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Abstract: Otoliths of the fish’s inner ear serve as a natural chronological recorder because of their
continuous formation marked by daily, monthly, and annual increments. Despite their importance, the
comprehensive protein content of otoliths remains not fully identified. Using the label-free shotgun
proteomics method with one-dimensional liquid chromatography coupled to electrospray ionization-
orbitrap tandem mass spectrometry, we quantified a broad range of proteins, with individual otoliths
containing between 1341 and 1839 proteins. The identified proteins could potentially serve as a
blueprint for fish growth from embryo to adult. We quantified eleven heat-shock proteins (HSPs) in
both sexes and several proteins impacted by endocrine disruptors, indicating the otolith’s capacity to
reflect environmental stress, potentially linked to climate change effects and altering of hormonal and
neuroendocrine functions. Our bioinformatic ontology analysis confirmed the presence of proteins
critical for various biological processes, including structural and enzymatic proteins. Protein–protein
interaction (PPI) mapping also identified key interactions between the identified proteins. These
findings significantly advance our understanding of otolith proteomics, offering a solid foundation
for future work. Most of the identified proteins deposited daily and influenced by the environment
were not implicated in the biomineralization of otolith, raising the potential for the otolith proteome
to recreate details of fish life history at previously unrealized levels.

Keywords: otoliths; proteomics; biomineralization; quantitative shotgun analysis; Gadus morhua

1. Introduction

Atlantic cod (Gadus morhua) fishing is a significant economic resource in Canada,
impacted by both overfishing and climate change [1–3]. The cod’s inner ear plays a
crucial role in its balance and auditory functions. It consists of three semicircular canals
that detect head movements and are essential for orientation; these canals are filled with
endolymph fluid and contain a crista, which is a sensor for rotational and angular motions.
Additionally, the inner ear includes three otolithic organs, the saccule, lagena, and utricle,
each containing a unique otolith or ear stone (sagitta, lapillus, and asteriscus) vital for
auditory and equilibrium processes [4–6].
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Otoliths are composed of calcium carbonate (CaCO3) embedded with organic molecules
such as complex polysaccharides and proteins, and are metabolically inert. They grow
continuously through the daily accretion of concentric layers of the otolith matrix [7–9].
Otoliths are important tools in fisheries research, offering a window into the life history
and ecological dynamics of fish species. Their multifaceted study includes macroscopic
analyses, from shape and size, to microscopic examinations, such as growth increments
and inorganic chemical composition, reflecting the fish’s environment and behaviours [10].
The analysis of the otolith composition can reveal the existence of common environmental
factors that influence fish growth, help uncover past climate conditions, and predict future
environmental impacts on marine ecosystems [11,12]. Fish growth is a complex biolog-
ical process influenced by a combination of intrinsic and extrinsic factors. The intrinsic,
such as ontogeny and sex, and extrinsic, such as abiotic conditions of the environment or
intra-specific interactions, may complicate inferences about climatic impact [11].

A notable study created a century-long growth biochronology (1908–2014) for Atlantic
Cod growth in Icelandic waters from otoliths, and demonstrated that temperature variations
significantly influenced growth, with younger fish benefiting from warmer temperatures
while older fish experienced negative growth effects under similar conditions [11].

The sagitta, the largest otolith, has garnered significant attention in research due
to its size and detailed information about the fish’s age and growth patterns. Larger
otoliths provide clearer and more distinct growth rings, offering accurate inter-specific
morphological diversity [13,14].

Daily growth layers of otolith structures, formed by the gradual accumulation of
new material, vary in thickness and composition depending on environmental conditions,
some associated with proteins and some with the CaCO3 component. This continuous
addition from hatching to death provides a valuable record of various aspects of fish life
history, and serves as a potential environmental record [15,16]. Proteins constitute a small
portion of the otolith, estimated at around 2–3% [17,18]. As most of these proteins are
unlikely to be directly involved in biomineralization, it suggests that a diversity of proteins
present in the endolymph are trapped in the otolith during increment formation [17]. This
raises the intriguing possibility that the otolith is not only archiving elemental markers of
environmental history, but also protein markers of development and physiological change
over an individual’s lifetime [17,19]. Previous research has highlighted the significant
roles of fifteen identified proteins in otolith formation and maintenance within vertebrates,
focusing on three main groups: otolith matrix proteins, otolith anchoring proteins, and
otolith regulatory proteins [15,20,21]. However, the comprehensive understanding of the
otolith’s whole protein composition has not yet been investigated.

