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Abstract: Metabolites are at the end of the gene–transcript–protein–metabolism cascade. As such,
metabolomics is the omics approach that offers the most direct correlation with phenotype. This
allows, where genomics, transcriptomics and proteomics fail to explain a trait, metabolomics to
possibly provide an answer. Complex phenotypes, which are determined by the influence of multiple
small-effect alleles, are an example of these situations. Consequently, the interest in metabolomics has
increased exponentially in recent years. As a newer discipline, metabolomic bioinformatic analysis
pipelines are not as standardized as in the other omics approaches. In this review, we synthesized
the different steps that need to be carried out to obtain biological insight from annotated metabolite
abundance raw data. These steps were grouped into three different modules: preprocessing, statistical
analysis, and metabolic pathway enrichment. We included within each one of them the different
state-of-the-art procedures and tools that can be used depending on the characteristics of the study,
providing details about each method’s characteristics and the issues the reader might encounter.
Finally, we introduce genome-scale metabolic modeling as a tool for obtaining pseudo-metabolomic
data in situations where their acquisition is difficult, enabling the analysis of the resulting data with
the modules of the described workflow.
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1. Introduction

Metabolism is the currency of the physiological processes of all living organisms.
The biomass that forms all organisms is a product of metabolism, as well as the chemical
reactions that ensure its energetic viability and maintenance. The metabolome comprises
all the small chemical compounds (metabolites) that are present in a biological system
at a given moment [1]. These small compounds include sugars, amino acids, nucleic
acids, lipids, fatty acids, phenolic compounds, and alkaloids. Due to metabolism being
at the end of the gene–transcript–protein–metabolism cascade, the metabolome is the
omics dataset that is closer to the phenotypic state of the organism under investigation [2].
This straightforward correlation facilitates the study of metabolism to possibly provide
explanations for the mechanisms driving phenotypes where genomic, transcriptomic, or
proteomic approaches cannot. One example of this are complex phenotypes, where the
observed features are a product of a high number of small-effect alleles, rather than a
few strong-effect mutations, which makes it difficult to establish connections between, for
example, genome and phenotype [3]. In the context of pathogenic microorganisms, the
possibility of examining their physiological state in a particular moment can provide insight
into their virulence mechanisms. Some pathogens rely on the production of secondary
metabolites to display increased virulence. For example, Pseudomonas aeruginosa produces
rhamnolipids to form biofilms and spread across surfaces, and the secretion of these
compounds serves as a means for reducing oxidative stress [4–7]. Other pathogens rewire

BioChem 2024, 4, 90–114. https://doi.org/10.3390/biochem4020005 https://www.mdpi.com/journal/biochem

https://doi.org/10.3390/biochem4020005
https://doi.org/10.3390/biochem4020005
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biochem
https://www.mdpi.com
https://orcid.org/0000-0002-9012-0764
https://orcid.org/0000-0002-4217-0054
https://doi.org/10.3390/biochem4020005
https://www.mdpi.com/journal/biochem
https://www.mdpi.com/article/10.3390/biochem4020005?type=check_update&version=2


BioChem 2024, 4 91

their metabolic network to adjust to the stresses imposed by the infected host, diverting
fluxes toward metabolic products that help to evade the immune response, serve as reserve
resources against starving and protect against the host’s attacks. An example of this is
Mycobacterium tuberculosis infection, which is characterized by a switch from carbohydrate
to lipid use as a carbon source, an altered composition of the cell wall and an abrupt
decrease in the growth rate [8–10]. These facts have contributed to an exponential increase
in the interest in the application of metabolomic techniques in microbiological studies [11].

Metabolomic data are most frequently acquired with gas chromatography–mass
spectrometry (GC-MS), followed closely by liquid chromatography–mass spectrometry
(LC-MS) and nuclear magnetic resonance (NMR) [11,12]. GC-MS offers the advantages
of the equipment being cheaper, easier to operate and less prone to maintenance issues.
Additionally, retention times between runs are highly reproducible, making automated
compound identification easier. Consequently, it is the gold standard for profiling primary
metabolism [13,14]. An important drawback is that the sample needs to be volatilized
prior to entering the chromatographic column, and is necessary to derivatize non-volatile
compounds, therefore enabling the possibilities of the degradation of compounds and
the formation of new ones as products of the heat [15]. On the contrary, LC-MS has the
advantage that allows for the detection of more compounds than GC-MS, being able to
acquire tens of thousands of features in a single run. The lack of methods available to
determine the metabolite identity of all detected ions is, however, a major limitation [11].
Other advantages are a high sensitivity and, as it does not need compound derivatization,
sample preparation is easier, faster, and cheaper [16]. The main drawback is that the
chromatographic column does not behave exactly the same in separate runs. This causes
compound elution times to naturally drift between runs [17], implying extra steps for
identifying the identities of the peaks. Among the advantages offered by NMR are that it is
non-destructive, allowing in vivo measurements, can provide information about the inter-
actions of metabolites with macromolecules, has an easier workflow for performing isotope
tracing than LC-MS and GC-MS, and is more reproducible [18]. The main drawbacks
are less sensitive measurements, making challenging the detection of low-concentration
compounds, and the needs for more physical space for the equipment and more specialized
operators [18,19].

The bioinformatic analysis of metabolomic data can be divided into four main modules.
The first module involves converting the raw spectra into metabolite feature data [20,21].
Metabolite feature data are tables of peak areas, where each row represents an analyzed
sample, and each column, a metabolite. These peak areas are proportional to the relative
abundance of the metabolite within the sample. To gain biological insight from the raw
peak areas, several steps must be carried out, which can be grouped into the other three
modules: peak area preprocessing, statistical analysis, and pathway enrichment. In the
preprocessing module, missing values need to be imputed, and the unwanted experimental
variability, removed. The statistical analysis module aims to identify associations between
the biological factor of interest and the metabolite abundances. The final module, pathway
enrichment, involves determining the metabolic pathways that appear to be perturbed
across the biological factors of interest.

Although several approaches in the outlined workflow are specific for metabolomics,
most of them have been adapted from the analytical routines used in quantitative disciplines
that deal with high-dimensional data, such as transcriptomics and proteomics. This is
especially relevant in the statistical analysis module, where all the discussed methods are
either classic univariate methods, used to test hypotheses in a wide range of fields, or
machine learning techniques, which have been applied to many different types of high-
dimensional data. In the peak area preprocessing and metabolic enrichment modules, some
of the discussed methods are specific to metabolomics, while others are shared with other
omics approaches.

While there is considerable overlap, the particularities of each study lead to a lack of
uniformity in metabolomic workflows, unlike in other omics disciplines. This is despite
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considerable efforts made to establish standardized practices [22]. Still, the modules that
we outlined are common across most of metabolomic analyses. In this review, we dis-
cuss the different state-of-the-art approaches that fall within each one of them, detailing
the particularities of each method, the situations where they can be used, the challenges
that might appear and the issues that need to be considered. In the final section, we
explore alternative approaches for cases where the access to metabolomic data is diffi-
cult, using genome-scale metabolic modeling to infer the metabolic state of organisms in
particular situations.

