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Abstract: Purpose: The purpose of this study was to compare multiple deep learning
models for estimating age and sex using dental panoramic radiographs and identify the
most successful deep learning models for the specified tasks. Methods: The dataset of
437 panoramic radiographs was divided into training, validation, and testing sets. Random
oversampling was used to balance the class distributions in the training data and address
the class imbalance in sex and age. The models studied were neural network models (CNN,
VGG16, VGG19, ResNet50, ResNet101, ResNet152, MobileNet, DenseNet121, DenseNet169)
and vision–language models (Vision Transformer and Moondream2). Binary classification
models were built for sex classification, while regression models were developed for age
estimations. Sex classification was evaluated using precision, recall, F1 score, accuracy,
area under the curve (AUC), and a confusion matrix. For age regression, performance
was evaluated using mean squared error (MSE), mean absolute error (MAE), root mean
squared error (RMSE), R2, and mean absolute percentage error (MAPE). Results: In sex
classification, neural networks achieved accuracies of 85% and an AUC of 0.85, while
Moondream2 had much lower accuracy (49%) and AUC (0.48). DenseNet169 performed
better than other models for age regression, with an R2 of 0.57 and an MAE of 7.07. Among
sex classes, the CNN model achieved the highest precision, recall, and F1 score for both
males and females. Vision Transformers that specialised in identifying objects from images
demonstrated weaker performance in dental panoramic radiographs, with an inference
time of 4.5 s per image. Conclusions: The CNN and DenseNet169 were the most effective
models for classifying sex and age regression, performing better than other models for
estimating age and sex from dental panoramic radiographs.

Keywords: age regression; orthopantomograms; convolutional neural networks; vision–
language model; random oversampling

1. Introduction
Age and sex estimation from medical imaging plays a critical role in forensic science,

legal proceedings, and clinical dentistry. Methods for age estimation typically involve
evaluating the stages of tooth development and eruption, assessing root formation, and
examining secondary dentin deposition or pulp chamber reduction, especially in older
individuals [1,2]. Sex determination often relies on analysing mandibular features, as
males generally have larger, more angular mandibles, while females exhibit smaller, more
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rounded jaws with more prominent gonial angles [3,4]. Traditionally, these processes have
been subjective and heavily influenced by clinician or investigator expertise [5].

The advent of automated dental age and sex estimation has significantly reduced
subjectivity, leveraging advanced technologies such as deep learning. Convolutional neu-
ral networks (CNNs) and statistical models have achieved substantial progress in this
domain [1,2]. CNNs have demonstrated effectiveness in classifying dental features from
radiographs, and significant advancements in detecting and segmenting dental struc-
tures [6,7]. More recently, vision–language models (VLMs), such as Vision Transformer and
Moondream2, have shown promise in image captioning and segmentation [8]. However,
their application to medical imaging classification tasks, such as predicting age and sex
from dental radiographs, remains largely unexplored.

In addition to VLMs, other modern deep learning techniques have shown success
in medical imaging. For example, Visual Geometric Group (VGG) models have been
applied to detect pathologies in chest radiographs [9] and retinal imaging [10], while
Residual Networks (ResNets) have been commonly used for brain tumour identification
from magnetic resonance imaging scans [11]. Dense Convolutional Networks (DenseNets)
have proven effective for multiclass classification in histological images [12]. Notably,
ResNet and DenseNet models have been applied successfully to estimate age from dental
radiographs [13–15].

While three-dimensional imaging methods, such as cone beam computed tomography
(CBCT), enable volumetric analysis of teeth for age estimation, their use has been limited
by higher radiation exposure and limited availability in clinical settings [15]. Consequently,
two-dimensional panoramic radiographs remain the standard for full mouth evaluations.

Building on previous work where our research group developed a hybrid neural
network model for estimating age and sex, the present study extends the foundational
research, which generated accuracies between 67% and 85%, by evaluating various deep
learning approaches for this purpose [16]. This area remains under-researched despite
its clinical relevance. The objective was to identify the model that delivers the highest
prediction accuracy while maintaining transparency in its decision-making process, thereby
enhancing trust among practitioners. For this study, the following models were assessed:
VGG16, VGG19, ResNet50, ResNet101, ResNet152, MobileNet, DenseNet121, DenseNet169,
Vision Transformer, and Moondream2.

2. Material and Methods
2.1. Dataset Description

This study was approved by the University of Adelaide Human Research and Ethics
Committee (HREC-2023-073) and the Institutional Review Board of North South University
(2023/OR-NSU/IRB/0503). A Large Language Model (ChatGPT; OpenAI, San Francisco,
CA, USA) was used to proofread and improve writing consistency during the revisions
and editing of the manuscript draft.

