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Received: 13 August 2024

Revised: 10 September 2024

Accepted: 12 September 2024

Published: 13 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Predicting Leukoplakia and Oral Squamous Cell Carcinoma
Using Interpretable Machine Learning:
A Retrospective Analysis
Salem Shamsul Alam 1 , Saif Ahmed 1 , Taseef Hasan Farook 2,* and James Dudley 2

1 Department of Electrical and Computer Engineering, North South University, Dhaka 1229, Bangladesh;
salem.alam@northsouth.edu (S.S.A.); saif.ahmed02@northsouth.edu (S.A.)

2 Adelaide Dental School, The University of Adelaide, Adelaide, SA 5000, Australia;
james.dudley@adelaide.edu.au

* Correspondence: taseef.farook@adelaide.edu.au; Tel.: +61-4144-89858

Abstract: Purpose: The purpose of this study is to assess the effectiveness of the best performing
interpretable machine learning models in the diagnoses of leukoplakia and oral squamous cell carci-
noma (OSCC). Methods: A total of 237 patient cases were analysed that included information about
patient demographics, lesion characteristics, and lifestyle factors, such as age, gender, tobacco use,
and lesion size. The dataset was preprocessed and normalised, and then separated into training and
testing sets. The following models were tested: K-Nearest Neighbours (KNN), Logistic Regression,
Naive Bayes, Support Vector Machine (SVM), and Random Forest. The overall accuracy, Kappa score,
class-specific precision, recall, and F1 score were used to assess performance. SHAP (SHapley Addi-
tive ExPlanations) was used to interpret the Random Forest model and determine the contribution
of each feature to the predictions. Results: The Random Forest model had the best overall accuracy
(93%) and Kappa score (0.90). For OSCC, it had a precision of 0.91, a recall of 1.00, and an F1 score of
0.95. The model had a precision of 1.00, recall of 0.78, and F1 score of 0.88 for leukoplakia without
dysplasia. The precision for leukoplakia with dysplasia was 0.91, the recall was 1.00, and the F1
score was 0.95. The top three features influencing the prediction of leukoplakia with dysplasia are
buccal mucosa localisation, ages greater than 60 years, and larger lesions. For leukoplakia without
dysplasia, the key features are gingival localisation, larger lesions, and tongue localisation. In the
case of OSCC, gingival localisation, floor-of-mouth localisation, and buccal mucosa localisation
are the most influential features. Conclusions: The Random Forest model outperformed the other
machine learning models in diagnosing oral cancer and potentially malignant oral lesions with higher
accuracy and interpretability. The machine learning models struggled to identify dysplastic changes.
Using SHAP improves the understanding of the importance of features, facilitating early diagnosis
and possibly reducing mortality rates. The model notably indicated that lesions on the floor of the
mouth were highly unlikely to be dysplastic, instead showing one of the highest probabilities for
being OSCC.
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1. Introduction

Oral squamous cell carcinoma (OSCC) remains the most common type of oral cancer
and accounts for nearly 90% of all oral malignancies. Approximately 300,000 new cases are
diagnosed each year, with South Asia and parts of Europe having the highest prevalence
due to certain lifestyle choices, social habits, and genetic predisposition [1–3]. Despite
advances in treatment modalities, the five-year survival rate for OSCC remains less than
50% due to late-stage detection and the disease’s aggressive nature [3]. This is likely due
to a lack of information among the population, poor primary prevention campaigns, and
poor symptomatology of the disease in the early stages of development [4]. The early
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detection of OSCC and its precursor lesions, such as leukoplakia, is essential in improving
survival rate.

Leukoplakia is a potentially malignant oral lesion that appears as white patches in
the oral cavity and has a variable risk of developing into malignancy [5]. The diagnosis of
leukoplakia, monitoring for dysplastic changes, and subsequent progression to OSCC has
traditionally relied on histopathological examination of biopsy samples, which can also be
subjective and prone to interobserver variability [5]. Clinical follow-ups confirming the
malignancy potential of leukoplakia also remain complex and invasive. This variability
warrants the need for adjunct diagnostic tools to assist clinicians in objective evaluation,
which may lead to early detection and accurate diagnosis.