The advancement in proteomics has been propelled by innovations in protein separa-
tion, mass spectrometry (MS) establishing the identification and analytical composition,
and data analysis through bioinformatics. MS is central to extensive protein studies. The
“bottom-up” approach dissects proteins into peptides via proteolysis for analysis, termed
“shotgun proteomics”, when applied to protein mixtures. This method assesses proteins in-
directly by analyzing peptides from proteolytic digestion. In shotgun proteomics, peptides
are fractionated, analyzed via LC-ESI-MS/MS, and identified by matching the character-
ized peptide sequences with the mass spectra against predicted spectra from a protein
database [22–27].

We have recently demonstrated the feasibility of employing a shotgun proteomics
approach to study the proteome of Atlantic Cod otolith key structures located in the fish’s
inner ears [17]. The data suggested that the otolith proteins could be used to discover the
whole fish protein profile ranging from embryo to adult. We have shown that most of these
proteins were not implicated in the biomineralization of otoliths, raising the potential for
the otolith proteome to help recreate details of fish life history at previously unrealized
levels [17]. This initial qualitative investigation of otolith proteins allowed the identification
of two primary functional categories, significantly broadening our comprehension of their
roles beyond mere biomineralization. The first category involved proteins integral to
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biochemical processes, primarily in synthesizing and degrading proteins. The second
category included proteins that were instrumental in physiological processes. This data
significantly broadened our understanding of the roles of otolith proteins beyond mere
biomineralization. These recently identified proteins appear to have a significant influence
on essential life processes, including but not limited to growth, development, metabolism,
and the reproductive system within the otolith framework.

In this work, we present our current efforts to quantify the proteins of the cod otolith
proteome from ten fish quantitatively, aiming to address the following objectives: (A) de-
termine the quantity of either different, similar, or absent proteins present in the make-up
of the otoliths obtained from both sexes, (B) establishment of the presence of indicators of
heat stress present in the otoliths of both sexes, as a possible indicators of global warming
of the Atlantic Ocean, and (C) establishment of the presence of endocrine disruptor pro-
tein bioindicators that can indicate the alternation of the hormonal and neuroendocrine
fish functions.

2. Materials and Methods
2.1. Otoliths

The archived otolith collection at the Northwest Atlantic Fisheries Centre (St. John’s,
NL, Canada) contains thousands of Atlantic cod otoliths collected over several decades.
The methods used to collect otoliths can vary slightly with the individual technician,
but in general, otoliths were exposed via a dorsal incision in the fish’s skull and were
removed using forceps. Otoliths were blotted dry with paper towels and stored in small
paper envelopes. For this study, we selected ten otoliths (five males and five females)
collected in 2019 from the northeast coast of Newfoundland, Canada. Otoliths were washed
several times with deionized water before protein extraction, as previously described [17].
Finally, each individual otolith was ground in a mortar using a pestle and then added to a
fine powder.

2.2. Chemicals and Standards

All standards, samples, and buffers were prepared using ultra-pure Milli-Q H2O
(18.2 MΩ·cm, Merck Millipore, Darmstadt, Germany). All chemicals were purchased from
Sigma Aldrich (Castle Hill, NSW, Australia) and were of the highest available purity. Mass
spectrometric grade trypsin was obtained from Promega (Madison, WI, USA). MS-grade
solvents for chromatography were obtained from Canadian Life Science (Peterborough,
ON, Canada).