2. Raw Spectra Preprocessing

NMR and MS spectrum acquisition processes differ considerably. In NMR, data are
registered by the equipment as decaying oscillations over time, called free induction decay
(FID). FIDs are converted to the frequency domain through a fast Fourier transform, obtaining
the NMR spectra. NMR spectra consist of frequency shifts relative to a reference compound,
expressed in parts per million (ppm) and signal intensities [20]. In MS, the spectra dimensions
are m/z ratio, intensity and retention time. These differences imply that the preprocessing
necessary to go from the spectra to a metabolite abundance table will have some variations
and will require specific software. Frequently, these packages are developed by the man-
ufacturer of the experimental equipment, though there are open-source options available.
In NMR, some commercial software used to perform spectra preprocessing are TopSpin
(Brucker, Billerica, MA, USA), Mnova (Mestrelab, A Coruña, Spain) and Chenomx NMR
Suite (Chenomx, Edmonton, AB, Canada), while popular open-source alternatives include
nmrPipe and matNMR [23,24]. In MS, MassHunter (Agilent, Santa Clara, CA, USA) and
Xcalibur (Thermo Scientific, Waltham, MA, USA) are two popular commercial packages.
Among open-source options, MetaboAnalyst/MetaboAnalystR and XCMS are the most
widely adopted ones [25,26].

The raw spectrum preprocessing steps typically include denoising, peak picking, peak
alignment and compound identification. Differences in platforms also influence the level of
automation. In GC-MS and NMR, due to the high reproducibility, these steps are highly
automated, while in LC-MS some of them are more laborious and need more human
intervention, especially compound identification.

2.1. Denoising

Data acquisition through NMR and MS introduces noise. Because of this, preprocess-
ing workflows usually include a denoising step. In NMR, FIDs are commonly denoised
using dimensionality reduction techniques such as single-value decomposition and princi-
pal component analysis (SVD and PCA, respectively) [27,28].

In MS, high-frequency noise is typically removed through smoothing, with common
options being Savitzky-Golay, Gaussian or mean/median filters, as well as wavelet de-
noising [29,30]. For removing low-frequency baseline noise, common approaches include
the use of linear, LOESS and LOWESS filters [29,31,32]. These approaches are also fre-
quently used in the frequency domain in NMR to further improve the signal-to-noise
ratio [20,27,30,32].

2.2. Peak Picking

After denoising, the next step is the extraction of the metabolomic features, a process
known as peak picking. Peak picking consists of identifying and extracting the peaks
that correspond to true single compounds among the whole spectra and determining the
area under the peak, which is proportional to metabolite abundance. This latter step is
known as peak integration. Peak picking is challenging, especially in NMR, due to the
lower signal-to-noise ratio compared to MS and to the overlap of the peaks due to the
lack of a chromatographic separation step [18]. There is a wide range of peak picking
algorithms, ranging from the simplest ones, based on a search for local maxima, to the most
sophisticated methods based on machine/deep learning [29,30,33,34].
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2.3. Peak Alignment

During the acquisition of metabolomic data, non-linear shifts in spectra can occur due
to physicochemical changes in the equipment across runs. In MS spectra, these shifts are
mainly observed in the retention time, which is known as column drift. In NMR, shifts are
observed in the ppm axis. As previously discussed, column drift is especially notable in
LC-MS. Therefore, to integrate the detected metabolic features across different samples, it
is necessary to perform a peak alignment step. Time warping and segmenting algorithms
are frequently used for this purpose, both in MS and NMR [35,36]. Binning is also used
in NMR for this purpose. Here, the spectra were divided in small buckets, which, ideally,
contained single peaks, while allocating the ppm drift across samples [37].

2.4. Compound Identification

Compound identification is performed by mapping the spectra to libraries such as
NIST, HMDB and METLIN [38,39]. In GC-MS, this step is highly automated, given the
reproducibility of retention times, which allows the mapping of spectra to the libraries with
high accuracy. In LC-MS and NMR, the variations in retention times and ppm contribute
to a less straightforward identification, often requiring the manual annotation of some
peaks [40]. It is common that the metabolite identification step is not restricted to raw
spectrum preprocessing: differential analyses can be performed using metabolic features
with both known and unknown identities, for later revisiting the compound identification,
focusing on the unknown peaks significantly associated with the phenotype.

3. Peak Area Preprocessing

After raw spectrum preprocessing, a metabolite table of peak areas will be generated,
where rows and columns correspond to samples and metabolites, respectively. These peak
areas are proportional to relative metabolite abundance. This table will present two issues:
some metabolites will have missing values in some samples, and there will be variability
due to technical errors. Regarding the missing values, it needs to be determined if these
metabolites are truly absent in the sample or below the limit of detection, or there was some
error in the metabolite detection or in the determination of the peak, and their abundances
need to be inferred. This process is known as missing value imputation. The handling of
the technical variation introduced during sampling preparation and data acquisition is
accomplished in the normalization step.

3.1. Missing Value Imputation

Metabolomic data acquired with mass spectrometry (MS) present missing values at
a proportion that can be as high as 20% and affect 80% of the detected metabolites [41].
These missing values can interfere in the statistical analyses performed downstream, mak-
ing it important to address them during preprocessing [42]. The strategies for handling
missing values in metabolomics are borrowed from other omics disciplines, particularly
transcriptomics. Prior to imputation, variables with a high proportion of missing values are
typically removed from the dataset. An example of this approach is the “80% rule”, where
metabolites with more than the 20% of missing values are removed from the dataset [43].
Samples with more than 80% of the variables missing are also filtered out.

For after the prefiltering, there are various approaches for dealing with missing val-
ues, some more sophisticated than others. These can be broadly divided into three cat-
egories [44]. The simplest methods fall under single-value imputation, which includes
the imputation using (1) the mean, (2) the median, (3) the minimum, (4) the minimum/2
or (5) zero. Imputation using the mean and the median of the non-missing values of a
given variable assumes that the origin of the missing values is random, caused by errors
during the sample preparation or detection. Conversely, imputation using the minimum,
the minimum/2 and zero assume that the value is missing because it is below the limit of
detection. As a result, these methods do not determine the cause of each missing value
observation. Moving to more complex approaches, we find imputation methods based
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on local structures. Some examples are random forest and k-nearest neighbor imputation
methods [45–47]. These methods infer the imputed value based on the values of the same
variable in other samples that are similar according to the rest of the variables. Conse-
quently, they can, to some extent, determine if a missing metabolite is below the limit of
detection or was not detected due to some other issue. The third category includes methods
based on global structures, which infer missing values based on the “shape” of the vector
space determined using the metabolomic matrix. In these methods, the missing values are
iteratively estimated until they converge. Options in this category include methods based
on Single-Value Decomposition (SVD) [48], on Bayesian Principal Component Analysis
(BPCA) [49] and on Probabilistic Principal Component Analysis (PPCA) [50].