In recent years, machine learning (ML) has emerged as a transformative technology
for tackling challenging dental diagnostics and analysing complex interactions within the
head–neck region [6]. ML models can analyse large datasets and identify complex patterns
and trends [7]. Some common forms of ML include K-Nearest Neighbours (KNN), Logistic
Regression, Naive Bayes, Support Vector Machine (SVM), and Random Forest. Random
Forests, for example, are becoming increasingly popular among ML models due to their
robustness, ability to handle large feature sets, and ability to estimate inherent feature
importance [8]. However, ML is still considered a “black box”, with researchers guessing
which factors influence the systems’ decision making [9]. Clinical adoption of ML models
necessitates high predictive performance and interpretability, ensuring that the models’
decisions are transparent and understandable to healthcare professionals [10].

Several studies have investigated the application of ML to diagnosing oral cancer
and its precursor lesions [11]. For example, Adeoye et al. demonstrated the utility of
deep learning models in predicting malignant transformation-free survival of people with
potentially malignant oral disorders, emphasising the importance of high accuracy and
interpretability [12]. Similar designs of ML saw applicability in diagnosing co-dependent
tumours. For example, Kutlu and Avcı used convolutional neural networks, discrete
wavelet transforms, and extended short-term memory networks to classify liver and brain
tumours [13]. However, in most cases, the issue with the “black box” remains unaddressed.

The present research builds on existing work by incorporating an additional layer
of interpretability using SHapley Additive ExPlanations (SHAP) [14]. SHAP is based on
cooperative game theory and is a method for extracting explanations from ML models
about their decision-making processes [15]. It is effective in identifying the most influential
features driving these models. SHAP values provide a consistent measure of feature impor-
tance, allowing us to understand how each feature contributes to the model’s output [16].

This research aims to

1. Assess predictive models that analyse trends in the underlying features contributing
to common white lesions, such as leukoplakia and OSCC;

2. Extract explanations for the decisions of the best performing machine learning models.

2. Material and Methods
2.1. Dataset Description

The current study adhered to the Minimum Information for Clinical Artificial Intelli-
gence Modelling (MI-CLAIM) checklist, and all codes adhered to the PEP-8 guidelines [17].
The dataset included 237 patients, each with a diagnosis of oral cancer or leukoplakia as
a potentially malignant oral lesion. Each patient was categorised into various features
and variables by dental specialists at the time of diagnosis. The dataset was obtained
through open access, courtesy of NDB-UFES (NDB-UFES: An oral cancer and leukoplakia
dataset composed of histopathological images and patient data—Mendeley Data), and was
published on 16 March 2023 [18]. The dataset was deidentified and, therefore, deemed ex-
empt from ethical review. Twenty-four predictor variables were coded for the 237 patients
(Table 1). Definitive diagnoses were ascertained through histopathological analyses and
used to categorise the cases into three classes of lesion progression (Table 2).
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Table 1. Descriptions of the 24 coded features.

Coded Feature Names Description

localization_Tongue Tongue localisation

localization_Lip Lip localisation

localization_Floor of mouth Floor-of-mouth localisation

localization_Buccal mucosa Buccal mucosa localisation

localization_Palate Palate localisation

localization_Gingiva Gingival localisation

larger_size Larger lesions

tobacco_use_Yes Current habit of tobacco use

tobacco_use_Former History of tobacco use

tobacco_use_No No history of tobacco use

tobacco_use_Not informed Undisclosed habit of tobacco use

alcohol_consumption_No No alcohol consumption

alcohol_consumption_Former History of alcohol consumption

alcohol_consumption_Yes Current habit of alcohol consumption

alcohol_consumption_Not informed Undisclosed habit of alcohol consumption

sun_exposure_No No abnormal sun exposure

sun_exposure_Yes Abnormal sun exposure

sun_exposure_Not informed Sun exposure (not informed)

gender_M Male sex

gender_F Female sex

age_group_2 Age older than 60 years

age_group_1 Age between 41 and 60 years

age_group_0 Age younger than 40 years

Table 2. Class distribution in dataset.

Class Names Sample Counts

Leukoplakia without dysplasia 57

Leukoplakia with dysplasia 89

Oral squamous cell carcinoma 91

2.2. Data Preprocessing

Initial model building was first carried out. Missing values were addressed using
a ‘forward-fill’ method that moves the last valid observation forward, effectively filling
gaps with the most recent available data. This method ensured that the dataset remained
complete and usable while avoiding arbitrary imputation values. The columns without any
features were removed, which removed any unnecessary information that could impair the
model’s performance. Following the feature selection, the remaining features were scaled
with StandardScaler [19,20]. Scaling standardised the range of feature values, resulting in a
mean of zero and a standard deviation of one [21]. Normalisation increases the convergence
and accuracy of machine learning algorithms because it ensures that all features contribute
equally to the model.