The dataset consisted of 706 deidentified panoramic radiographic images taken within
a single year at a specialist dental imaging centre. These images included dentulous and
partially edentulous patients who sought general dental consultations or were scheduled
for procedures such as multiple restorations, extractions, or third molar extractions. A
dentist with six years of experience in clinical image analysis (THF) reviewed the dataset
to exclude completely edentulous cases, patients with implants, those with odontogenic
or non-odontogenic growths, images indicating spreading or chronic infections, and cases
with radiologically visible trauma. Subsequently, the data science team (SSA, NR, TAF,
SA, RAH) screened the remaining images for quality and suitability for machine learning
applications, ultimately determining 437 images to be appropriate for use. The images
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were classified into sex (male and female) and age based on the information retrieved from
the system (Figure 1A,B).
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The dataset was divided into training, validation, and testing sets. A total of
358 images were prepared for model training, of which 20% were reserved for model valida-
tion. The remaining 79 were used to test the performance of the models that were trained.

2.2. Relevant Literature

CNNs have shown promise in medical radiology due to their ability to identify minute
variations in anatomic structures. For instance, Simonyan and Zisserman introduced
VGG [17], a CNN architecture well suited for dental radiograph analysis. The effectiveness



Oral 2025, 5, 3 4 of 26

of CNN architecture in image classification encouraged its inclusion in our study to assess
its performance on sex classification tasks. He et al. developed ResNet, which overcame
the vanishing gradient problem in deep networks, yielding improved results for age
regression [18]. The success of ResNet in handling deep networks guided our choice of
architectures for age regression in the current study. Howard et al. [19] contributed to
MobileNet, which emphasised computational efficiency and adaptability for resource-
constrained tasks such as age estimation systems capable of running on mobile devices
in remote clinics. Inspired by its lightweight nature, we incorporated MobileNet into our
study for sex classification, especially considering its efficiency in real-time applications.

Li et al. [20] applied deep learning for forensic age estimation using pelvic radiographs
and demonstrated that CNNs can effectively identify age-specific skeletal features. This
approach to age estimation from radiographs informed the adaptation of our models to
handle dental radiographs for age prediction. Advanced architectures such as DenseNet
employ a feature reuse mechanism that further refines age regression tasks [21]. Given
DenseNet’s success in handling complex image data, we adopted it to improve age regres-
sion performance in our study.

Oktay [22] and Kuo et al. [23] used CNNs in the detection and classification of teeth
from radiographs, while Farhadian et al. [24] used CNNs to identify the pulp-to-tooth ratio
from radiographs. Sironi et al. [25] discussed the role of Bayesian networks in assessing
pulp chamber volume as a marker of age estimation from radiography [26]. While Bayesian
networks were not directly used in our study, this approach helped inform our understand-
ing of the potential for integrating advanced feature extraction techniques for better age
and sex prediction.

Milošević et al. applied CNNs to estimate chronological age, indirectly using sex-related
features automatically [27]. The Bayesian CNN applied in the study by De Back et al. [28] can
be further extended with modifications to sex classification by incorporating those features
of sex-related dental characteristics. The idea of modifying CNNs for sex-specific analysis
inspired our implementation of sex classification as a separate task, optimising the model’s
ability to distinguish sex in dental images. The triplet network approach has lately been
suggested to discriminate between age periods, which might help determine sex, which
can be an area for further research [29]. Moreover, Tuzoff et al. have already successfully
detected and numbered the dentition using CNNs, delivering the basic improvements
toward sex-specific analysis relevant to dental radiographs [30].

Other emerging technologies also include VLMs. A hybrid VLM–transformer model
was recently presented for dental age and sex classification [31]. This proof of concept
demonstrated the adaptability of other VLMs, such as Moondream2, in enhancing the
accuracy of the prediction. Chu et al. applied octuplet Siamese networks for osteoporosis
analysis. Hence, it is possible to easily extend such architectures to sex prediction in
dental imaging [32]. The concept of Siamese networks in medical imaging highlighted
potential methods for improving the robustness of our models in distinguishing sex from
dental radiographs.

Mualla et al. [33] evidenced the effectiveness of machine learning methods applied
to radiographs for dental age estimation, which informed the strategies embraced in the
current study for sex classification. Vila-Blanco et al. [34] used a deep neural network in
chronological age estimation from panoramic radiographs, further informing the strategies
appropriate to evaluate the interaction of age with sex in forensic analysis. We drew on
their work to refine our approach to age prediction, ensuring that sex considerations were
incorporated effectively into the model’s structure. The use of deep transfer learning on
panoramic radiographs for age estimation also guided the current study’s strategy [35].
The transfer learning strategy outlined by Atas influenced our approach to leveraging
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pre-trained models, helping to enhance the generalization of our models across diverse
dental radiographs [35].

