthod. Dentofac. Orthop. 2013, 143, 893–901. [Google Scholar] [CrossRef] [PubMed]
- Vasoglou, G.; Stefanidaki, I.; Apostolopoulos, K.; Fotakidou, E.; Vasoglou, M. Accuracy of Mini-Implant Placement Using a Computer-Aided Designed Surgical Guide, with Information of Intraoral Scan and the Use of a Cone-Beam CT. Dent. J. 2022, 10, 104. [Google Scholar] [CrossRef]
- Wilmes, B.; Tarraf, N.E.; de Gabriele, R.; Dallatana, G.; Drescher, D. Procedure Using CAD/CAM-Manufactured Insertion Guides for Purely Mini-Implant-Borne Rapid Maxillary Expanders. J. Orofac. Orthop. 2022, 83, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Weismann, C.; Heise, K.; Aretxabaleta, M.; Cetindis, M.; Koos, B.; Schulz, M.C. Mini-Implant Insertion Using a Guide Manufactured with Computer-Aided Design and Computer-Aided Manufacturing in an Adolescent Patient Suffering from Tooth Eruption Disturbance. Bioengineering 2024, 11, 91. [Google Scholar] [CrossRef] [PubMed]
- Proffit, W.; White, R. Surgical-Orthodontic Treatment; Mosby: St. Louis, MO, USA, 2008. [Google Scholar]
- Sigouin, A.J. A Novel Method to Integrate Intra-Oral Scan Models with 3D Facial Images. Doctoral Dissertation, University of British Columbia, Vancouver, BC, Canada, 2023. [Google Scholar] [CrossRef]
- Muthuswamy Pandian, S.; Gandedkar, N.H.; Palani, S.K.; Kim, Y.J.; Adel, S.M. An Integrated 3D-Driven Protocol for Surgery First Orthognathic Approach (SFOA) Using Virtual Surgical Planning (VSP). Semin. Orthod. 2022, 28, 320–333. [Google Scholar] [CrossRef]
- Rasteau, S.; Sigaux, N.; Louvrier, A.; Bouletreau, P. Three-Dimensional Acquisition Technologies for Facial Soft Tissues—Applications and Prospects in Orthognathic Surgery. J. Stomatol. Oral Maxillofac. Surg. 2020, 121, 721–728. [Google Scholar] [CrossRef]
- Nilsson, J.; Richards, R.G.; Thor, A.; Kamer, L. Virtual Bite Registration Using Intraoral Digital Scanning, CT and CBCT: In Vitro Evaluation of a New Method and Its Implication for Orthognathic Surgery. J. Cranio-Maxillofac. Surg. 2016, 44, 1194–1200. [Google Scholar] [CrossRef]
- Hanafy, M.; Akoush, Y.; Abou-ElFetouh, A.; Mounir, R.M. Precision of Orthognathic Digital Plan Transfer Using Patient-Specific Cutting Guides and Osteosynthesis versus Mixed Analogue-Digitally Planned Surgery: A Randomized Controlled Clinical Trial. Int. J. Oral Maxillofac. Surg. 2020, 49, 62–68. [Google Scholar] [CrossRef]
- Chen, C.M.; Lai, S.; Lee, H.E.; Chen, K.K.; Hsu, K.J. Soft-Tissue Profile Changes after Orthognathic Surgery of Mandibular Prognathism. Kaohsiung J. Med. Sci. 2012, 28, 216–219. [Google Scholar] [CrossRef] [PubMed]
- Van den Bempt, M.; Liebregts, J.; Maal, T.; Bergé, S.; Xi, T. Toward a Higher Accuracy in Orthognathic Surgery by Using Intraoperative Computer Navigation, 3D Surgical Guides, and/or Customized Osteosynthesis Plates: A Systematic Review. J. Cranio-Maxillofac. Surg. 2018, 46, 2108–2119. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.T.; Lai, H.C.; Lin, H.H.; Denadai, R.; Lo, L.J. Outcome of Full Digital Workflow for Orthognathic Surgery Planning in the Treatment of Asymmetric Skeletal Class III Deformity. J. Formos. Med. Assoc. 2021, 120, 2100–2112. [Google Scholar] [CrossRef] [PubMed]