2.3. Otolith Protein Extraction

The sagitta otoliths were washed, cleaned, and dried as previously described [17]. Full
powdered otoliths (2 mg) were suspended in 20% w/v trichloroacetic acid (TCA) (10 mL)
and incubated overnight at room temperature. Samples were then centrifuged at 10,000× g
for 10 min, and the supernatant was discarded. The crystals were washed with 100 µL
of ice-cold acetone and recentrifuged. The supernatant and any remaining undissolved
otolith were discarded, and the vacuum-dried pellet was processed for in-solution digestion.
Briefly, 0.1 mg of the pellet was resuspended in denaturing buffer containing 8 M urea and
0.4 M ammonium bicarbonate (NH4HCO3). Then, 10 µL of 0.5 M dithiothreitol (DTT) was
added and incubated for 30 min at 60 ◦C. After cooling for 5 min at room temperature,
20 µL of 0.7 M iodoacetamide (IAcNH2) was added and incubated for 30 min. Next, the
sample was diluted with 1.2 mL of H2O followed by 10 µL of 0.1 M CaCl2. For enzymatic
digestion, 100 µL of 0.02 µg/µL trypsin (Promega Trypsin Gold, Mass Spectrometry Grade,
Promega) prepared in 50 mM NH4HCO3 was added to each sample. The samples were
incubated overnight at 37 ◦C in a shaker. The trypsin activity was inhibited by adding
1 µL of trifluoroacetic acid (TFA), and the samples were acidified to a pH below 3 with
formic acid.
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The samples were then desalted using Oasis HLB 3cc Extraction Cartridges (Waters,
MA, USA) connected to a SuperlcoVisiprep DL manifold (Sigma-Aldrich, Darmstadt,
Germany). The column was conditioned using 0.5 mL methanol followed by 1 mL of
an elution buffer containing 50% ACN and 0.1% TFA, and then with 2 mL wash buffer
prepared with 0.1% TFA. After loading the sample, the column was washed with 5 mL
of wash buffer and eluted twice with 0.5 mL of 50% acetonitrile-0.1% TFA and once
with 0.5 mL of 80% ACN-0.1% TFA. The eluant was dried using a vacuum concentrator
(SpeedVac Concentrator, Thermo Electron Corp., Waltham, MA, USA). The dried peptide
was reconstituted in 12 µL of resuspension buffer containing 5% acetonitrile and 0.1%
formic acid.

2.4. Shotgun Proteomics by LC-ESI-MS/MS

The LC separation was carried out using the Ultimate 3000RSLCnano system (Dionex/
Thermo Fisher Scientific, Waltham, MA, USA). For analysis, 2 µL (1 mg/mL) of the sample
was injected onto an in-house packed capillary column (50 cm × 75 µm, pulled tip, ESI
source solutions) packed with Jupiter C18 4 µm chromatographic media (Phenomenex,
Torrance, CA, USA) at a flow rate of 300 nL/min. Chromatographic separation was
performed by a 120 min method using solvent A (0.1% formic acid in MS-grade water)
and solvent B (0.1% formic acid in MS-grade acetonitrile) from 5% to 30% for 90 min, then
increasing to 55% for the next 12 min, and then to 95% for 8 min before being reduced to
5% B for the remainder of the 120 min run. The column oven temperature was set at 40 ºC.

The ESI-MS and MS/MS spectra were obtained using an Orbitrap Fusion Lumos
Tribrid Mass Spectrometer (ThermoScientific, Waltham, MA, USA) fitted with a Nanospray
Flex Ion source and a FAIMSpro source. The detailed acquisition parameters for mass
spectrometry analysis were as follows: For ionization, the spray voltage was 1.8 kV, and
the ion transfer tube temperature was 300 ◦C. The data were acquired in data-dependent
acquisition (DDA) mode with a full scan using Orbitrap at a resolution of 120,000 over
a mass range of 400–2000 m/z. The FAIMS source was operated at three different com-
pensation voltages (CV = 40, 60 and 80). The auto gain control (AGC) was set in standard
mode, and maximum injection time at Auto mode for each MS/MS, acquisition of peaks
with intensities above 5.0 e3 were performed using normalized HCD collision energy of
35%. The cycle time was set at 1 s. The isolation window for MS/MS was set at 1.6 Da.
The AGC target was set at standard mode with the maximum injection time mode as Auto.
The precursor ions with positive charges 2 to 5 were selected for MS/MS analysis. After
every single MS/MS acquisition, the dynamic exclusion time was set at 60 s with a mass
tolerance of ±10 ppm.

The MS/MS raw files were acquired using Thermo Scientific Xcalibur 4.5 and Tune 3.5
(Waltham, MA, USA) and searched against the Gadus morhua protein database (Taxon ID
8049) downloaded from Uniport using Proteome Discoverer 2.5 (ThermoFisher, Waltham,
MA, USA). The SequestHT search engine node was used for peptide and protein identifica-
tion. Two missed cleavages for trypsin digestion were allowed with a 10 ppm precursor
mass tolerance and fragment mass tolerance of 0.6 Da. Oxidization of methionine and
N-terminal acetylation were set as dynamic modification, and carbamidomethyl cysteine
was selected as a static modification.

2.5. Quantitative Analysis

This study was done using label-free proteomics quantification. The peptides are
identified and searched against the Gadus morhua protein database (Taxon ID 8049) and
searched for the MS2 acquired during the DDA acquisition. The peptide quantification was
performed by integrating the area under the curve of the MS1 of the identified peptides
using Proteome Discoverer 2.5 (ThermoFisher, Waltham, MA, USA). This was followed by
populating the total area of all the identified peptides within a protein to derive protein
abundances. The ratio of these abundances is then used to compare the different samples.
This approach allows for relative quantitative analysis, comparing protein levels across
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samples (0.1 mg/mL), with careful standardization ensuring comparability despite not
measuring absolute protein quantities.