2.3. Data Preprocessing

Our study used random oversampling to balance the class imbalance in the dataset.
This strategy entails randomly repeating samples from minority classes. By adjusting for
class imbalance using augmented synthetic data, the model may effectively learn to predict
sex and age without bias toward majority classes.

The radiographs were resized to grayscale images of 224 × 224 pixels and then
converted to the RGB colour format for compatibility with deep learning models. The pixel
intensity values were normalised to the [0, 1] range, which improved training efficiency
and model performance.

2.4. Deep Learning Model Used

The current study examined the following models: Convolutional Neural Networks
(CNNs), VGGNet [17], ResNet [18], MobileNet [19], DenseNet [21], and Vision Transformer
(ViT) [36]. Due to their distinct designs and capabilities, each model has demonstrated
great potential in medical imaging applications.

This study was conducted using a personal computer with the following specifications:
Processor: Intel Core i5 (9th generation), RAM: 16 GB, Graphics Card: NVIDIA GTX 1650
Super (4 GB), Operating System: Windows 10.

The tests were conducted using Python on Jupyter Notebook, facilitated by Anaconda
Navigator (Anaconda, Inc., Austin, TX, USA). It is there that the required packages were
installed and set up: TensorFlow, Keras, NumPy, Matplotlib, sci-kit-learn, and many others
necessary for this work. The use of these packages enabled the seamless execution of
workflows and ensured their reproducibility. In this paper, the computing resources used
are modest compared with high-performance computing systems, and careful optimisation
of model training, batch size, and augmentation ensured that the experiments could be
performed without significant computation bottlenecks.

2.4.1. Convolutional Neural Networks (CNNs)

Convolutional neural networks (CNNs) are the standard architecture for image classi-
fication tasks [37]. CNNs extract hierarchical characteristics from images, beginning with
low-level features like edges and progressing to more complicated patterns like textures
and object components.

In this study, we used custom-built CNN architecture, starting with a 224 × 224 × 3
input layer, corresponding to the reshaped grayscale radiographic images converted to
RGB for the model input. The model started with a convolutional layer that uses 323 × 3
filters and a ReLU activation function, followed by max-pooling with a 2 × 2 pool size
to minimise spatial dimensions. The second convolutional block employed 64 filters of
comparable size with ReLU activation, followed by max-pooling. These layers concentrated
on recognising fundamental features such as edges and simple textures. The model was
then presented with two fully linked (dense) layers, the first with 128 units and the second
with 64 units, both using ReLU activations. The final output layer was a fully connected
layer with a single neuron for age prediction (regression) or two neurons for sex prediction
(classification), depending on the task, and employed a linear activation function for age
and sigmoid activation for sex classification. Figure 2 demonstrates the architecture of the
neural network.
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2.4.2. VGGNet (Visual Geometry Group Network)

VGGNet is a deep convolutional network noted for its simplicity and consistent
architecture. VGGNet has 19 layers, comprising 16 convolutional layers and three fully
linked layers. VGGNet’s main characteristic is its deep structure, in which convolutional
layers use 3 × 3 filters with a stride of one, and the network grows in depth with pooling
layers after every few convolutional layers [17].

For the current study, we used a pre-trained VGGNet model that was fine-tuned
using the panoramic radiograph dataset. The convolutional layers extracted hierarchical
characteristics, whereas deeper layers were formed to recognise more abstract elements
such as bony landmarks. The final linked layers at the end of the network served as
classifiers or regressors. The output layer for age prediction employed linear activation,
whereas the output for sex classification employed a sigmoid activation function. Figure 3
demonstrates the architecture of the VGG Network.
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2.4.3. ResNet (Residual Networks)

ResNet proposes the concept of “residual learning”, which utilises identity shortcuts
(skip connections) to avoid specific levels, which allows the model to learn more intricate
details without degrading its learning outcomes [18].

The current study used different ResNet versions, including ResNet50, ResNet101,
and ResNet152. These models have varying depths: ResNet50 has 50 layers, ResNet101
has 101, and ResNet152 has 152. All three networks were based on residual blocks, which
are made up of several 3 × 3 convolutions with skip connections that add the input to the
output of the block.

All ResNet variants employed in the current study used fully connected layers for the
final output, with a linear activation function for age regression and a sigmoid activation
for sex categorisation. Figure 4 demonstrates the architecture of the Residual Networks
applied in the current study.

2.4.4. MobileNet

Howard et al. introduced MobileNet, which was designed to be computationally
efficient, making it perfect for resource-constrained applications such as predicting age
and sex on mobile devices. MobileNet uses depth-wise separable convolutions with
fewer parameters and a lower computational cost than traditional convolutions. This
enables MobileNet to perform competitively even on smaller, more resource-constrained
devices [19].