- Ebker, T.; Korn, P.; Heiland, M.; Bumann, A. Comprehensive Virtual Orthognathic Planning Concept in Surgery-First Patients. Br. J. Oral Maxillofac. Surg. 2022, 60, 1092–1096. [Google Scholar] [CrossRef] [PubMed]
- Arveda, N.; Colonna, A.; Palone, M.; Lombardo, L. Aligner Hybrid Orthodontic Approach to Treat Severe Transverse Divergence in an Adolescent Girl: A Case Report. Int. Orthod. 2022, 20, 100686. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Wu, T.-H.; Deguchi, T.; Ni, A.; Lu, W.-E.; Minhas, S.; Murphy, S.; Ko, C.-C. Assessment of Malalignment Factors Related to the Invisalign Treatment Time Aided by Automated Imaging Processes. Angle Orthod. 2022, 93, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Narongdej, P.; Hassanpour, M.; Alterman, N.; Rawlins-Buchanan, F.; Barjasteh, E. Advancements in Clear Aligner Fabrication: A Comprehensive Review of Direct-3D Printing Technologies. Polymers 2024, 16, 371. [Google Scholar] [CrossRef]
- Panayi, N.C. Directly Printed Aligner: Aligning with the Future. Turk. J. Orthod. 2023, 36, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Tartaglia, G.M.; Mapelli, A.; Maspero, C.; Santaniello, T.; Serafin, M.; Farronato, M.; Caprioglio, A. Direct 3D Printing of Clear Orthodontic Aligners: Current State and Future Possibilities. Materials 2021, 14, 1799. [Google Scholar] [CrossRef] [PubMed]
- Nasef, A.A.; El-Beialy, A.R.; Mostafa, Y.A. Virtual Techniques for Designing and Fabricating a Retainer. Am. J. Orthod. Dentofac. Orthop. 2014, 146, 394–398. [Google Scholar] [CrossRef]
- Wolf, M.; Schumacher, P.; Jäger, F.; Wego, J.; Fritz, U.; Korbmacher-Steiner, H.; Jäger, A.; Schauseil, M. Novel Lingual Retainer Created Using CAD/CAM Technology: Evaluation of Its Positioning Accuracy. J. Orofac. Orthop. 2015, 76, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Sifakakis, I.; Iijima, M.; Brantley, W. Wires Used in Fixed Retainers. In Debonding and Fixed Retention in Orthodontics: An Evidence-Based Clinical Guide; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2023; pp. 227–247. [Google Scholar] [CrossRef]
- Zupan, J.; Ihan Hren, N.; Verdenik, M. An Evaluation of Three-Dimensional Facial Changes after Surgically Assisted Rapid Maxillary Expansion (SARME): An Observational Study. BMC Oral Health 2022, 22, 155. [Google Scholar] [CrossRef] [PubMed]
- Xi, T.; Laskowska, M.; van de Voort, N.; Ghaeminia, H.; Pawlak, W.; Bergé, S.; Maal, T. The Effects of Surgically Assisted Rapid Maxillary Expansion (SARME) on the Dental Show and Chin Projection. J. Cranio-Maxillofac. Surg. 2017, 45, 1835–1841. [Google Scholar] [CrossRef] [PubMed]
- Maal, T.J.J.; De Koning, M.J.J.; Plooij, J.M.; Verhamme, L.M.; Rangel, F.A.; Bergé, S.J.; Borstlap, W.A. One Year Postoperative Hard and Soft Tissue Volumetric Changes after a BSSO Mandibular Advancement. Int. J. Oral Maxillofac. Surg. 2012, 41, 1137–1145. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.K.; Chub, E.H.; Leea, D.Y.; Yangc, I.H.; Baekd, S.H. Three-Dimensional Evaluation of Soft Tissue Change Gradients after Mandibular Setback Surgery in Skeletal Class III Malocclusion. Angle Orthod. 2010, 80, 896–903. [Google Scholar] [CrossRef] [PubMed]
