Saliva-Based Biomarkers in Oral Squamous Cell Carcinoma Using OMICS Technologies: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Search Strategy
2.2. Eligibility Criteria, Studies Selection, and Data Collection Process
- (a)
- Published English-language studies focusing on the potential role of saliva for biomarker identification;
- (b)
- Studies conducted on human saliva;
- (c)
- Studies that exploited omics technologies.
2.3. Risk of Bias Assessment
- (a)
- “low risk” in case all responses to the statements were “yes”;
- (b)
- “high risk” in case of the presence of a negative response (no);
- (c)
- “can’t say” for the presence of two or more “no” responses;
- (d)
- “moderate” was given in the case of the presence of one response of “can’t say” to one of the statements [26].
3. Results
3.1. Study Selection
3.2. Study Features
3.3. Risk of Bias Assessment
3.4. Synthesis of Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ferlay, J.; Ervik, M.; Lam, F.; Laversanne, M.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global Cancer Observatory: Cancer Today; International Agency for Research on Cancer: Lyon, France, 2020; Available online: https://gco.iarc.who.int/today (accessed on 1 April 2024).
- Dong, R.; Sun, J.; Liu, J.; Su, F.; Mu, X. Abnormal expression and related regulatory mechanism of long noncoding RNA in head and neck squamous cell carcinoma. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2023, 136, 459–465. [Google Scholar] [CrossRef]
- Sasahira, T.; Kurihara-Shimomura, M.; Shimojjukoku, Y.; Shima, K.; Kirita, T. Searching for New Molecular Targets for Oral Squamous Cell Carcinoma with a View to Clinical Implementation of Precision Medicine. J. Pers. Med. 2022, 12, 413. [Google Scholar] [CrossRef]
- Gallo, C.; Ciavarella, D.; Santarelli, A.; Ranieri, E.; Colella, G.; Muzio, L.L.; Russo, L.L. Potential Salivary Proteomic Markers of Oral Squamous Cell Carcinoma. Cancer Genom. Proteom. 2016, 13, 55–61. [Google Scholar]
- Khurshid, Z.; Zafar, M.S.; Khan, R.S.; Najeeb, S.; Slowey, P.D.; Rehman, I.U. Role of Salivary Biomarkers in Oral Cancer Detection. Adv. Clin. Chem. 2018, 86, 23–70. [Google Scholar] [CrossRef]
- Nonaka, T.; Wong, D.T.W. Saliva diagnostics: Salivaomics, saliva exosomics, and saliva liquid biopsy. J. Am. Dent. Assoc. 2023, 154, 696–704. [Google Scholar] [CrossRef]
- Garg, A.; Urs, A.B.; Koner, B.C.; Augustine, J.; Guru, S.A. Evaluation of Diagnostic Significance of Salivary miRNA-184 and miRNA-21 in Oral Squamous Cell Carcinoma and Oral Potentially Malignant Disorders. Head Neck Pathol. 2023, 17, 961–968. [Google Scholar] [CrossRef]
- Kaczor-Urbanowicz, K.E.; Martin Carreras-Presas, C.; Aro, K.; Tu, M.; Garcia-Godoy, F.; Wong, D.T. Saliva diagnostics—Current views and directions. Exp. Biol. Med. 2017, 242, 459–472. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; St John, M.A.; Zhou, X.; Kim, Y.; Sinha, U.; Jordan, R.C.; Eisele, D.; Abemayor, E.; Elashoff, D.; Park, N.H.; et al. Salivary transcriptome diagnostics for oral cancer detection. Clin. Cancer Res. 2004, 10, 8442–8450. [Google Scholar] [CrossRef]
- Michael, A.; Bajracharya, S.D.; Yuen, P.S.; Zhou, H.; Star, R.A.; Illei, G.G.; Alevizos, I. Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis. 2010, 16, 34–38. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Y.X.; Yang, X.; Jiang, L.; Zhou, Z.J.; Zhu, Y.Q. Progress risk assessment of oral premalignant lesions with saliva miRNA analysis. BMC Cancer 2013, 13, 129. [Google Scholar] [CrossRef]
- Zahran, F.; Ghalwash, D.; Shaker, O.; Al-Johani, K.; Scully, C. Salivary microRNAs in oral cancer. Oral Dis. 2015, 21, 739–747. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Kolokythas, A.; Schwartz, J.L.; Epstein, J.B.; Adami, G.R. microRNA from brush biopsy to characterize oral squamous cell carcinoma epithelium. Cancer Med. 2017, 6, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Gai, C.; Camussi, F.; Broccoletti, R.; Gambino, A.; Cabras, M.; Molinaro, L.; Carossa, S.; Camussi, G.; Arduino, P.G. Salivary extracellular vesicle-associated miRNAs as potential biomarkers in oral squamous cell carcinoma. BMC Cancer. 2018, 18, 439. [Google Scholar] [CrossRef]