We conducted our investigation using MobileNetV2, a lightweight version of the
original model designed to improve performance on mobile devices. The model consists of
an initial convolution layer, depth-wise separable convolutions with batch normalisation,
and ReLU6 activations. These layers aid in extracting essential information from the raw
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radiographic images, with the final layers acting as classifiers or regressors for age and sex
prediction. Figure 5 shows the architecture of MobileNetV2.
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2.4.5. DenseNet (Densely Connected Convolutional Networks)

DenseNet is a deep learning architecture that improves the classic convolutional
network by adding dense connections across layers [21]. Unlike traditional CNNs, which
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only receive input from the previous layer, DenseNet connects each layer to every other
layer in a feed-forward manner. This design enhances feature propagation and reuse,
resulting in more efficient learning and improved generalization.

The DenseNet models used here organised the layers into dense blocks, each receiving
input from all preceding levels. DenseNet’s essential feature is its growth rate, which deter-
mines how many features each layer can generate [21]. This extensive connection enables
the model to learn more diversified and discriminative characteristics while requiring fewer
parameters than traditional networks. DenseNet models are noted for their efficiency and
ability to capture fine-grained image features.

For the current study, we employed DenseNet121 and DenseNet169, with the suffix
numbers (121 and 169) annotating the number of layers present in the architecture. Figure 6
demonstrates the architecture of the DenseNet model.
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2.4.6. Vision Transformer (ViT)

Vision Transformer (ViT) is a VLM that breaks an image into fixed patches of pre-
determined sizes, linearly embeds them, and uses self-attention mechanisms to acquire
global context [36]. ViT’s capacity to capture long-range dependencies in images offers it an
advantage in tasks that involve understanding complicated interactions between various
portions of the image.

In this study, we customized the ViT model for age and sex prediction tasks. The
dental radiographic images were first divided into non-overlapping patches, then linearly
embedded into a sequence, in a manner similar to the approach used in natural language
processing. The self-attention mechanism in ViT allows the model to concentrate on
essential regions of the image, which is critical for deciphering small details like bone
structure and facial features in dental radiographs. The output layer employs a linear
activation function for age regression and a sigmoid for sex categorisation. Figure 7
demonstrates the ViT architecture and workflow applied in the current study.
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2.4.7. Moondream2

In this study, we selected Moondream2, a more miniature vision–language model
(VLM), because of its smaller size and processing requirements compared with larger
models such as Llama and PaliGemma, which include billions of parameters [38]. The
smaller size of Moondream2 enables effective testing without sacrificing model accuracy,
allowing us to run it within the limits of our available resources. A general outline of
Moondream2 architecture is illustrated in Figure 8.
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2.5. The Overall Workflow

The overall workflow for evaluating the included models is illustrated in Figure 9.
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2.6. Evaluation Metrics

The following evaluation metrics were used [39,40].

2.6.1. Classification Evaluation Metrics

To evaluate the performance of the machine learning models in this study, various
evaluation metrics were used to provide a complete picture of their effectiveness. These
metrics included accuracy, precision, recall, F1 score, and ROC-AUC (Receiver Operating
Characteristic—Area Under the Curve) score.

Accuracy measured the proportion of correctly classified instances out of the total
number of instances. It is calculated as

Accuracy =
True Positives + True Negatives

Total Instances

Accuracy alone can be misleading, particularly when dealing with imbalanced
datasets, as it does not adequately reflect the model’s performance in distinguishing
between classes with unequal sample sizes. To address this, precision was used, which
calculates the proportion of correctly predicted positive cases out of all predicted positives.
The formula for precision is

Precision =
True Positives

True Positives + False Positives
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The proportion of correctly identified positive observations within a specific class
(sensitivity or recall) was evaluated next. This metric measures the effectiveness of each
model in identifying all relevant instances within the class. The formula for recall is

Recall =
True Positives

True Positives + False Negatives

The F1 score is the harmonic mean of precision and recall, offering a balanced metric
that considers both factors. It is particularly useful for imbalanced datasets where one class
is underrepresented, ensuring that performance is evaluated more comprehensively. The
F1 score is calculated as

F1-Score = 2 × Precision × Recall
Precision + Recall

The area under the Receiver Operating Characteristic (ROC) curve (AUC-ROC)
was evaluated to compare the True Positive Rate (recall) with the False Positive Rate
(1—Specificity) across various threshold settings. This metric assesses the model’s ability to
differentiate between classes at different thresholds, with a higher AUC indicating stronger
overall performance in classification. The ROC-AUC score is computed as follows:

ROC-AUC Score =
∫ 1

0
ROC Curve dFalse Positive Rate

Here, dFalse Positive Rate is a differential element representing a small change in the
False Positive Rate. In calculus, the differential dFalse Positive Rate is used to represent an
infinitesimally small increment in the False Positive Rate. This integration process sums up
the area under the ROC curve by accounting for these tiny changes in False Positive Rate,
ultimately providing a measure of the model’s performance in distinguishing between
classes across various threshold values.