To ensure precise comparisons in label-free proteomics quantification, this study
implemented consistent protocols across all procedures, from sample prep to analysis.

Quantitative Expressed Protein Intensities Accuracy

The variance stabilization normalization (VSN) is a transformation technique em-
ployed in mass spectrometry data analysis to maintain consistent variance across the
intensity spectrum [28]. VSN serves the dual purpose of background noise subtraction
and data normalization, facilitating a clear relationship between mass spectrometry (MS)
peak intensity and variance. Consequently, this enhances the accuracy of the analytical
results by stabilizing variance. The missing value imputations were performed by replacing
missing values with random values picked in the 5% lower end of the normal distribution
of intensities. VSN was performed using Proteome Discoverer 2.5 (ThermoFisher, Waltham,
MA, USA). Additionally, a p-value ≤ 0.05 was considered significant.

2.6. Statistical Analysis

The quantitative evaluation of the total number of protein expression differences
between male and female groups was conducted using two-sample t-tests and then the
calculation of 95% confidence intervals (CIs). The statistical analyses were carried out using
various R software packages. These included tidyr [29], magrittr [30], plyr [31], dplyr [32],
and ggplot2 [33], facilitating the creation of comparison tables to present the findings.
Further normalization analysis, generation of heat maps, and creation of volcano plots
(abundance ratio Adjusted p-Value: (Female)/(Male) by Benjamini-Hochberg procedure)
were performed using Proteome Discoverer 2.5 (ThermoFsher, Waltham, MA, USA). A
p-value ≤ 0.05 was considered significant.

2.7. Bioinformatics Analyses

Gene ontology (GO) functional analyses for the extracted otolith proteins from Atlantic
cod (Gadus morhua) were performed using the ClueGO plugin (version 2.5.9) within Cy-
toscape software (version 3.9.1). Due to the absence of cod organisms in the ClueGO plugin
program, Atlantic salmon (Salmo Salar) was used for analysis to obtain the conserved func-
tional analysis with Atlantic cod (Gadus morhua). Biological functions, cellular components,
immune system processes, molecular functions, and KEGG provide specific gene annota-
tions with their corresponding functions within identified biological pathways. Finally, the
STRING database was used to visualize the protein–protein interactions within Atlantic cod
(Gadus morhua) (https://string-db.org/cgi/network?taskId=bybNmeXaeGFU&sessionId=
boleulT8hMV6, accessed on 14 May 2024). To identify the top 20 proteins based on their
degree of connectivity, the cytoHubba plugin was used.

3. Results and Discussion

The main purpose of this work was to provide a comprehensive analysis of the whole
protein content of ten otoliths. As mentioned, we have formerly conducted a qualitative
analysis of twelve otoliths [17], which helped us understand the composition of otolith
proteins. We compared the total number of proteins identified in the previous study to
those in the current study. We found differences in the total numbers; we speculate that
this discrepancy is due to the ages of the samples. The previous study analyzed samples
that were approximately 12 years old, while our current study includes samples ranging
from 8 to 11 years old (Figure 1). However, the eleven HSPs were identified in both studies.

https://string-db.org/cgi/network?taskId=bybNmeXaeGFU&sessionId=boleulT8hMV6
https://string-db.org/cgi/network?taskId=bybNmeXaeGFU&sessionId=boleulT8hMV6
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Figure 1. Comparison of the total number of otolith proteins between the current study and the
previous one. This plot was generated by molbiotools online tools.

In the current research, we presented the quantitative results of the proteins identified in
our previous qualitative study [17]. We focused on ten samples obtained from five males and
five females collected in 2019 (Table S1, Supplementary Excel sheet), and we report interesting
novel protein biomarkers obtained during this global quantitative analysis of either different,
similar, or absent proteins in the make-up of the otoliths obtained from either sex. We highlight
that the presence and variation of HSPs in marine organisms could potentially help predict
how global climate change might impact species’ metabolic costs [34]. Accordingly, in this
manuscript, we suggest that the presence of HSPs in the otoliths of both sexes can be used as
an indicator of global warming of the Atlantic Ocean. Furthermore, we quantified the proteins
that could potentially be influenced by endocrine disruptors that can indicate alterations in
the hormonal and neuroendocrine function of fish.