The dataset was then divided into training and testing sets to assess the models’
performance. The training set consisted of 177 samples, while the testing set contained
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60. A stratified split was used to keep the class distribution consistent across both sets,
preserving the balance of each class during the training and testing stages.

2.3. Machine Learning Models Used

This study compared five machine learning models: Support Vector Machine (SVM) [22],
Random Forest [8], K-Nearest Neighbours (KNN) [23], Naive Bayes [24], and Logistic
Regression [25]. Anaconda Navigator enabled the implementation of these models in
Python within Jupyter Notebook (Anaconda, Inc., Austin, TX, USA).

2.3.1. K Nearest Neighbours (KNN)

K-Nearest Neighbours (KNN) is a non-parametric classification algorithm that classi-
fies samples using the majority vote of their nearest neighbours. This algorithm is simple
and effective, making predictions based on the proximity of samples in the feature space.
The KNN model was built with the KNeighboursClassifier from the sklearn.neighbours
module and a number of neighbours (k) set to 5 [23]. The model’s performance was
evaluated by training and testing it on the dataset using default distance metrics.

2.3.2. Logistic Regression

Logistic Regression is a statistical model for binary classification that uses a logistic
function to estimate probabilities. It calculates the probability of a binary outcome using
one or more predictor variables. The Logistic Regression model was implemented with
the ‘LogisticRegression’ class from the sklearn.linear_model module and the ‘liblinear’
solver [26]. The model was trained on the dataset and evaluated using the default settings
to determine its predictive performance.

2.3.3. Naive Bayes

Naive Bayes is a probabilistic classifier that uses Bayes’ theorem and assumes that
features are independent. Despite its simplicity and strong independence assumptions,
Naive Bayes is efficient and scalable, making it suitable for various classification tasks.
In this study, the Naive Bayes model was implemented using the sklearn.naive_bayes
module’s GaussianNB class [27]. The model was trained and evaluated using the default
settings to determine the classification accuracy.

2.3.4. Support Vector Machines (SVM)

The Support Vector Machine (SVM) is a robust supervised learning algorithm for
classification and regression tasks. It works by determining the best hyperplane to maximise
the margins among different classes in the feature space. SVM’s ability to handle high-
dimensional data makes it a popular choice for various classification tasks. In this study,
the SVM model was implemented using the SVC class from the sklearn.svm module, with
a radial basis function (RBF) kernel to handle non-linear classification tasks [22]. The model
was trained on the training set and then evaluated on the testing set.

2.3.5. Random Forest

Random Forest is an ensemble learning technique that builds multiple decision trees
and aggregates their predictions to improve classification accuracy while minimising
overfitting. This method uses the combined power of various trees to create a robust
model with improved predictive performance. In this study, the Random Forest model
was implemented with the RandomForestClassifier from the sklearn.ensemble module.
The model used 100 trees, with the hyperparameters set to the default values to make the
process easier [8]. The trained model’s performance was assessed using the testing set.



Oral 2024, 4 390

2.4. Evaluation Metrics

To evaluate the performance of the machine learning models in this study, various
evaluation metrics were used to provide a complete picture of their effectiveness. These
metrics included the accuracy, precision, recall, F1 score, and ROC-AUC score.

Accuracy measures the proportion of correctly classified instances out of the total
number of instances. It is calculated as

Accuracy =
True Positives + True Negatives

Total Instances

However, accuracy alone can be misleading, particularly in class imbalance, as it may
not fully reflect the model’s effectiveness in distinguishing among classes with different
sample sizes. Therefore, the proportion of correctly predicted positive observations to total
predicted positives (precision) was used. It measures the model’s ability to prevent false
positives. The formula for precision is

Precision =
True Positives

True Positives + False Positives

The ratio of correctly predicted positive observations to total observations in the class
(sensitivity or recall) was then assessed. It assesses each model’s ability to identify all
relevant instances in a class. The formula for recall is

Recall =
True Positives

True Positives + False Negatives

The F1 score is the harmonic mean of precision and recall, providing a metric that
balances both aspects. It is beneficial when working with imbalanced datasets in which
one class is underrepresented. The F1 score is calculated as

F1-Score = 2 × Precision × Recall
Precision + Recall

Finally, the area under the receiver operating characteristic (ROC) curve was assessed,
which compares the true positive rate (recall) to the false positive rate (1—specificity)
at different threshold settings. This score measures the model’s ability to distinguish
among classes at various thresholds, with higher scores indicating better performance. The
ROC-AUC score is computed as follows:

ROC-AUC Score =
∫ 1

0
ROC Curve dFalse Positive Rate

Here, dFalse Positive Rate is a differential element representing a small change in the
false positive rate. In calculus, the differential dFalse Positive Rate is used to represent an
infinitesimally small increment in the false positive rate. This integration process sums up
the area under the ROC curve by accounting for these tiny changes in the false positive
rate, ultimately providing a measure of the model’s performance in distinguishing among
classes across various threshold values.