2.6.2. Regression Evaluation Metrics

In regression tasks, several evaluation metrics are commonly used to assess the perfor-
mance of a model, including mean squared error (MSE), root mean squared error (RMSE),
mean absolute error (MAE), mean absolute percentage error (MAPE), and R2 (coefficient of
determination) [41].

The mean squared error (MSE) measures the average squared differences between
the predicted and actual values. It is calculated by taking the average of the squared
differences between the predicted (ŷi) and actual values (yi) for each data point, as shown
in the following formula:

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2

Here, n is the number of samples in the dataset. MSE penalizes larger errors more
significantly due to the squaring of differences, and a lower MSE indicates better model
performance, with fewer large errors.

Root mean squared error (RMSE) is the square root of the MSE, providing an error
metric in the same units as the target variable, making it more interpretable. The formula
for RMSE is

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2

Like MSE, RMSE penalizes larger errors more heavily, but its square root transforma-
tion provides a value that is easier to interpret in the context of the original data.
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Mean absolute error (MAE) measures the average of the absolute differences between
the predicted and actual values. The formula for MAE is

MAE =
1
n

n

∑
i=1

|yi − ŷi|

Unlike MSE and RMSE, MAE does not square the errors, making it less sensitive to
large outliers. It provides a direct, interpretable measure of the average magnitude of the
errors without exaggerating the impact of large discrepancies.

Mean absolute percentage error (MAPE) is used to measure the accuracy of predictions
in terms of percentage error. It is calculated by averaging the absolute percentage errors
between the predicted and actual values. The formula for MAPE is

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100

In this formula, yi represents the actual value, and ŷi represents the predicted value.
MAPE expresses the error as a percentage of the actual value, making it easier to interpret
and compare across different datasets or scales. However, MAPE has a limitation when the
actual values are close to zero, as it can lead to extremely large percentage errors.

The coefficient of determination
(

R2) indicates how well the model explains the
variance in the target variable. It compares the model’s performance to that of a simple
baseline model that predicts the mean of the target variable for all instances. The formula
for R2 is

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2

In this formula, yi is the mean of the actual values, and n is the total number of samples.
R2 measures the proportion of the variance in the dependent variable that is explained by
the model. A higher R2 value (closer to 1) indicates better model performance, whereas
values closer to 0 indicate poor model fit. A negative R2 suggests that the model performs
worse than simply predicting the mean value of the target variable.

These regression metrics together provide a comprehensive view of how well the model
is performing, with MSE, RMSE, and MAE indicating the magnitude of errors, MAPE showing
the error as a percentage, and R2 describing the model’s explanatory power.

3. Results
In the current study, we performed separate experiments for classification and regres-

sion tasks. For sex classification, we applied deep learning models, namely CNN, VGG16,
VGG19, ResNet (50, 101, 152), MobileNet, DenseNet (121, 169), Vision Transformer (ViT),
and a vision–language model (Moondream2). We used the same models for age prediction,
evaluating both tasks with various metrics.

3.1. Sex Classification (Male)

The CNN model achieved the highest precision, recall, and F1 scores (0.85, 0.85, and
0.85), indicating consistent performance in sex classification (Table 1). In contrast, the
Moondream2 model had the lowest precision (0.51), suggesting that it made more false
positive predictions but still performed well during recall (0.88). VGG16 and DenseNet121
also performed well, with balanced precision and recall, (0.83, 0.83) and (0.77, 0.9), respec-
tively, showing effective sex classification. ResNet50 showed relatively lower performance,
particularly in recall, indicating a higher rate of false negatives.
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Table 1. Sex classification results for males.

Model Precision Recall F1 Score

CNN 0.85 0.85 0.85
VGG16 0.83 0.83 0.83
VGG19 0.74 0.9 0.81

ResNet50 0.75 0.37 0.49
ResNet101 0.77 0.49 0.6
ResNet152 0.71 0.88 0.78
MobileNet 0.7 0.93 0.8

DenseNet121 0.77 0.9 0.83
DenseNet169 0.75 0.88 0.81

Vision Transformer 0.69 0.83 0.76
Moondream2 0.51 0.88 0.64

3.2. Sex Classification (Female)

The CNN model demonstrated a balanced performance, with a precision of 0.84,
recall of 0.84, and F1 score of 0.84, indicating its ability to correctly classify female images
with minimal errors (Table 2). The CNN performed better than models such as ResNet50
(precision: 0.56, F1 score: 0.68) and ResNet152 (precision: 0.82, F1 score: 0.70), which had
higher precision but lower recall, reflecting some missed true positives. MobileNet and
DenseNet121, with F1 scores of 0.70 and 0.78, respectively, also outperformed the CNN in
some aspects. However, Moondream2 demonstrated poor results (precision: 0.38, F1 score:
0.13) again, indicating that the vision–language model struggled with classifying sex across
panoramic radiographs.