Analysis of our dataset revealed a range in the number of proteins per individual,
varying from 1341 to 1839. Utilizing a two-sample t-test to compare the mean number of
proteins between males and females, we found that there was no significant difference in
the total number of proteins (Figure 2). This finding is supported by the 95% confidence
intervals for females (1366.121, 1805.479) and for males (1327.221, 1700.779).
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package ggplot2 retrieved from [33].
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In the following, we will describe the intensities of the protein blueprint of Atlantic
cod otoliths that will reveal the different biological processes. It is out of the realm of
possibility to discuss all of the quantified proteins in this rationale. For this reason, we shall
deliberate about a few selected protein models that represent physiological, ontogenetic,
evolutionary, and environmental processes.

3.1. Protein Expression between Sexes

In our study employing ESI-MS/MS with DDA, we conducted a comprehensive
proteomic analysis across ten individuals (Table S2, Supplementary Excel sheet). We
identified significantly upregulated and downregulated proteins in females compared to
males with an abundance ratio (Female/Male) range of 0.000911165–401.7070581 through
the volcano plot visualization (Figure 3 and Table S3, Supplementary Excel Sheet). Proteins
with high abundance ratios (fold change > 2) and low adjusted p-values < 0.05 were
considered significantly more abundant in females than males. A subset of these proteins
exhibiting sex-specific expression differences (differentially expressed proteins between
sexes), as visualized in the heatmap (Figure 4), which may have crucial roles in fish’s
physiological and reproductive processes.
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Figure 3. Protein expression is different between the sexes. Each dot expresses a specific protein.
Proteins that appear in red are significantly upregulated in female samples, whereas those in green
are significantly upregulated in male sexes at p-value < 0.05. This plot was generated by Proteome
Discoverer 2.5.

3.1.1. Otolith Proteins with Substantial Female-Biased Expression

Among the proteins with substantial female-biased expression in otoliths, zona pel-
lucida sperm-binding protein 4-like was notable for its high log2 intensity, as visualized
in the heatmap (Figure 4) that showed ≥ 2-fold change in abundance between sexes with
p-values ≤ 0.05. There is evidence that this protein, which is essential in forming the egg
membrane and sperm–egg recognition, represents a key component of female fertiliza-
tion [35]. In addition, the high presence of catenin (cadherin-associated protein), alpha
1, which is responsible for the conserved, calcium-dependent module crucial for cell–cell
adhesion. Furthermore, it also plays a vital role in normal developmental processes and
in maintaining tissue structure [36], which is likely related to its essential functions in
reproductive processes.
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red representing higher expression levels. Each row corresponds to a protein, and each column to a
sample, allowing us to compare the expression across our samples generated by Proteome Discoverer
2.5 software.

Myosin heavy chain a is a key contractile protein of the muscular system, and its
expression is often a reliable indicator of muscle development and growth. In Atlantic
salmon, as in many other species, the mRNA expression levels of myosin heavy chain
correlate with the muscle’s ability to grow and accrue protein rather than just increase in
size [37]. It is expressed with a higher intensity in female otoliths, possibly indicating differ-
ences in muscle physiology or energy demands between the sexes (Figure 4). Tropomyosin
alpha-1 chain-like is thought to be the master regulator of actin filament functions in the
cytoskeleton. Coagulation factor XIII A chain-like protein (Figure 4) is important for blood
coagulation and wound healing [38]. The vitellogenin-2-like proteins, a female marker,
are phosphoglycolipoproteins synthesized in the livers of oviparous animals in response
to circulating estrogens [17,39]. Serine/threonine-protein phosphatase is one of the key
enzymes responsible for dephosphorylation in vertebrates involved in various cellular
processes, including the cell cycle and signal transduction [40]. It also displayed varying
expression levels, indicating potential differences in cell regulation. The expression of the
XPG N-terminal domain-containing protein is a critical part of the XPG protein involved in
DNA repair [41]. All these proteins display differential expression to support the unique
physiological demands of females.

3.1.2. Otolith Proteins with Substantial Male-Biased Expression

Among the proteins with substantial male-biased expression, we identified proto-
cadherin and protein-tyrosine-phosphatase (Figure 4). Protocadherins are cell adhesion
molecules that belong to the cadherin superfamily and are expressed most prominently
within the central nervous system, which suggests important neurobiological roles for
these molecules [42]. A recent study suggested that genetic factors like protocadherins,
which are expressed more in male cell lines, play a crucial role in the molecular basis of
sex differences in the nervous system [43]. Protein-tyrosine-phosphatase is an enzyme
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that functions in a coordinated manner with protein tyrosine kinases to control signalling
pathways that underlie a broad spectrum of fundamental physiological processes [44].