- Legal, S.; Moralis, A.; Waiss, W.; Zeman, F.; Winkler, C.; Müller, S.; Reichert, T.E.; Proff, P.; Meier, J.; Klingelhöffer, C.; et al. Accuracy in Orthognathic Surgery─comparison of Preoperative Plan and Postoperative Outcome Using Computer-Assisted Two-Dimensional Cephalometry by the Onyx Ceph® System. J. Cranio-Maxillofac. Surg. 2018, 46, 1793–1799. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Shen, G.; Wu, Y.; Jiang, L.; Yang, Z.; Liu, J.; Mao, L.; Fang, B. Three-Dimensional Analysis of Soft Tissue Changes in Full-Face View after Surgical Correction of Skeletal Class III Malocclusion. J. Craniofac. Surg. 2013, 24, 725–730. [Google Scholar] [CrossRef] [PubMed]
- Alwafi, A.A.; Hannam, A.G.; Yen, E.H.; Zou, B. A New Method Assessing Predicted and Achieved Mandibular Tooth Movement in Adults Treated with Clear Aligners Using CBCT and Individual Crown Superimposition. Sci. Rep. 2023, 13, 4084. [Google Scholar] [CrossRef] [PubMed]
- Eliades, T.; Panayi, N.; Papageorgiou, S.N. From Biomimetics to Smart Materials and 3D Technology: Applications in Orthodontic Bonding, Debonding, and Appliance Design or Fabrication. Jpn. Dent. Sci. Rev. 2023, 59, 403–411. [Google Scholar] [CrossRef]
- Panayi, N.C. In-Office Customized Brackets: Aligning with the Future. Turk. J. Orthod. 2023, 36, 143–148. [Google Scholar] [CrossRef]
- Zarean, P.; Zarean, P.; Thieringer, F.M.; Mueller, A.A.; Kressmann, S.; Erismann, M.; Sharma, N.; Benitez, B.K. A Point-of-Care Digital Workflow for 3D Printed Passive Presurgical Orthopedic Plates in Cleft Care. Children 2022, 9, 1261. [Google Scholar] [CrossRef] [PubMed]
- Naudi, K.B.; Benramadan, R.; Brocklebank, L.; Ju, X.; Khambay, B.; Ayoub, A. The Virtual Human Face: Superimposing the Simultaneously Captured 3D Photorealistic Skin Surface of the Face on the Untextured Skin Image of the CBCT Scan. Int. J. Oral Maxillofac. Surg. 2012, 42, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Nogueira-Reis, F.; Morgan, N.; Suryani, I.R.; Tabchoury, C.P.M.; Jacobs, R. Full Virtual Patient Generated by Artificial Intelligence-Driven Integrated Segmentation of Craniomaxillofacial Structures from CBCT Images. J. Dent. 2024, 141, 104829. [Google Scholar] [CrossRef] [PubMed]
- Beretta, M.; Canova, F.F.; Zaffarano, L.; Gianolio, A. Face Scan for Ceph 3D: A Green Way for Diagnosis in Children. Eur. J. Paediatr. Dent. 2022, 23, 201–203. [Google Scholar] [CrossRef] [PubMed]
- Thurzo, A.; Strunga, M.; Havlínová, R.; Reháková, K.; Urban, R.; Surovková, J.; Kurilová, V. Smartphone-Based Facial Scanning as a Viable Tool for Facially Driven Orthodontics? Sensors 2022, 22, 7752. [Google Scholar] [CrossRef] [PubMed]
- Wriedt, S.; Jaklin, J.; Al-Nawas, B.; Wehrbein, H. Impacted Upper Canines: Examination and Treatment Proposal Based on 3D versus 2D Diagnosis. J. Orofac. Orthop. 2012, 73, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Alqerban, A.; Hedesiu, M.; Baciut, M.; Nackaerts, O.; Jacobs, R.; Fieuws, S.; Consortium, S.; Willems, G. Pre-Surgical Treatment Planning of Maxillary Canine Impactions Using Panoramic vs Cone Beam CT Imaging. Dentomaxillofac. Radiol. 2013, 42, 20130157. [Google Scholar] [CrossRef] [PubMed]