Table 2. Sex Classification results for females.

Model Precision Recall F1 Score

CNN 0.84 0.84 0.84
VGG16 0.82 0.82 0.82
VGG19 0.86 0.66 0.75

ResNet50 0.56 0.87 0.68
ResNet101 0.6 0.84 0.7
ResNet152 0.82 0.61 0.70
MobileNet 0.88 0.58 0.7

DenseNet121 0.87 0.71 0.78
DenseNet169 0.84 0.68 0.75

Vision Transformer 0.77 0.61 0.68
Moondream2 0.38 0.08 0.13

3.3. Overall Sex Classification Model Performance

Table 3 provides an overview of the sex classification performance across the various
models. The custom CNN model stood out, with the highest accuracy (0.85) and AUC
(0.85). DenseNet121 and VGG16 also performed well, achieving accuracies of 0.81 and 0.82,
respectively, with AUC values of 0.84. ResNet152 demonstrated balanced performance,
with 0.75 accuracy and 0.82 AUC across the sub-500 image dataset. ResNet50 and Moon-
dream2, however, fell behind, with lower accuracy (0.61 and 0.49, respectively) and AUC
scores (0.75 and 0.48), suggesting that they struggled with effective binary sex classification.
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Table 3. Overall sex classification results.

Model Accuracy AUC

CNN 0.85 0.85
VGG16 0.82 0.84
VGG19 0.78 0.82

ResNet50 0.61 0.75
ResNet101 0.66 0.74
ResNet152 0.75 0.82
MobileNet 0.76 0.83

DenseNet121 0.81 0.84
DenseNet169 0.78 0.85

Vision Transformer 0.72 0.77
Moondream2 0.49 0.48

3.4. Overall Age Regression Model Performance

Table 4 presents the overall performances of different models in age regression, using
various evaluation metrics. DenseNet169 and MobileNet provided the best results, with the
lowest mean squared error (MSE) values of 85.83 and 95.46, respectively, and the highest
R2 values of 0.57 and 0.52, indicating strong predictive power. In terms of mean absolute
error (MAE), DenseNet169 achieved the lowest value (7.07), closely followed by MobileNet
(7.78), suggesting better accuracy in predicting age. The RMSE values for DenseNet169
and MobileNet were (9.26) and (9.77), respectively, highlighting their minimal average
prediction errors. Vision Transformer, with an MSE of 159.98 and R2 of 0.20, performed
poorly compared to the other models. ResNet50 performed the worst, with the highest
MSE (188.79) and MAE (11.59), and an R2 of just 0.06, indicating poor predictive ability.
VGG16, VGG19, and the CNN showed moderate performance, with MSE values ranging
from 142 to 148, MAE values between 9.3 and 9.96, and R2 values between 0.26 and 0.29,
demonstrating average prediction accuracy.

Table 4. Overall age regression results.

Model MSE MAE MAPE RMSE R2

CNN 142.88 9.3 32.37% 11.95 0.29
VGG16 148.19 9.96 36.52% 12.17 0.26
VGG19 142.13 9.57 33.83% 11.92 0.29

ResNet50 188.79 11.59 44.76% 13.74 0.06
ResNet101 170.68 10.62 38.16% 13.06 0.15
ResNet152 166.36 10.34 39% 12.9 0.17
MobileNet 95.46 7.78 26.07% 9.77 0.52

DenseNet121 97.2 7.95 27.31% 9.86 0.52
DenseNet169 85.83 7.07 22.98% 9.26 0.57

Vision Transformer 159.98 10.24 37.38% 12.65 0.2

3.5. Receiver Operating Characteristics of the Models

The AUC represents the ability of the model to discriminate between positive and
negative classes, with higher values indicating superior performance [42].

The CNN demonstrated the highest AUC of 0.85, indicating excellent discriminatory
power in distinguishing sex classes. VGG16 and DenseNet169 followed closely, achieving
an AUC of 0.84. VGG19 documented an AUC of 0.82.