- Wilkins, M.R.; Sanchez, J.C.; Gooley, A.A.; Appel, R.D.; Humphery-Smith, I.; Hochstrasser, D.F.; Williams, K.L. Progress with proteome projects: Why all proteins expressed by a genome should be identified and how to do it. Biotechnol. Genet. Eng. Rev. 1996, 13, 19–50. [Google Scholar] [CrossRef] [PubMed]
- Verrills, N.M. Clinical proteomics: Present and future prospects. Clin. Biochem. Rev. 2006, 27, 99–116. [Google Scholar] [PubMed]
- Xiao, G.G.; Recker, R.R.; Deng, H.W. Recent advances in proteomics and cancer biomarker discovery. Clin. Med. Oncol. 2008, 2, 63–72. [Google Scholar] [CrossRef]
- Hanash, S. Disease proteomics. Nature 2003, 422, 226–232. [Google Scholar] [CrossRef]
- Graves, P.R.; Haystead, T.A. Molecular biologist’s guide to proteomics. Microbiol. Mol. Biol. Rev. 2002, 66, 39–63. [Google Scholar] [CrossRef] [PubMed]
- Jain, K.K. Recent advances in clinical oncoproteomics. J. BUON 2007, 12 (Suppl. S1), S31–S38. [Google Scholar]
- Al-Amrani, S.; Al-Jabri, Z.; Al-Zaabi, A.; Alshekaili, J.; Al-Khabori, M. Proteomics: Concepts and applications in human medicine. World J. Biol. Chem. 2021, 12, 57–69. [Google Scholar] [CrossRef]
- Arroyo, E.; Donís, S.P.; Petronacci, C.M.C.; Alves, M.G.O.; Mendía, X.M.; Fernandes, D.; Pouso, A.I.L.; Bufalino, A.; Bravo López, S.; Sayáns, M.P. Usefulness of protein-based salivary markers in the diagnosis of oral potentially malignant disorders: A systematic review and meta-analysis. Cancer Biomark. 2021, 32, 411–424. [Google Scholar] [CrossRef] [PubMed]
- Muller, S.; Tilakaratne, W.M. Head and neck tumours: Chpt 6: Oral cavity and mobile tongue. In Oral Potentially Malignant Disorders; Odell, E.W., Ed.; WHO: Lyon, France, 2022. [Google Scholar]
- Rich, A.M.; Hussaini, H.M.; Nizar, M.A.M.; Gavidi, R.O.; Tauati-Williams, E.; Yakin, M.; Seo, B. Diagnosis of oral potentially malignant disorders: Overview and experience in Oceania. Front. Oral Health 2023, 4, 1122497. [Google Scholar] [CrossRef] [PubMed]
- Palaia, G.; Pippi, R.; Rocchetti, F.; Caputo, M.; Macali, F.; Mohsen, A.; Del Vecchio, A.; Tenore, G.; Romeo, U. Liquid biopsy in the assessment of microRNAs in oral squamous cell carcinoma: A systematic review. J. Clin. Exp. Dent. 2022, 14, e875–e884. [Google Scholar] [CrossRef]
- SIGN. SIGN Methodology Checklist of Systematic Reviews and Meta-Analyses; SIGN: Edinburgh, UK, 2012. [Google Scholar]
- Chu, H.W.; Chang, K.P.; Hsu, C.W.; Chang, I.Y.; Liu, H.P.; Chen, Y.T.; Wu, C.C. Identification of Salivary Biomarkers for Oral Cancer Detection with Untargeted and Targeted Quantitative Proteomics Approaches. Mol. Cell. Proteom. 2019, 18, 1796–1806. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.W.; Yu, J.S.; Peng, P.H.; Liu, S.C.; Chang, Y.S.; Chang, K.P.; Wu, C.C. Secretome profiling of primary cells reveals that THBS2 is a salivary biomarker of oral cavity squamous cell carcinoma. J. Proteome Res. 2014, 13, 4796–4807. [Google Scholar] [CrossRef] [PubMed]
- Russo, L.L. Salivary Proteomic Signatures of Oral Squamous Cell Carcinoma. Eur. J. Inflamm. 2012, 10, 61–70. [Google Scholar] [CrossRef]
- Noorlag, R.; van der Groep, P.; Leusink, F.K.; van Hooff, S.R.; Frank, M.H.; Willems, S.M.; van Es, R.J. Nodal metastasis and survival in oral cancer: Association with protein expression of SLPI, not with LCN2, TACSTD2, or THBS2. Head Neck 2015, 37, 1130–1136. [Google Scholar] [CrossRef] [PubMed]
- Hong, K.O.; Oh, K.Y.; Shin, W.J.; Yoon, H.J.; Lee, J.I.; Hong, S.D. Tumor budding is associated with poor prognosis of oral squamous cell carcinoma and histologically represents an epithelial-mesenchymal transition process. Hum. Pathol. 2018, 80, 123–129. [Google Scholar] [CrossRef]