- Walker, L.; Enciso, R.; Mah, J. Three-Dimensional Localization of Maxillary Canines with Cone-Beam Computed Tomography. Am. J. Orthod. Dentofac. Orthop. 2005, 128, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Alqerban, A.; Jacobs, R.; Fieuws, S.; Willems, G. Comparison of Two Cone Beam Computed Tomographic Systems versus Panoramic Imaging for Localization of Impacted Maxillary Canines and Detection of Root Resorption. Eur. J. Orthod. 2011, 33, 93–102. [Google Scholar] [CrossRef]
- Becker, A.; Chaushu, S.; Casap-Caspi, N. Cone-Beam Computed Tomography and the Orthosurgical Management of Impacted Teeth. J. Am. Dent. Assoc. 2010, 141 (Suppl. S3), 14S–18S. [Google Scholar] [CrossRef]
- Keener, D.J.; de Oliveira Ruellas, A.C.; Aliaga-Del Castillo, A.; Arriola-Guillén, L.E.; Bianchi, J.; Oh, H.; Gurgel, M.L.; Benavides, E.; Soki, F.; Rodríguez-Cárdenas, Y.A.; et al. Three-Dimensional Decision Support System for Treatment of Canine Impaction. Am. J. Orthod. Dentofac. Orthop. 2023, 164, 491–504. [Google Scholar] [CrossRef] [PubMed]
- Tomášik, J.; Zsoldos, M.; Oravcová, Ľ.; Lifková, M.; Pavleová, G.; Strunga, M.; Thurzo, A. AI and Face-Driven Orthodontics: A Scoping Review of Digital Advances in Diagnosis and Treatment Planning. AI 2024, 5, 158–176. [Google Scholar] [CrossRef]
- Hallac, R.R.; Feng, J.; Kane, A.A.; Seaward, J.R. Dynamic Facial Asymmetry in Patients with Repaired Cleft Lip Using 4D Imaging (Video Stereophotogrammetry). J. Craniomaxillofac. Surg. 2017, 45, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Xue, Z.; Wu, L.; Qiu, T.; Li, Z.; Wang, X.; Liu, X. Three-Dimensional Dynamic Analysis of the Facial Movement Symmetry of Skeletal Class III Patients With Facial Asymmetry. J. Oral Maxillofac. Surg. 2019, 78, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Rongo, R.; Nissen, L.; Leroy, C.; Michelotti, A.; Cattaneo, P.M.; Cornelis, M.A. Three-Dimensional Soft Tissue Changes in Orthodontic Extraction and Non-Extraction Patients: A Prospective Study. Orthod. Craniofac. Res. 2021, 24 (Suppl. S2), 181–192. [Google Scholar] [CrossRef]
- Perrotti, G.; Reda, R.; Rossi, O.; D’apolito, I.; Testori, T.; Testarelli, L. A Radiation Free Alternative to CBCT Volumetric Rendering for Soft Tissue Evaluation. Braz. Dent. Sci. 2023, 26, 1–7. [Google Scholar] [CrossRef]
- Gong, X.; Dang, R.; Xu, T.; Yu, Q.; Zheng, J. Full Digital Workflow of Nasoalveolar Molding Treatment in Infants With Cleft Lip and Palate. J. Craniofac. Surg. 2020, 31, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Kau, C.H. Creation of the Virtual Patient for the Study of Facial Morphology. Facial Plast. Surg. Clin. N. Am. 2011, 19, 615–622. [Google Scholar] [CrossRef] [PubMed]
- Swennen, G.R.J.; Gaboury, M. 3D Virtual Treatment Planning of Orthognathic Surgery, 1st ed.; Swennen, G.R.J., Ed.; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Shujaat, S.; Khambay, B.S.; Ju, X.; Devine, J.C.; McMahon, J.D.; Wales, C.; Ayoub, A.F. The Clinical Application of Three-Dimensional Motion Capture (4D): A Novel Approach to Quantify the Dynamics of Facial Animations. Int. J. Oral Maxillofac. Surg. 2014, 43, 907–916. [Google Scholar] [CrossRef]