ResNet152, MobileNet, and DenseNet121 achieved AUCs of 0.82, 0.83, and 0.84 re-
spectively. On the other hand, ResNet50 and ResNet101 achieved lower AUC values, of
0.75 and 0.74, respectively.
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ViT recorded an AUC of 0.77, while Moondream2 recorded an AUC of 0.48, suggesting
the selected VLMs were ineffective at discriminating sex classes. Figure 10A–K illustrate
the ROC graphs for the included models. Please note that we have evaluated 10 deep
learning models for age regression and 11 models for sex classification.
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VIT_B16 sex model; (K) ROC graph for Moondream2 model.

3.6. Confusion Matrices of Sex Models

The confusion matrices of the evaluated models have been aggregated and are pre-
sented in Table 5.

Table 5. Confusion matrices of predicted vs. actual outcomes for the models in predicting biological sex.

Models
Male Female

Predicted Actual Predicted Actual

CNN 35 41 32 38
VGG16 34 41 31 38
VGG19 37 41 25 38

ResNet50 15 41 33 38
ResNet101 20 41 32 38
ResNet152 36 41 23 38
MobileNet 38 41 22 38

DenseNet121 37 41 27 38
DenseNet169 36 41 26 38

Vision Transformer 34 41 23 38
Moondream2 36 41 3 38

The CNN exhibited the most balanced performance, accurately predicting 35 out
of 41 males and 32 out of 38 females, indicating its robustness in handling both classes.
MobileNet achieved the highest accuracy for male predictions (38 correct predictions)
but demonstrated suboptimal performance for females, with only 22 correct predictions.
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While DenseNet121 performed strongly for males (37 correct predictions), it fell short for
females, with only 27 correct predictions. Among the ResNet-based models, ResNet50
significantly underperformed for males (15 correct predictions) despite a relatively strong
performance for females (33 correct). ResNet101 achieved a slightly better balance, with
20 correct male and 32 correct female predictions, whereas ResNet152 demonstrated im-
proved accuracy for males (36 correct) but showed limitations for females (23 correct).
The Vision Transformer exhibited a similar pattern to ResNet152, with 34 accurate male
predictions but only 23 accurate predictions for females, suggesting a bias toward the
male class. Finally, Moondream2 did not perform well, with only three correct female
predictions, highlighting its inadequacy for this task. Overall, the CNN emerged as the
most balanced and reliable model, while ResNet variants and Vision Transformer showed
varying degrees of class imbalance, favouring male predictions.

3.7. Inference Time

Table 6 presents the inference times of the evaluated models. MobileNet and the
CNN had the fastest inference times at 12.658 ms, making them well suited for real-time
applications. Conversely, Vision Transformer (164.557 ms) and Moondream2 (4481.013 ms)
had significantly slower inference times. Moondream2′s prolonged processing time further
underscores its inefficiency for sex prediction tasks, indicating a need for optimisation in
future research efforts.

Table 6. Inference time for sex prediction.

Model Time Taken in Milliseconds

CNN 12.658
VGG16 88.608
VGG19 113.924

ResNet50 37.975
ResNet101 50.633
ResNet152 101.266
MobileNet 12.658

DenseNet121 25.316
DenseNet169 37.975

Vision Transformer 164.557
Moondream2 4481.013

4. Discussion
The current study assessed multiple deep learning neural networks and VLMs for

their ability to estimate patient sex and age from panoramic dental radiographs. The study
aimed to evaluate the performance, limitations, and potential applications of these models
in clinical sciences and jurisprudence.

Artificial intelligence (AI) has demonstrated an ability to match or even surpass human
performance in specific tasks such as triage, age estimation, and effectively communicating
findings [43,44]. However, the appropriate use of AI is hindered by challenges related to
data governance [45]. A key limitation lies in the lack of regulations for sharing deidentified
radiograph data, as no established consent process currently allows patients to control
how their data are used for AI training. This highlights the practical importance of open
access datasets, such as the Tufts dataset, and emphasises the need for methodological
advancements to develop robust, practical AI models [46].

AI systems, particularly those using deep learning methods, operate on gradient-
based learning, extracting features deemed significant for their tasks [37]. However, as
models grow more complex, their interpretability diminishes, reducing transparency in
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the decision-making process. This trade-off between complexity and interpretability is
particularly critical in sensitive applications, such as forensic age estimation, where clarity
and accountability are paramount [47].

The models evaluated in this study demonstrated varying levels of success in sex
classification and age regression tasks. The CNN, MobileNet, and DenseNet169 achieved
higher accuracy and AUC scores for sex classification, making them strong performers
in this domain. In contrast, models such as ResNet50 and ResNet101 struggled with
classification, likely due to their inefficiency in handling smaller datasets effectively.