3.2. Normalization

After missing value imputation, an important step is to normalize metabolomic data
to remove the technical variation that might have been introduced during the experimental
procedure. The sources of this variation are diverse, including human error, differences
in temperature or atmospheric conditions, and variation within and between instruments,
among many other sources. When samples are acquired in short intervals of time, the
produced variation may or may not have a large impact. However, when measurements are
performed in different batches separated in time these differences can become considerable.
Samples that have been run in the same batch were subjected to the same conditions
determined at the moment when the analysis was performed and, therefore, have common
traits that are not related to the biological factors of interest. This is known as the batch
effect [51]. In order to help distinguish batch effect from true biological variation, it is
important to evenly split the samples belonging to the different biological groups across
different batches during the design of the experiment in the data acquisition step.

Compared to transcriptomics or proteomics, where, commonly, all abundances are
normalized to a single value (i.e., the total amount of transcripts or proteins in the
sample, the mean, the median or a value obtained based on a set of housekeeping fea-
tures) [52–55], there is no standard method for dealing with non-biological variability in
metabolomics [56,57]. Furthermore, the outcome of the experiment can vary greatly de-
pending on the chosen normalization method [58]. Consequently, a good practice is to test
different methods and compare their performances [59].

3.2.1. Normalization Methods

Normalization methods can be classified as pre-acquisition, or preventive, and post-
acquisition, or curative [60]. Pre-acquisition methods consist in diluting the samples to
bring all of them to the same global concentration, prior to sample preparation and analysis.
In the case of microbial metabolomics, the most common approach is taking all the samples
to the same optical density (OD, absorbance at 600 nm) before metabolite extraction [61].
For other cases, some alternatives are normalizing to the total dry weight, to the number of
cells or to the total DNA or protein quantity in the sample [56]. Post-acquisition methods
are mathematical procedures that aim to remove the technical variation after the analytical
process [56]. Differences in the performance between pre- and post-acquisition methods
have been reported, with many post-acquisition methods failing to overcome non-linear
variability [62]. However, even performing pre-acquisition normalization, differences in
the analytic equipment conditions between runs can still produce variation during data
acquisition, which still needs to be handled [63]. So, a combination of both approaches
is advisable.

Before post-acquisition normalization, it is also advisable to transform the data, as
metabolite abundances tend to have a right-skewed distribution [64]. Log transformation
is the most used approach but may become problematic when dealing with small values,
because as they approximate to zero, log transformation tends toward minus infinite. An
alternative to overcome this problem is the power transformation, which consists of raising
the values to the power of a rational number, commonly 1/2 [65]. Another solution that
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allows the use of log transformation consists of adding a small number c to all the values
before transformation to avoid the occurrence of zeros.

Regarding post-acquisition methods, there are different alternatives. In this review,
we will cover a selection of them. As with missing value imputation, there are some
normalization methods that are more sophisticated than others. The less sophisticated ones
are inherited from transcriptomics and proteomics. These are the scaling normalization
methods, which consist in subtracting or dividing each metabolite abundance by a single
value. Some options are the mean, median or sum of all the peak intensity values for the
given sample [66]. When the number of differential compounds is low, these methods can
be efficient solutions. But they present the problem that on many occasions, the increase in
the abundance of a particular group of metabolites is not accompanied by a decrease in
another group (self-averaging property does not occur). So, if there are many differential
compounds, normalizing to a single value obtained from the total peak values can introduce
differences in some metabolites that are not actually there [67].

With an increased level of sophistication, there are the normalization methods that rely
on the spiking of one or several internal standards in the sample. Depending on whether
it is desired to capture differences only in instrumental variation, or also in extraction
efficiency, the internal standards can be added just before running the analytical step,
or before the metabolite extraction, respectively. The compounds used in the latter case
are referred to by some authors as surrogate standards. The compounds typically used
as internal standards are isotopically labeled versions of known metabolites [68]. The
simplest of the normalization methods within this family is based on a single standard and
is simply referred to as the IS (internal standard) method [69]. Here, the peak intensity
of each metabolite in each sample is normalized to the peak intensity of the internal
standard, either by dividing each metabolite by this value or by subtracting it from each
metabolite peak intensity [66,69]. The main drawback of this method is the assumption
that all the metabolites are affected equally by the technical variation, which might not be
always appropriate as variation can be influenced by their chemical properties. Therefore,
the chemical properties of the standard might introduce variation due to matrix-specific
effects [67]. A solution to these issues is to add more than one internal standard. The
simplest approach using several internal standards is the retention index (RI) method. Here,
standards with different retention times are added to the samples. Each analyte is then
normalized to the quality control metabolite with the closest retention time [43]. However,
technical variation might arise from sources other than retention time. Because of the
few sources of variability that the scaling, IS and RI methods account for, they struggle to
remove technical variation in complex experimental designs accounting for several batches.

Several normalization methods use statistical modeling to capture the different sources
of technical variation, which allows them to deal with batch effects. NOMIS (Normalization
using the Optimal selection of Multiple Internal Standards) aims to determine the covari-
ance between the internal standards and the analytes through multiple linear regression,
and then removes this covariance from the analytes [67]. This way, the standards of a larger
covariance with each metabolite are given more weight in the normalization, effectively
selecting the optimal standards for the normalization of the given analyte [67]. Despite
this improvement, the internal standards could still be affected by cross-contribution,
a phenomenon that is observed when different analytes that co-elute in the chromato-
graphic column, producing interference in the measurement [70]. The Cross-contribution
Compensating Multiple standard Normalization (CCMN) method overcomes this issue
by performing the normalization in several steps [71]. First, the variation introduced by
the experimental design that is cross-contributed through the analytes to the standards
is removed via multiple linear regression (MLR). These cross-contribution-free standard
values are then used to perform normalization [71]. Instead of using internal standards for
normalization, another option is to use non-changing metabolites, which are present in the
biological samples and, therefore, are exposed to technical variation but are uncorrelated to
the biological factors of interest. RUV-2 (remove unwanted variation, 2-step) method uses
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this approach [63,72]. Here, the unwanted component factors are estimated through the
single-value decomposition (SVD) of the non-changing metabolite matrix, to later fit a linear
model to each metabolite using as explanatory variables both the factors of interest and the
unwanted component factors [63,72]. These non-changing metabolites can be determined
through statistical analysis or by determining which are the metabolites that correlate more
with the standards (if included in the experiment) [63]. Non-changing metabolites have
also been used with success with other normalization methods such as CCMN instead of in-
ternal standards [73]. Another category includes the methods based on quality control (QC)
samples, which are analyzed before and after and scattered at regular intervals throughout
each batch. These methods use the shifts between the measures of a QC sample to correct
the values obtained from the test samples. A representative method of this class is quality
control–based robust LOESS (locally estimated scatterplot smoothing) signal correction
(QC-RLSC) [74]. These QC samples can be either pooled samples, obtained by combining
small aliquots of all the samples in the study, or commercially available QC samples made
of combinations of different biofluids [74–77]. Pooled QC samples offer the advantage that
they contain the same metabolites that can be found in the individual samples, constituting
the average of all the samples. The use of commercially available QC samples often implies
metabolic information losses due to metabolites being detected in the test samples but
not in the QCs. Consequently, these metabolites will not be considered in downstream
analyses. However, in long studies where sample preparation and data acquisition start
before the collection of all the samples, the use of commercially available QC samples might
be necessary [74]. Finally, blank samples are another type of QC sample that, while not
directly related to normalization, are important in the assessment of the reproducibility
of the analyses. These samples consist of either only solvent or the matrix of the sample,
with optional internal standards spiked. Furthermore, the use of these samples allows us to
identify background compounds that should be excluded from downstream analyses [78].
The use of QC samples also serves for preparing the equipment for the analysis of the test
samples, as the first few injections in a run tend to be poorly reproducible [74,79,80].