- Xia, J.J.; Gateno, J.; Teichgraeber, J.F.; Yuan, P.; Li, J.; Chen, K.C.; Jajoo, A.; Nicol, M.; Alfi, D.M. Algorithm for Planning a Double-Jaw Orthognathic Surgery Using a Computer-Aided Surgical Simulation (CASS) Protocol. Part 2: Three-Dimensional Cephalometry. Int. J. Oral Maxillofac. Surg. 2015, 44, 1441–1450. [Google Scholar] [CrossRef]
- Stokbro, K.; Aagaard, E.; Torkov, P.; Bell, R.B.; Thygesen, T. Virtual Planning in Orthognathic Surgery. Int. J. Oral Maxillofac. Surg. 2014, 43, 957–965. [Google Scholar] [CrossRef] [PubMed]
- Abdelkarim, A. Cone-Beam Computed Tomography in Orthodontics. Dent. J. 2019, 7, 89. [Google Scholar] [CrossRef] [PubMed]
- Cataldi, P.; Liu, M.; Bissett, M.; Kinloch, I.A.; Cataldi, P.; Liu, M.; Bissett, M.; Kinloch, I.A. A Review on Printing of Responsive Smart and 4D Structures Using 2D Materials. Adv. Mater. Technol. 2022, 7, 2200025. [Google Scholar] [CrossRef]
- Saritha, D.; Boyina, D. A Concise Review on 4D Printing Technology. Mater. Today Proc. 2021, 46, 692–695. [Google Scholar] [CrossRef]
Device | Printing Material | Printing Technology |
---|---|---|
trays for indirect bonding | Biocompatible liquid photopolymers (resins) | Vat photopolymerisation technology (Stereolithography/SLA) |
hyrax device/ metal device for impacted canine traction/ transpalatal arch/ Fixed retainers | Biocompatible dental alloys (stainless steel, titanium, and mainly cobalt–chromium [CoCr] alloys) [62] | Selective Laser Melting (SLM)and Selective laser sintering (SLS)/metal additive manufacturing technology for all parts except the screw in the hyrax device |
ceramic brackets | Hybrid ceramic permanent crown resins or zirconia slurry | Laser stereolithography (laser-SLA) or Direct Light Processing (DLP) (varies according to the used printer) [63] |
intra-oral passive molding plate in cleft palate cases | Biocompatible liquid photopolymers (acrylates) | Stereolithography/SLA [64] |
templates for mini-implant placement/orthognathic surgery splints | Biocompatible liquid photopolymers (resins) | Stereolithography/SLA |
models for aligners (vacuum forming) | Liquid photopolymers (resins) | Stereolithography/SLA |
direct printed aligners | Aligner resin called TC-85DAC (Graphy, Seoul, Republic of Korea) | Stereolithography/SLA [50] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pouliezou, I.; Gravia, A.P.; Vasoglou, M. Digital Model in Orthodontics: Is It Really Necessary for Every Treatment Procedure? A Scoping Review. Oral 2024, 4, 243-262. https://doi.org/10.3390/oral4020020
Pouliezou I, Gravia AP, Vasoglou M. Digital Model in Orthodontics: Is It Really Necessary for Every Treatment Procedure? A Scoping Review. Oral. 2024; 4(2):243-262. https://doi.org/10.3390/oral4020020
Chicago/Turabian StylePouliezou, Ioanna, Anastasia Panagiota Gravia, and Michail Vasoglou. 2024. "Digital Model in Orthodontics: Is It Really Necessary for Every Treatment Procedure? A Scoping Review" Oral 4, no. 2: 243-262. https://doi.org/10.3390/oral4020020
APA StylePouliezou, I., Gravia, A. P., & Vasoglou, M. (2024). Digital Model in Orthodontics: Is It Really Necessary for Every Treatment Procedure? A Scoping Review. Oral, 4(2), 243-262. https://doi.org/10.3390/oral4020020