3. Results

The five machine learning models—K-Nearest Neighbours (KNN), Logistic Regres-
sion, Naive Bayes, Support Vector Machine (SVM), and Random Forest—were assessed
across performances for predicting leukoplakia, dysplastic changes, and OSCC. An overall
performance was then derived from the three separate assessments.
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3.1. Model Performances across the Board
3.1.1. Model Performance for Leukoplakia without Dysplasia

Random Forest outperformed the other models with perfect precision (1.0), high recall
(0.78), an excellent F1-Score of 0.88, and the highest ROC AUC score of 0.99. (Table 3)
SVM and Logistic Regression delivered balanced results with reasonable precision and
recall. KNN produced moderate results but did not excel. Despite perfect recall, Naive
Bayes had low precision (0.43), resulting in a high false positive rate and lower reliability.
Thus, Random Forest was the best model for predicting this class, while SVM and Logistic
Regression were useful but could be improved, and Naive Bayes was less reliable due to
high false positives.

Table 3. Predictive performance of machine learning models for leukoplakia without dysplasia.

Models Precision Recall F1 Score ROC

KNN 0.75 0.67 0.71 0.86
Logistics Regression 0.76 0.72 0.74 0.92

Naive Bayes 0.43 1 0.6 0.86
SVM 0.86 0.67 0.75 0.76

Random Forest 1 0.78 0.88 0.99

3.1.2. Model Performance for Leukoplakia with Dysplasia

Random Forest outperformed all other models, with perfect recall (1.0), high precision
(0.91), an excellent F1 score of 0.95, and a top ROC-AUC score of 0.99 (Table 4). SVM
achieved high precision (1.0) but had slightly lower recall (0.81), implying that it missed
some true positives. KNN and Logistic Regression performed reasonably well but were not
exceptional. Despite its high precision (0.90), Naive Bayes had very low recall (0.43), which
resulted in many false negatives and decreased reliability. Overall, Random Forest was
the most effective model, with SVM, KNN, Logistic Regression, and Naive Bayes having
different limitations.

Table 4. Predictive performance of machine learning models for leukoplakia with dysplasia.

Models Precision Recall F1 Score ROC

KNN 0.75 0.86 0.8 0.94
Logistics Regression 0.7 0.67 0.68 0.85

Naive Bayes 0.9 0.43 0.58 0.81
SVM 1 0.81 0.89 0.94

Random Forest 0.91 1 0.95 0.99

3.1.3. Model Performance for Oral Squamous Cell Carcinoma

Random Forest performed the best, with perfect recall (1.0), high precision (0.91), an
F1 score of 0.95, and a ROC-AUC score of 1.0, indicating outstanding overall performance
(Table 5). SVM had higher recall (0.95) but a lower precision (0.69), resulting in a lower
F1 score than Random Forest. KNN and Logistic Regression demonstrated a balanced
but moderate performance. Naive Bayes struggled with a low recall (0.33%) and poor
overall performance.

Table 5. Predictive performance of machine learning models in oral squamous cell carcinoma.

Models Precision Recall F1 Score ROC

KNN 0.85 0.81 0.83 0.95
Logistics Regression 0.74 0.81 0.77 0.93

Naive Bayes 0.88 0.33 0.48 0.75
SVM 0.69 0.95 0.8 0.93

Random Forest 0.91 1 0.95 1
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3.1.4. Overall Performance across All Three Categories

Random Forest outperformed all other models with an accuracy of 0.93 and a Kappa
score of 0.90 (Table 6). SVM followed, with an accuracy of 0.82 and a Kappa score of 0.72,
indicating strong performance. KNN and Logistic Regression produced moderate results;
KNN had an accuracy of 0.78 and a Kappa score of 0.67, and Logistic Regression had an
accuracy of 0.73 and a Kappa score of 0.60. Naive Bayes had the lowest scores, with an
accuracy of 0.57 and a Kappa Score of 0.37.