Moondream2, the sole multimodal deep learning model in the study capable of
processing both text and image inputs simultaneously, was expected to estimate both
age and sex. While it successfully identified anatomical landmarks from radiographic
images, it was unable to perform age regression, limiting its utility to sex classification.
However, even for sex classification, Moondream2 exhibited limitations in generalizing
predictions effectively. This shortcoming can be attributed to its lightweight architecture
and lack of optimisation for domain-specific tasks, highlighting an area for further research
and development.

Limitations and Future Recommendations

Despite efforts to remove class imbalances, the sex classification models in this investi-
gation performed poorly, especially for female predictions. The dataset’s sex distribution
may have contributed to biased outcomes, since certain models showed lower precision
and recall for females.

Having a larger and more diverse dataset with age labels could potentially lead to
improved results in the regression task. A greater number of labelled images would provide
the model with more examples to learn from, enhancing its ability to generalize and reduce
overfitting. Additionally, a more varied dataset would help ensure better representation
across different age groups, improving the model’s accuracy and reducing potential bias in
age prediction.

The study did not explore larger VLMs, which may have provided a more compre-
hensive understanding of the classes due to their advanced capabilities. However, their
significant computational requirements and resource constraints rendered them impractical
for the scope of this research.

The following recommendations can be made for future research:

1. Addressing sex classification prejudice: Future research should focus on finding ways
to reduce the sex prejudice found in this study. This could include approaches such as
class balance through data augmentation, using class weights in model training, or
investigating domain-specific architectures that perform better on sex categorisation
tasks. Additional strategies for equalizing sex representation in the dataset could
increase model fairness and accuracy.

2. Expanding and diversifying the dataset: To improve regression task performance,
future studies should use a larger, more diversified dataset with a wider variety
of age labels. A larger dataset would provide the model with more generalization
capacity, lowering the danger of overfitting and enhancing predictions across age
groups. Furthermore, collecting data from several demographic groups may result in
greater representation and reduced bias, especially for age-related predictions.

3. Exploring the potential of larger VLMs: Given the potential capabilities of larger
VLMs, future studies could investigate their use in medical imaging applications,
particularly sex and age prediction. Although these models necessitate significant
computational resources, developments in model optimisation, transfer learning, and
distributed computing may make them more viable. Researchers could also examine
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hybrid models that combine the strengths of both smaller and larger VLMs, potentially
improving prediction accuracy while maintaining computational economy.

5. Conclusions
The following conclusions can be drawn from the current research:

1. Sex classification: Convolutional neural networks (CNNs) and DenseNet models
demonstrated strong performance, achieving an accuracy of approximately 85%.

2. Age estimation: DenseNet outperformed other models, achieving the highest performance
with the lowest mean squared error in estimating age from panoramic radiographs.

3. Inference time analysis: MobileNet and CNNs emerged as the fastest models, making
them suitable for real-time applications. DenseNet models, while slightly slower,
offered an optimal balance between computational efficiency and accuracy.

4. Vision–language models (VLMs) and multimodal systems: These models require
further research and development to enhance their competitiveness and reliability for
clinical applications.

Author Contributions: Conceptualization: S.S.A., N.R., T.A.F., S.A., R.A.H., J.D. and T.H.F.; Method-
ology: S.S.A., N.R., T.A.F., S.A. and R.A.H.; Software: S.S.A., N.R., T.A.F., S.A. and R.A.H.; Validation:
T.H.F.; Investigation: S.S.A., N.R., T.A.F., S.A. and R.A.H.; Data Curation: T.H.F.; Writing Original
Draft: S.S.A. and S.A.; Writing—Review and Editing: T.H.F. and J.D.; Supervision: S.A. and T.H.F.;
Project Administration: J.D. and T.H.F.; Funding Acquisition: J.D. All authors have read and agreed
to the published version of the manuscript.

Funding: The study was partially supported by the University of Adelaide Kwok Paul Lee
Bequest (350-75134777).

Institutional Review Board Statement: The study was approved by the University of Adelaide
Human Research and Ethics Committee (HREC-2023-073, 2023-4-26) and the Institutional Review
Board of North South University (2023/OR-NSU/IRB/0503, 2023-6-15).

Informed Consent Statement: Not applicable.

Data Availability Statement: https://github.com/Salem1901/Comparative-Analysis-of-Age-and-
Gender-Prediction-Using-Deep-Learning-Architectures-.git (last accessed on 21 November 2024).

Conflicts of Interest: Author Taseef Hasan Farook was employed by the company Research and
Innovations, Dental Loop Pty Ltd. The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed as a potential
conflict of interest.

References
1. Bassed, R.B.; Briggs, C.; Drummer, O.H. Age estimation using CT imaging of the third molar tooth, the medial clavicular

epiphysis, and the spheno-occipital synchondrosis: A multifactorial approach. Forensic. Sci. Int. 2011, 212, 273.e1. [CrossRef]
[PubMed]
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