Table 1 summarizes the post-acquisition normalization methods discussed in this sec-
tion. These normalization methods are included in the NormalizeMets and MetaboAnalystR R
packages [66]. However, while these methods are representative of the different approaches
used for dealing with technical variation, there are additional approaches beyond those
covered here.

Table 1. Normalization method families and some examples.

Scaling Methods

Internal Standard/Nonchanging
Metabolite-Based QC Sample-Based

Scaling Statistical Modeling

mean
median

sum

IS
RI

NOMIS
CCMN
RUV-2

QC-RLSC

3.2.2. Assessment of Post-Acquisition Normalization Effectivity

Each one of the post-acquisition methods mentioned here solves an increasing number
of issues that metabolomic data can present, and, consequently, there is an increment in
complexity as well. Depending on the experimental implementation, the use of some
methods might be more appropriate than others, as in some cases, using excessively com-
plicated methods may be overkill. For example, in cases where the number of differential
metabolites is small, such as in drug screening, scaling methods or the IS method might be
enough [70]. But in comparisons involving multiple differential metabolites, an increasing
level of complexity is probably needed. Thus, it is recommended to test the performances
of different methods to assess which is the one that best suits the dataset. There are different
approaches to determine this, all of them complementary.
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One approach is to evaluate the tightness of the replicates. A way of assessing this is by
comparing the average distance of each sample to its replicates and to the average distance
of each sample to the samples that are not replicates. A good normalization method should
minimize the distance between replicates while maximizing the distance between groups.
So, a scatterplot showing the average within- and between-group distances in the x and y
axes for each one of the tested normalization methods can easily show which of them is
optimizing these distances (Figure 1A). The tightness of replicates can also be determined
using silhouette statistic [81]. A silhouette can be computed for each one of the data points
in each one of the datasets generated with the tested normalization methods, considering
the cluster as the group of replicate samples (Figure 1B). The best-performing normalization
method, in terms of tightness of replicates, will display a distribution of silhouettes with a
lower standard deviation and higher median.
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Figure 1. Evaluation of tightness of replicates before and after normalization with different methods.
Performed on metabolomic dataset of different Pseudomonas aeruginosa clinical isolates, obtained
from Santamaria et al. [73]. (A) Comparison of mean distance between replicates vs. mean distance
across different clinical isolates after tested normalization methods. (B) Comparison of silhouette
distributions. Both plots indicate that the CCMN method is the one that produces tighter replicates.

Another option is to use within and between relative log abundance (RLA) plots [63].
Within-group RLA plots are boxplots of groupwise standardized log metabolite abun-
dances, obtained by subtracting the median of the log abundances of each metabolite in
the replicated samples to each sample. Within-group RLA plots show the tightness of
the replicates achieved using the normalization method: all the samples should have a
median within-group relative abundance close to zero and low standard deviation. For
obtaining across-group plots, the median log abundance of each metabolite across all the
samples is subtracted from the log abundance of each metabolite in each one of the samples.
The obtained boxplots show the variability between the groups of replicates; replicates
should not vary a lot, but differences between groups of replicates should be observed. If
within-group RLA plots show a big proportion of the samples with their medians being
different from zero, it means that the normalization method is not removing the unwanted
variation properly. If within-group RLA plots look as expected, but across-group RLA plots
show no difference between groups, it is a sign that the normalization method is removing
the technical variation and also an important part of the biological variation [59].

Multivariate non-supervised approaches such as principal component analysis (PCA)
or hierarchical clustering analysis (HCA) can also be used to see if the samples aggregate
according to their replicate structure, or if instead, they group by batch. The results
obtained with the unnormalized dataset and each one of the normalization methods can be
compared to determine which of the methods yields tighter replicates and better removes
batch effects [71].
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Another approach for assessing the adequacy of the normalization method is, if
there are metabolites that are known beforehand to be differential between the levels
of the biological factor of interest (positive control metabolites), to rank the statistically
significative metabolites before and after normalization and see if they are among the
top significatives after normalization, meaning that the biological variation has not been
removed [82].

The normalization diagnostic procedures discussed in this section can be performed
using R statistical software with its included plotting features, or alternatively, with the
ggplot2 package. RLA plots can be obtained easily with the NormalizeMets R package [66].
In Python, the SciPy and Matplotlib libraries can be used for this same purpose [83,84].

4. Statistical Analysis of Metabolomic Data

Once the metabolomic data have been normalized with the best-performing method,
different approaches can be used to determine which are the metabolites that are associated
with the studied biological factors. Depending on the nature of these biological factors
and the complexity of the relationship between them and the metabolic features, different
approaches can be used.

4.1. Univariate Analyses

Univariate analyses are the simplest statistical methods for identifying metabolites
associated with specific biological factors, such as phenotypes or experimental conditions.
These tests involve evaluating the association between individual metabolites and fac-
tors of interest [85]. The choice of test depends on the nature of the studied biological
factor—whether categorical or quantitative—and the distribution of the data (Table 2).
For quantitative factors, simple regression is recommended, while for categorical factors,
the Student’s t-test, logistic regression or the Mann–Whitney U test can be used for two
categories, and ANOVA and Kruskal–Wallis tests for more than two categories [85]. In
logistic regression, significance can be assessed with a Wald test [86]. The Student’s t-test,
logistic regression and ANOVA assume a normal distribution of metabolite abundances
(parametric), while the Mann–Whitney U and Kruskal–Wallis tests do not (non-parametric).
Metabolite datasets typically contain from tens to hundreds of variables. Consequently,
when conducting univariate analyses, p-value correction is necessary to mitigate the in-
creased risk of false positives resulting from multiple tests [87].

Table 2. Univariate tests classified according to the type of biological factors they can deal with.