- Wu, J.Y.; Yi, C.; Chung, H.R.; Wang, D.J.; Chang, W.C.; Lee, S.Y.; Lin, C.T.; Yang, Y.C.; Yang, W.C. Potential biomarkers in saliva for oral squamous cell carcinoma. Oral Oncol. 2010, 46, 226–231. [Google Scholar] [CrossRef]
Author | Year | Type of Study | Cases of OSCC or OPMD | Control | Salivary Biomarkers | Type | Detection Method | Principal Conclusion |
---|---|---|---|---|---|---|---|---|
Lo Russo et al. | 2012 | Proteomics | 45 | 30 | 8041 and 6239 m/z | Proteins | SELDI-TOF-MS and Protein Chip | The peptide with 8041 Da mass was 22-fold more expressed in OSCC, thus being a suitable potential biomarker |
Hsu et al. | 2014 | Proteomics | 96 | 47 | DKK1c, VEGFCc, dATP1A1, LCP1, NT5Ed, LOXL2, LUM, RAP1Bc, COL5A1, UFD1Ld, CFB, DNAJB11d, HLA-C, GOLM1, THBS2, FN1c, C1S, SFRS3, F3c | Proteins | SDS-PAGE LC−MS/MS | THBS2, UFD1L, and DNAJB11 were found to be elevated in OSCC tissues |
Gallo et al. | 2016 | Proteomics | 45 | 30 | 74 peaks | Proteins | SELDI-TOF/MS | 74 mass peaks whose intensities were significantly different between controls and OSCC |
Chu et al. | 2019 | Genomics | 233 | 115 | A1BG, AFM, ANXA2, APOA1, APOA2, APOA4, APOB, APOH, ITIH1, KNG1, PLG, SERPINA1, SERPIND1, VTN, C3, CA2, CFB, CFH, FGA, FGB, FN1, HP, HPX, HRG | Gene | LC-MS/MS; LC-MRM-MS; iTRAQ; Sandwich ELISA | CFH, FGA, and SERPINA1 were demonstrated to have the potentials as biomarker candidates for early de- tection and/or prognosis of OSCC. |
Study | Comparable Groups | Differentiated Groups | Assessors Blinding | Outcome Measures | Confounding | Stats. Cl Provided | Overall Assessment |
---|---|---|---|---|---|---|---|
Lo Russo et al. | Low Risk | Low Risk | Moredate Risk | Low risk | Moderate Risk | High Risk | Moderate risk |
Hsu et all | Moderate Risk | Low Risk | High Risk | Low risk | Moderate Risk | High Risk | Moderate risk |
Gallo et all | Moderate Risk | Moderate Risk | High Risk | Low risk | Moderate Risk | Moderate risk | Moderate risk |
Chu et all | Low Risk | Moderate Risk | Moredate Risk | Low risk | Moderate Risk | Moderate risk | Moderate risk |
Study | Samples | Store | Methods | Analysis | Results |
---|---|---|---|---|---|
Chu et al. | Unstimulated saliva | −80° | Centrifugation at 3000× g for 15 min at 4 °C. | (MRM)-MS | ↑ CFH ↑ FGA ↑ SERPINA 1 |
Hsu et al. | Unstimulated saliva | −80° | Centrifugation at 3000× g for 15 min at 4 °C. | Label-free quantification | ↑ THBS2, ↑ UFD1L, ↑ DNAJB11 |
Lo Russo et al. | Unstimulated saliva | −80° | Centrifugation 13,000× g per minute at 4 °C for 10 min | SELDI-TOF | 19 mass peaks |
Gallo et al. | Unstimulated saliva | −80° | Centrifugation 13,000× g per minute at 4 °C for 10 min | SELDI-TOF | 74 mass peaks |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esperouz, F.; Ciavarella, D.; Santarelli, A.; Lorusso, M.; Lo Muzio, L.; Laino, L.; Lo Russo, L. Saliva-Based Biomarkers in Oral Squamous Cell Carcinoma Using OMICS Technologies: A Systematic Review. Oral 2024, 4, 293-302. https://doi.org/10.3390/oral4030024
Esperouz F, Ciavarella D, Santarelli A, Lorusso M, Lo Muzio L, Laino L, Lo Russo L. Saliva-Based Biomarkers in Oral Squamous Cell Carcinoma Using OMICS Technologies: A Systematic Review. Oral. 2024; 4(3):293-302. https://doi.org/10.3390/oral4030024
Chicago/Turabian StyleEsperouz, Fariba, Domenico Ciavarella, Andrea Santarelli, Mauro Lorusso, Lorenzo Lo Muzio, Luigi Laino, and Lucio Lo Russo. 2024. "Saliva-Based Biomarkers in Oral Squamous Cell Carcinoma Using OMICS Technologies: A Systematic Review" Oral 4, no. 3: 293-302. https://doi.org/10.3390/oral4030024
APA StyleEsperouz, F., Ciavarella, D., Santarelli, A., Lorusso, M., Lo Muzio, L., Laino, L., & Lo Russo, L. (2024). Saliva-Based Biomarkers in Oral Squamous Cell Carcinoma Using OMICS Technologies: A Systematic Review. Oral, 4(3), 293-302. https://doi.org/10.3390/oral4030024