Table 6. The overall predictive performance of machine learning models.

Models Overall Accuracy Kappa Score

KNN 0.78 0.67
Logistics Regression 0.73 0.6

Naive Bayes 0.57 0.37
SVM 0.82 0.72

Random Forest 0.93 0.9

3.2. Receiver Operating Characteristics of the Models

The SVM model (Figure 1A) performed exceptionally well at distinguishing between
leukoplakia without dysplasia and OSCC, with AUC values of 0.94 and 0.93, respectively,
but performed poorly in diagnosing dysplastic changes, with an AUC of 0.76. Random
Forest (Figure 1B) outperformed all other models, with near-perfect AUC values of 0.99,
0.99, and 1.00, demonstrating its exceptional ability to classify positive instances while
minimising false positives correctly. Naive Bayes (Figure 1C) performed moderately,
with AUCs of 0.81, 0.86, and 0.75 indicating variability in class discrimination. Logistic
Regression (Figure 1D) also performed well, with AUCs of 0.85, 0.92, and 0.93, while KNN
(Figure 1E) produced balanced results (AUCs of 0.94, 0.86, and 0.95).

3.3. Confusion Matrices

The K-Nearest Neighbours (KNN) model outperformed classes 0 and 2, with higher
true positive rates of 18 and 17, respectively. For leukoplakia with dysplasia, it performed
more poorly, with only 12 correct predictions. Misclassifications were observed, with
leukoplakia without dysplasia often being confused with dysplastic changes, as indicated
by the off-diagonal values. The confusion matrix for Logistic Regression indicated balanced
performance across all three classes. Classes 0, 1, and 2 demonstrated true positive counts
of 14, 13, and 17, respectively. This model appeared to perform relatively uniformly,
though errors occurred in classifying dysplastic changes similar to the previous model.
The confusion matrix for Naive Bayes showed that it performed well for class 1 (18 true
positives), but the model struggled to distinguish between basic leukoplakia and OSCC.
The SVM confusion matrix showed good performance for OSCC (20 true positives), but
some confusion occurred between the two classes of leukoplakia. The Random Forest
model produced true positive counts of 21, 14, and 21 for classes 0, 1, and 2, respectively.
The confusion matrix demonstrated minimal off-diagonal values, indicating that the model
effectively minimised misclassifications. Figure 2 demonstrates the confusion matrices for
all models evaluated.
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3.4. Shapley Additive Explanations (SHAP) for Model Interpretability

The influence of each parameter in the decision-making capabilities of the ML models
were assessed through SHAP values illustrated through bar charts. The length of each bar
represents the feature’s importance, with longer bars indicating a more substantial impact.

3.4.1. Interpretability of Leukoplakia without Dysplasia

Gingival localisation of lesion emerges as the most significant feature in this category
(Figure 3A). Interestingly, larger lesions were also correlated with the class.

3.4.2. Interpretability of Leukoplakia with Dysplasia

Among the features analysed (Figure 3B), buccal mucosal lesions were the most
influential factor in the models’ decision-making processes, followed by the patients’ ages,
with individuals over 60 years showing a higher probability of positive predictions for
dysplastic changes.

3.4.3. Interpretability of Oral Squamous Cell Carcinoma

Gingival localisation was the most important differentiating factor when the models
distinguished between OSCC (Figure 3C) and leukoplakia. This was followed by the
presence of lesions on the floor of the mouth, buccal mucosa, and tongue.
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4. Discussion

This research aimed to analyse known trends in the underlying features contributing
to common white lesions, such as leukoplakia and OSCC, by extracting explanations from
the best-performing ML models for their decisions. Previous research has emphasised
the importance of model interpretability in healthcare applications, where understanding
the reasoning behind predictions is essential for making informed clinical decisions and
improving clinical reliance on these models [28].

To put the overall findings into a broader perspective, summary plots were con-
structed from the SHAP values to better reflect the explanations provided by SHAP while
considering potential errors observed through the confusion matrices. The horizontal
axis displays the SHAP values, which measure the contributions of each feature to the
prediction of leukoplakia or OSCC. Positive SHAP values indicate that a feature’s value has
increased the likelihood of predicting leukoplakia or OSCC, while negative values suggest a
reduced likelihood.