Quantitative
Factors

Categorical Factors

Parametric Non-Parametric

2 Classes >2 Classes 2 Classes >2 Classes

Simple linear
regression

Student’s t test
Logistic regression

(Wald test)
ANOVA Mann–Whitney

U test
Kruskal–

Wallis test

4.2. Multivariate Analyses

Multivariate analyses differ from univariate analyses in that they test the association
of all independent variables to response variables simultaneously. In metabolomic experi-
ments, metabolite abundances are measured outcomes and are not usually manipulated.
Therefore, they have the role of dependent variables according to the experimental design
(as is considered in univariate analysis). But metabolites are not independent entities be-
cause they are connected through the metabolic network. Consequently, we expect that the
different phenotypes being compared or the adaptation to the experimental treatments may
result from a coordinated change in multiple metabolites. In using metabolite abundances
as independent variables in multivariate analyses, it is possible to assess the relationships
between the different variables, providing insight into their interaction in relation to a
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particular biological factor [88]. Another advantage is that only one test is performed for all
variables, avoiding the need for multiple hypothesis tests. Multivariate analysis methods
can be broadly divided into supervised and unsupervised types, depending on whether
information about the response biological variable is provided to the method.

4.2.1. Non-Supervised Multivariate Analyses

Non-supervised multivariate analyses are a good way of visualizing the structure
of the dataset. In metabolomics, the most used method within this category is principal
component analysis (PCA). PCA rotates the data in the multidimensional space determined
by the variables, bringing the data to a new coordinate system where the variance is maxi-
mized across its axis (the principal components). The typical graphical representation of
the PCA is a score plot, which is a scatterplot of the sample values for two principal compo-
nents, usually the first and the second, as they contain most of the variance in the dataset.
With this representation, it is possible to see the clustering of the samples according to their
metabolite abundances. Ideally, this would correspond to the biological factors of interest,
if variation between the samples sharing the same phenotype is small enough compared to
the variation between samples belonging to different biological groups [89]. It is common
to overlay the vectors of the loadings of the represented principal components of some
or all the variables used in the PCA, as loadings reflect the contribution of each variable
to the correspondent principal component. This combination is designated as a biplot
(Figure 2A). Another common representation of PCAs is a multi-score plot, which arranges
the score plots of a combination of a selected number of principal components. This helps
to identify groupings that might not be visible in the first two components. Finally, Scree
plots show the amount of variance included in the sorted principal components as a bar
plot (Figure 2B).

Another commonly used non-supervised multivariate approach is hierarchical cluster-
ing analysis (HCA). In HCA, a determined distance metric, usually in Euclidean distance, is
obtained between pairs of samples, and the samples are iteratively aggregated into clusters,
according to a criterion determined using the linkage method. In metabolomics, HCA is
usually graphically represented in heatmaps, where metabolites are clustered vertically,
and samples, horizontally. This results in a row dendrogram and a column dendrogram,
usually containing the metabolites and the samples, respectively, and a tile plot in between,
where the colors reflect metabolite abundance (Figure 2C). With this visual representation,
it is possible to easily visualize groups of samples that have similar metabolic profiles, and
groups of metabolites that have similar abundance patterns across groups of samples. This
can reveal alterations in metabolic pathways correlated with sample grouping.

PCA score plots have the advantage that, as principal components are sorted according
to how much variance they contain, low-correlated information is filtered out. Therefore,
PCA plots usually present a cleaner representation of the groups. However, this can be
a disadvantage when there is biologically relevant information included in the principal
components other than those represented in the score plots. In an HCA heatmap, on the
other hand, all the information of the dataset is included, which makes it easier to visualize
the influence of the variables over the sample aggregation but causes the grouping to be
noisier. Another disadvantage of HCA is that it will always output some grouping, despite
the existence (or not) of any pattern. PCA score plots, on the contrary, would display, in
this situation, a sparse cloud pattern, where all the samples appear distributed without any
structure in the bidimensional space.

An approach used to assess the stability of the observed grouping using HCA is
consensus clustering, where several iterations of the clustering algorithm are performed,
excluding a random number of samples each round. This method requires a prior indication
of the number of groups (k) that the samples are being clustered into. In order to determine
the number of significant groups, different ks are tested and, for each k, a consensus matrix
is obtained. This consensus matrix indicates how many times each pair of samples was
clustered together, divided by how many times they were selected together in all iterations.
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Ideally, this matrix would be composed of zeros and ones. In determining how far the
obtained consensus matrix is from the ideal one, the optimal number of clusters can be
obtained. This can be accomplished by comparing the CDF (Cumulative Distribution
Function) curves of each k. The original metric used for this comparison is delta K, which
is the relative change in the area under the curve. However, the proportion of ambiguous
clustering (PAC) has been shown to outperform delta K [90]. The PAC quantifies the
proportion of pairs of samples that fall in the middle segment of each CDF curve, which
indicates that they cluster ambiguously. The PAC is computed by subtracting CDFk(u1)
from CDFk(u2), and the u1 and u2 commonly used are 0.1 and 0.9, respectively. With
both metrics, the ‘elbow’ method is the most commonly used to select the best k. This
approach is, however, rather subjective, so different alternatives have been proposed in
order to determine the number of significant clusters more objectively. An example is
the M3C method, which computes a p-value based on a null distribution obtained by
applying consensus clustering on randomly generated datasets, which have the same
feature correlation structure as the original dataset, but do not present clustering [91].
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Figure 2. Graphical outputs of a selection of unsupervised multivariate analyses. These plots were
obtained using the metabolomic dataset included in the work by Boyle et al. from 2017 [92], obtained
from different P. aeruginosa mutants. (A,B) Principal component analysis (PCA). (A) PCA biplot, with
the loadings of the top eight metabolites that most contribute to the two first components overlayed.
The colors of the points indicate the mutant. (B) Scree plot of the four first components, showing
the proportion of the total variance of the data explained by each one of them. (C) Heatmap of two
hierarchical clustering analysis samples, metabolite-wise. The color gradient indicates metabolite
abundance. Each column corresponds to one P. aeruginosa mutant.

It is important to note that PCA, HCA and consensus clustering consider only linear
relationships between samples. PCA seeks the linear combinations of the variables that
maximize the spread of the samples over the axes, while hierarchical clustering methods
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rely on linear distance measures. Therefore, if differences are not linear, there may not be
a clear separation between factors. t-SNE (t-distributed stochastic neighbor embedding)
is one of the non-supervised multivariant analysis that capture non-linear relationships.
However, it is mostly used to explore the similarity between the samples, as determining
the contribution of each variable to the grouping is difficult [93].

The unsupervised approaches described in this section can be applied easily both
in R and Python programming languages. PCA and HCA can be computed using R’s
base functions (prcomp() and hclust(), respectively), while in Python, it is necessary to
install the scikit-learn library [94]. Both consensus clustering and the M3C algorithm can be
implemented in R using the ConsensusClusterPlus and M3C packages, respectively [91,95].
Using these last two methods is, to our knowledge, more difficult to do in Python, as
there are just a couple of GitHub-released implementations of consensus clustering for
python, and the authors of the M3C method released it only as an R package. Finally, t-SNE
can be performed in R using Rtsne, while in Python, it is also included in the scikit-learn
library [94].

Unsupervised multivariate approaches are usually used exploratively, with the aim
of visualizing the underlying patterns hidden in the data. In cases where there is a great
proportion of the total variance correlated with the studied phenotypic traits, unsupervised
analysis can be sufficient for assessing what are the metabolic differences driving the
separation. However, if the data are structured but it is not possible to see a clear separation
according to the biological factors, a supervised approach will be needed to determine if
there are metabolic traits correlated with the phenotype and to identify them.

4.2.2. Supervised Multivariate Approaches

Supervised multivariate analysis methods are used to determine the strength of the
correlation of the multiple variables with the phenotype of interest. Formally, univariate
tests are supervised analyses, so many of the supervised multivariate analyses are univari-
ate methods extended for multiple explanatory variables. Some examples of these methods
are multiple linear regression (MLR), which is used when the phenotype to be explained
is quantitative, and multiple logistic regression, used when the phenotype is categorical,
with only two groups. Multinomial logistic regression can be used when there are more
than two categories. For MLR, the significance of the full model can be obtained using
the p-value computed from the F-statistic, while the significance of the association of each
one of the variables to the response is given by its t-statistic. Regarding logistic regression
methods, as in simple logistic regression, the significance of each one of the variables is
given by the Z-value obtained with a Wald test [86].

MLR and logistic regression work well when the predictor variables are uncorrelated,
but when some of them are correlated (multicollinearity), they fail to explain their indi-
vidual effects on the response variable. In metabolomic datasets, where typically, there
are a high number of predictors, and some of them are correlated because of their role in
the same metabolic pathways, MLR might not be the best solution. Partial least squares
methods solve this problem, being widely used in metabolomics for this reason. These
methods include partial least squares (PLS), partial least squares discriminant analysis
(PLS-DA), orthogonal partial least squares (OPLS) and orthogonal partial least squares
discriminant analysis (OPLS-DA) [96,97]. PLS solves the multicollinearity by reducing the
dimension of the data, projecting the variables to a lower dimension space that maximizes
the covariance with the response variable. OPLS goes one step further by separating the
variability that is correlated to the response variable and the variability that is orthogonal
to it, making easier the interpretation of the influence of each individual variable on the
response variable, but not improving the overall model results. PLS-DA and OPLS-DA are
versions of the methods intended to work with discrete binary response variables, but their
foundations are the same as the ones of their continuous counterparts. The significance
of the metabolites in the separation of the samples according to the response variable can
be determined using the variable importance in projection (VIP) score. This statistic is
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defined as the weighted sum of squares of the PLS weight, reflecting the importance of the
variable to the entire model [98]. The common threshold to consider a variable significant is
VIP ≥ 1 [99–101].

The drawback of the PLS methods is that they are prone to overfitting [102]. To
solve this obstacle, a good approach is to split the dataset into training and testing subsets
and to assess whether the performance in the testing set is significantly different from
that in the training set. R2 and Q2 can be used for this aim. R2, as in linear regression,
indicates the proportion of the variation in the response explained by the model. Q2 refers
to the R2 obtained with the testing set. If the model is not overfitting, R2 should be high,
and Q2 should be slightly smaller than R2, but not very different. However, because of
the time-consuming nature of metabolomic sample acquisition, the number of samples
is not always high enough to be able to split the dataset and still have an appropriate
number of samples. An alternative to this approach is to use label permutation and cross
validation [103]. In cross validation, the dataset is split into several sample subsets, the
model is fitted to all the combined subsets except for one, which is tested in the left-out
subset. This process is repeated until all the subsets have been used as a testing set. This
allows us to have R2 and Q2 values while keeping all the samples for the analysis. In
the permutation test, the responses variables are randomly permutated between samples.
A model is then fitted to the altered dataset, and R2 and Q2 are computed, comparing the
values to the ones of the actual model. If the model is overfitting, the permutated model
might have a higher R2 or Q2 just by chance. Several permutation rounds are carried out,
obtaining a p-value based on the proportion of R2 of permutated sets higher than the actual
R2. Another p-value is obtained analogously for Q2. Some useful graphical representations
for OPLS and OPLS-DA models are a score plot of the predictive and first orthogonal
components (Figure 3A), a scatterplot of the R2 and Q2 values obtained before and after
label permutation (Figure 3B) and a bar plot of each metabolite’s loading for the predictor
component (Figure 3C). These plots allow us to visualize how well the model is separating
the samples, if the model is statistically significant and the contribution of each metabolite
to the separation of the samples according to the response variable, respectively.

Another multivariate supervised method useful in omics analysis is random forest,
which is less prone to overfitting in comparison with PLS methods [102]. A random forest
is based on the decision tree method. Decision trees iteratively select the variable that best
splits the data into two subsets, according to a threshold that maximizes that separation
(i.e., minimize the sum of the squared residuals) [104]. At the end, the samples are separated
according to similar values of the response variable. They can be used with discrete or
continuous response and predictor variables (although in metabolomics, predictors will
always be continuous). Decision trees that work with continuous response variables are
denominated regression trees, and when the response variable is discrete, they are called
classification trees [104]. Decision trees are very prone to overfitting, so random forests
come as a solution to this problem [105]. In random forests, instead of fitting a single tree,
an ensemble of trees is fitted to randomly generated subsets of the total samples, and a
random subset of the total number of predictor variables (sample and variable bagging,
respectively) is created with the aim of making each tree in the ensemble as uncorrelated to
each other as possible [106,107]. The results of each tree are aggregated by either averaging
(in case of regression trees) or majority vote (in the case of classification trees) to obtain
the global results [108]. The resulting model can be analyzed to obtain the importance of
each variable in the prediction of the outcome by permuting the values of each variable
and computing how much the accuracy of the resulting model decreases [105]. Besides
the improved dealing with overfitting, another important advantage of random forest is
that it can deal with non-linear relationships between the groups. This contrasts with PLS
methods, which try to maximize the separation along the response variable using linear
combinations of the explanatory variables. While being less prone to overfitting than PLS,
random forests still can overfit the data, so it is advisable to perform cross validation to
assess the performance.
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Figure 3. Plots obtained from an OPLS-DA model. The OPLS-DA model was fitted on the
metabolomic dataset included in the study by Boyle et al. 2017 [92], classifying the Pseudomonas
aeruginosa clinical isolates as swarmers and non-swarmers (a collective motility phenotype P. aerug-
inosa displays). (A) Score plot of the predictive component and the first orthogonal component.
Swarmers are indicated in blue, and non-swarmers in red. At the bottom of the plot, the R2 value of
the predictive component and the Q2 obtained with cross validation are indicated. (B) Scatterplot of
the R2 and Q2 values obtained with a permutation test (n = 200). Actual R2 values are indicated in
gray, while Q2 values are indicated in black. The respective horizontal lines represent the actual R2

and Q2. At the bottom are the p-values of R2 and Q2, which are the proportion of permutated values
that are higher or equal than the actual values. The similarity between the response variable value
and the permutated response variable is represented in the x axis. (C) Bar plot of the loadings for the
predictive component of the metabolites that were determined as statistically significant using the
OPLS-DA model, with a variable importance in the projection (VIP) higher than or equal to 1. The
metabolites with a negative loading are at a higher abundance in non-swarmers, while the ones with
a positive value are at a higher abundance in swarmers.