Leukoplakia without dysplasia was initially explored. Gingival localisation emerged
as the most meaningful feature by which the model differentiated dysplastic changes, with
the model ranking gingival lesions as less likely to cause malignant lesions. This aligns
with the literature indicating that keratinised gingival tissue has a comparatively lower
likelihood of producing neoplastic changes [29]. The model struggled with identifying
whether the larger size of the lesion was a potential indicator, similar to human practitioners,
who, in these cases, look for other symptoms of carcinoma in situ on a histopathological
level [30]. Notably, localisation to the tongue suggested to the model that the patient might
be at a higher risk of developing potential malignancies, and it relied on this metric to
modify its classification for a case. A detailed assessment is illustrated in Figure 4A.
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Dysplastic changes were then evaluated using summary plots (Figure 4B), with the
models relying more heavily on the incidence of lesions being present on the buccal mucosa,
indicating the possibility of malignant changes. This was the first time the model prioritised
age over other factors, with individuals over 60 years being less likely to be categorised
at this stage. Combined with the confusion the model experienced when evaluating age
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in cases without dysplastic changes, the authors suggest this may be because additional
health complications in individuals over 60 years could complicate diagnoses without
an extensive medical history included in the potential predictor variables. This theory
reemphasises the need for standardised screening and record documentation practices in
general dentistry and requires further investigation [31]. This approach is similar to dental
screening and triage practices, where multiple factors are considered prior to assigning
individuals to a risk group with treatment needs [32]. At this stage, the model begins to
consider social habits, such as smoking and alcohol intake, more heavily. Interestingly,
the model determined that a lesion on the floor of the mouth was highly unlikely to be
dysplastic and instead rated it as having one of the highest probabilities of being an OSCC,
as discussed in the next paragraph.

Finally, the cases of OSCC (Figure 4C) were explored. As described previously, the
model identified certain features as tell-tale signs that a lesion is more likely to be malignant,
as indicated by the shift to positive SHAP values. These features are primarily based
on the location of the lesion, such as the floor of the mouth, buccal mucosa, and the
tongue. Notably, the model placed more emphasis on patient data showing a history of
heavy alcohol consumption rather than an existing history of this habit. The fundamental
rationale behind this decision remains unclear. It can be theorised that the model considers
the possibility of accumulated damage and residual effects from long-term use of tobacco
and alcohol, which may have manifested symptoms only after the cessation of these
agents, allowing the body’s metabolic process to undergo and possibly complete the
withdrawal process [33]. Another interesting observation is that in almost all cases, the
model disregarded lesions on the lip, which aligns with clinical diagnoses that favour basal
cell carcinomas as occurring more frequently on the lips than OSCC [34].

The current study effectively compared machine learning models for diagnosing oral
lesions, with Random Forest performing best and SHAP enhancing interpretability. How-
ever, this study was limited by the retrospective dataset of 237 samples, which may restrict
the generalisability of the findings due to its size and lack of demographic and geographic
diversity. While key features, such as lesion size and location, were identified, other po-
tentially relevant factors, such as genetic predispositions or detailed histopathological
data were not considered. This in turn contributed to the difficulties experienced by the
models in classifying dysplastic changes. Although the analysis based on SHAP values is
informative, it may oversimplify complex feature interactions and fail to address potential
class imbalances that could affect model performance. This is particularly important when
classifying white lesions beyond leukoplakia, extending to lesions like lichen planus, which
have several variations with differing degrees of carcinogenic potential. Additionally, the
study lacks external validation from data obtained from other clinics or hospitals, which
might better represent real-world variations in patient distribution [9]. Future studies
with larger and more diverse datasets incorporating additional features may provide more
comprehensive insights. Incorporating techniques for managing class imbalances, conduct-
ing external validations, and delving deeper into feature interactions would improve the
reliability and generalisability of predictions. Considering temporal and environmental
factors may also enhance the model’s applicability over time.

5. Conclusions

The following conclusions can be drawn from the current study:

1. The Random Forest model achieved the highest performance with an overall accuracy
of 93%, showing superior class-specific precision, recall, and F1 scores for both OSCC
and various types of leukoplakia.

2. SHAP (SHapley Additive exPlanations) analysis identified the top predictors influ-
encing the model’s decisions. For leukoplakia with dysplasia, these included buccal
mucosa localisation, an age over 60 years, and lesion size. For leukoplakia without
dysplasia, the key predictors were gingival and tongue localisation, along with lesion
size. For OSCC, gingival, floor-of-mouth, and buccal mucosa localisations were the
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most influential. The model notably indicated that lesions on the floor of the mouth
were highly unlikely to be dysplastic, instead showing one of the highest probabilities
for being OSCC.
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