Linear and logistic regression models can be implemented using the glm function
in R, while for Python, the scikit learn library is the best option [94]. Multinomial lo-
gistic regression can be implemented in R using the nnet R package [109], and some
options for implementing the PLS methods described in this section are the ropls and pls
R packages [110,111], and the scikit-learn library and pyopls module for Python [94,112].
Regarding random forests, they can be implemented in R using the caret and randomForest
R packages [113,114], and in Python, with scikit-learn [94].

5. Metabolic Pathway Enrichment

Once the set of metabolites significatively associated with the biological factor(s)
of interest is known, it is important to determine which are the metabolic subsystems
that are more likely to be perturbed to gain biological insight. This process is known as
metabolic pathway enrichment. Pathway enrichment methods, as other computational
tools used in metabolomics, were inherited from transcriptomics and proteomics. The
different metabolic pathway enrichment methods can be divided into three different groups:
over-representation analysis (ORA), functional class scoring (FCS) and pathway topology
(PT) [115].
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5.1. Over-Representation Analysis (ORA)

ORA is the simplest approach for performing metabolic pathway enrichment. It relies
on statistical tests that determine which metabolic pathways have more metabolites with
significantly altered abundances than what could be expected by chance [116]. Among
ORA’s advantages are its simplicity, the ease of implementation and its fast computation
time. However, it also has several limitations, among them are that it does not account for
the actual metabolite abundances and instead catalogues the metabolites as differential
by applying a threshold to a determined statistic and discarding the ones that do not pass
the threshold, therefore implying information loss. It also does not take into account the
interactions of the metabolites within the metabolic network, which implies that alterations
in any one of the metabolites within a pathway have the same effect on it. It also considers
metabolic pathways as independent isolated compartments, which is not the case [115].
ORA can be easily implemented directly in any programming language with statistical
capabilities such as R or Python, and it is available as prebuilt functions in R packages such
as clusterProfiler [117].

5.2. Functional Class Scoring (FCS)

FCS tries to improve the information loss limitation ORA implies using the actual
metabolite abundances of the whole dataset, without applying any statistic-based threshold.
The hypothesis supporting this approach is that small but coordinated changes in sev-
eral metabolites belonging to the same pathway can produce observable differences [115].
There are two types of FCS methods: univariate and multivariate FCS methods [118]. In
univariate FCS methods, a score is computed for each individual metabolite based on the
correlation with the studied biological factor, to later integrate them into a single score for
each set of metabolites (metabolic pathway), while in multivariate FCS methods, the score
is directly computed for each pathway [118]. The pathway scores are tested for signifi-
cance using a null hypothesis either by permuting the phenotypes or the metabolites [115].
FCS methods do not solve all the ORA limitations, still considering each metabolic path-
way as an independent unit and not considering the positions of metabolites within the
metabolic network.

MSEA, the metabolomic version of GSEA (gene set enrichment analysis, an FCS uni-
variate method intended to be used with transcriptomic data) [119], can be implemented in
the metaboAnalyst web server and the R package version metaboAnalystR [22,120]. mPLAGE,
the metabolomic-adapted version of PLAGE (pathway-level analysis of gene expression),
is another FCS method that is implemented in Python within the PALS library, which is
also available as a web application (https://pals.glasgowcompbio.org/app/, accessed on
15 April 2024) and as a standalone program [121,122].

5.3. Pathway Topology (PT)

PT methods take advantage of the fact that databases such as KEGG provide infor-
mation about the interactions between different elements of a metabolic network. They
build a graph accounting for all the relationships and use it for determining how likely
it is that differences in abundances in given metabolites affect certain metabolic path-
ways. There are different approaches that consider the metabolic network, each of them
with its own limitations. Some examples of these methods are NetGSA, FELLA and DE-
Graph, which can be implemented through the netgsa, FELLA and DEGraph R packages,
respectively [123–126]. NetGSA uses a graph based on the interaction between the different
elements of the metabolic network, which must be provided by the user as an adjacency
matrix. With this network, it calculates the influence of the concentration of each metabolite
on the rest of them. It then uses this propagation to decompose the reads of the abundance
of each metabolite at baseline level and propagate a signal through its neighbors. With these
values, it then computes a statistic for each pathway to determine if the pathway is poten-
tially perturbed [123]. FELLA retrieves a graph consisting of the interconnections between
the different entries existing in the KEGG database for a given organism, to later apply

https://pals.glasgowcompbio.org/app/
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network propagation algorithms on it using as input differentially abundant metabolites.
The result is a subnetwork of entries with a high probability of receiving propagated signals
from the input metabolites, meaning that they are highly interconnected [125] (Figure 4).
DEGraph compares two conditions using the same interconnected graph, which can be
downloaded from KEGG using the DEGraph R package. It uses a Hotelling T2 test on a
lower dimension space built from the graph to determine the significances of subnetworks
(pathways) within the graph [126].
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Figure 4. Example of pathway enrichment graph obtained using FELLA. The graph depicted
here includes all the KEGG entries with a high probability of receiving a propagated signal from
the differential metabolites, represented as green squares. The category of each KEGG entry is
represented with a color. These results can be printed out as a table of p-values too. The red and
the green square nodes represent the enriched pathways and the input differential compounds,
respectively. The names of both categories are indicated in the labels. The enrichment depicted
here was obtained using as input compounds the differential metabolites between a biosurfactant
producer and non-producer strains from a study by Santamaria et al. [73].

6. Generating Insight When Metabolomic Data Are Not Available: Genome-Scale
Metabolic Models

There are some cases where the acquisition of intracellular metabolomic data is
challenging, such as during the infection of animal or cellular models with intracellular



BioChem 2024, 4 106

pathogens like Mycobacterium tuberculosis or Legionella pneumophilla [127]. In this situation,
the recovery of the bacteria from within the infected cells at sufficient biomass amounts
without perturbing the metabolic state of the bacteria makes the obtention of metabolomic
data virtually impossible. Genome-scale metabolic models (GEMs) are a suitable alterna-
tive for evaluating how differences in genomic content translate into distinct metabolic
phenotypes. GEMs are representations of the metabolic capabilities of an organism, based
on its genomic content [128]. They have been used with success to predict the growth rate
of an organism in a particular medium composition, gene essentiality, the production of
virulence factors and the response to stresses in different microorganisms [73,129]. GEM
reconstruction typically starts with a genome annotation of the organism to be modeled,
from which the reactions that the organism is capable of catalyzing are inferred. With
these reactions, a draft metabolic network is automatically built, accounting for the con-
straints imposed by reaction stoichiometry. Later, further constraints based on experimental
data are applied. They include the compartmentalization of reactions and compounds,
measured intake and secretion rates of metabolic compounds, and biomass composition,
integrated in a special reaction, denominated a biomass reaction, which represents the
specific growth rate (h−1) [130]. The obtained metabolic network will contain some gaps
due to incompleteness and mistakes in the annotation and promiscuous enzymes that
catalyze reactions that are not accounted for, which will need to be filled. This step is
preferred to be carried out manually [131].

Once the metabolic network is complete, the rate of change in each metabolite concen-
tration can be represented as follows:

dC
dt

= Sv (1)

where C is a vector of metabolite concentrations; S is the stoichiometric matrix, with each
row representing a metabolite, and each column, a reaction, and the matrix elements are
the stoichiometric coefficients of each metabolite relatively to each reaction (positive if
the metabolite is produced, negative if it is consumed, zero if does not intervene in the
reaction); and v is the vector of reaction rates or fluxes [132]. As the metabolic reactions
occur at a much shorter time scale than biomass growth, the system is assumed to be in
stationary state, so

0 = Sv (2)

Given that the biomass formation equation represents specific growth rate, and the
substrates to form biomass are indicated in mmol/gDW (gram of dry weight), the unit of
the reaction fluxes is mmol/(gDW·h). This system of equations will be under-determined,
as the number of reactions is higher than the number of metabolites for known metabolic
networks. So, rather than providing a single solution of reaction fluxes for a particular
medium composition, the GEM will delimit a multidimensional space containing all the
metabolic states that the model predicts to be possible in the specified conditions [130].
There are different approaches available for obtaining particular solutions. The first one
is flux balance analysis (FBA), which consists of maximizing (or minimizing) at least
one objective reaction [133]. Usually, objective reactions are the biomass and/or ATP
production maximization and/or minimization of the total flux through the metabolic
network [134,135]. With FBA, a flux distribution in the edge of the solution space is obtained,
under the assumption that a set of objective functions is at its maximum (Figure 5A). But in
some situations, this assumption might not be adequate. In many natural environments,
where nutrients are not abundant, the organisms prioritize global robustness against a
wider range of stresses rather than maximizing a few objectives such as energy production
or growth rate [134]. One example is the M. tuberculosis macrophage infectious process,
where bacteria divert several resources to counteract the stresses imposed by the host [136].
Another instance is the rhamnolipid production of Pseudomonas aeruginosa, induced by
a high-density bacterial population. Here, this microorganism secretes vast amounts of
carbon-rich resources to the extracellular medium instead of using them for growth [137].
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Additionally, during adaptation to different temperatures, Arabidopsis thaliana prioritizes
the reallocation of metabolic resources to adapt to the new conditions [138]. In such
situations, flux sampling is a suitable alternative that allows researchers to examine flux
distributions without introducing any bias. Flux sampling consists of taking random
samples of the solution space imposed by the model’s constraints (Figure 5B). If the number
of samples is large enough, it is possible to infer the shape of the solution space [139],
enabling comparisons between the sampled flux distributions of model versions that reflect
different genotypes or conditions [127].
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Figure 5. Graphical 3D representations of flux distribution obtention methods. The three axes
represent the values of the three variables of a simplified model: the flux for each of the three
reactions. The constraints that the model determines delimit the solution space, which is represented
as the blue polyhedron. The red spheres represent feasible solutions of the solution space. (A) In flux
balance analysis (FBA), the flux of an objective reaction is maximized; in this case, for V1, the solution
is at the edge of the solution space where V1 is maximized. (B) In flux sampling, the solution space is
randomly sampled a determined number of times. Therefore, each red sphere is a flux distribution
sampled from the solution space.

In employing GEMs and FBA and/or flux sampling, a flux matrix can be obtained
for different genotypes or conditions. This matrix resembles the imputed and normalized
metabolite matrix obtained in Section 3. The statistical analyses and the pathway enrich-
ment methods discussed in Sections 4 and 5 can be used to determine, for example, which
are the metabolic pathways more likely to be affected by genomic differences between
different bacterial strains when intracellular metabolome data are not available [127].

7. Conclusions

Metabolomics is a field with promising prospects across several life science disci-
plines [140]. As a relatively new field compared to other omics, metabolomics lacks a
standardized procedure for handling derived data analysis. In this review, we compiled
the most commonly applied approaches and proposed a typical metabolomic bioinfor-
matic workflow starting from raw data acquisition, whether with LC-MS, GC-MS or NMR.
We divided the process into four modules: raw spectrum preprocessing, raw peak area
preprocessing, statistical analysis and metabolic pathway enrichment. For each step, we
highlighted some of the most popular approaches and indicated state-of-the-art tools that
readers can use. We diagrammed the workflow in Figure 6. This guide aims to navigate
the challenges that might arise in each step of bioinformatic analysis and emphasize the
advantages and drawbacks of the presented methods. As an alternative to acquiring intra-
cellular metabolomics data when it is not possible, we proposed using GEMs to generate
metabolomic-like data. This data can help determine how genomic differences translate
into metabolic discrepancies, considering the entire metabolic network [127]. If intracellular
metabolomic data are not available but it is possible to measure the exchange rates of extra-
cellular metabolites, it is possible to further constrain these models. This allows us to infer
the metabolic phenotype across various environmental conditions or individuals of the
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same species [138,141]. The emergence of single-cell transcriptomic technologies enables
the building of context-specific GEMs with cell-type resolution, opening up numerous
avenues for new research areas [142].
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Figure 6. Overview of bioinformatic analysis of metabolomic data. Each one of the four modules in
our workflow is indicated in a different color. The workflow starts with raw spectra. The first module
is raw spectrum preprocessing, which involves four steps: denoising, peak picking, peak alignment,
and compound identification. Raw spectrum preprocessing generates a raw metabolite peak area
dataset, which then undergoes further preprocessing. This is performed in the second module: raw
peak area preprocessing. Here the initial step is missing value imputation, where missing values
(indicated in red) are inferred (indicated in green). The data are then transformed, to mitigate the
right-skewed distribution typical of metabolomic data, and normalized using the most appropriate
method for the dataset. Once data are preprocessed, statistical analysis can be performed, using one
or several univariate or multivariate methods. In this second category, unsupervised and supervised
approaches can be alternated between. The outcome of this step is a list of differential metabolites.
Finally, the last module is metabolic pathway enrichment. Some approaches, like ORA and some PT
methods such as FELLA, require lists of differential metabolites. In FCS and in other PT methods,
the normalized metabolite abundances can be used directly. The output of the metabolic pathway
enrichment is the altered metabolic pathways. Abbreviations: ORA—over-representation analysis;
FCS—functional class scoring; PT—pathway topology.
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