The plectstrin homology domain-containing protein, which is part of signal trans-
duction in cells, exhibited a significant difference in expression, pointing to potential vari-
ances in cellular communication processes between genders [45]. Tubulin polymerization-
promoting protein family member 3 is an intrinsically unstructured protein that induces
tubulin polymerization [46]. It has a role in microtubule stabilization, cell division, and
developmental processes [47]. Microtubule-associated protein 1Ab, comprising distantly
related protein complexes with heavy and light chains, is believed to be involved in the
regulation of the neuronal cytoskeleton [48]. Pleckstrin homology domain-containing fam-
ily H (with MyTH4 Domain) member 2 is involved in crucial interactions with membranes
and proteins, characterized by pleckstrin homology (PH) and MyTH4 domains crucial
for cellular signalling. These domains aid in organizing the cytoskeleton, affecting cell
shape, movement, and interactions between cell membranes and the cytoskeleton across
various cellular activities [45]. These proteins’ high expression reflects their importance in
supporting the cellular processes specific to male Atlantic cod.

3.2. Quantitative Analysis of the Total Protein Profile

The comprehensive proteomic analysis across several individuals (Table S2, Supple-
mentary Excel sheet) yielded 802 proteins consistently found across all individuals (Table S4,
Supplementary Excel sheet), 202 highly abundant that were more than 2-fold increased in
females (Table S5, Supplementary Excel sheet), and 90 proteins highly abundant that were
more than 2-fold increased in males (Table S6, Supplementary Excel sheet). Furthermore,
we also identified 81 proteins common only to males (Table S7, Supplementary Excel sheet)
and 196 common only to females (Table S8, Supplementary Excel sheet), with 92 proteins
exclusive to one individual, defined by sex (Table S9, Supplementary Excel sheet), which
need further investigation, including genetic analysis, to understand the underlying rea-
sons behind their expression. Therefore, we highlighted five proteins present within all
males that were unique to males with high abundance (Table 1), and nine proteins unique
to females with high abundance (Table 2). Lastly, our shotgun analysis also uncovered
214 uncharacterized proteins (Table S10, Supplementary Excel sheet).

Table 1. Five proteins that are unique in males.

Description Accession Female
Count a

Male
Count b

Abundances (Average):
Male c

Charged multivesicular body protein 2Ba
OS = Gadus morhua OX = 8049
GN = chmp2ba PE = 3 SV = 1

A0A8C4YUD6 0 5 261,448.36432

DNA damage-binding protein 1
OS = Gadus morhua OX = 8049 GN = ddb1

PE = 3 SV = 1
A0A8C5A9Z6 0 5 98,004.482948

Fibroblast growth factor OS = Gadus
morhua OX = 8049 PE = 3 SV = 1 A0A8C4ZEA7 0 5 24,497.65508

Microtubule-associated protein 1Ab
OS = Gadus morhua OX = 8049

GN = map1ab PE = 4 SV = 1
A0A8C5CU29 0 5 3,458,736.85

Uncharacterized protein OS = Gadus
morhua OX = 8049 PE = 3 SV = 1 A0A8C5FA14 0 5 778,547.8001

a Female count: the count of females associated with each protein entry. b Male count: the count of males
associated with each protein entry. c Abundances (average): quantitative protein abundance measurements were
averaged for all-female groups.
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Table 2. Nine proteins that are unique in females.

Description Accession Female
Count a Male Count b Abundances (Average):

Female c

Dihydrolipoamide acetyltransferase
component of pyruvate dehydrogenase
complex OS = Gadus morhua OX = 8049

GN = dbt PE = 3 SV = 1

A0A8C5C1K4 5 0 108,232.639474

Galectin OS = Gadus morhua OX = 8049
GN = LOC115545324 PE = 4 SV = 1 A0A8C5ACJ8 5 0 489,972.337868

Heterogeneous nuclear ribonucleoprotein
A/Ba OS = Gadus morhua OX = 8049

GN = hnrnpaba PE = 4 SV = 1
A0A8C4YVY0 5 0 1,301,640.954998

Myosin light chain, phosphorylatable, fast
skeletal muscle a OS = Gadus morhua
OX = 8049 GN = mylpfa PE = 4 SV = 1

A0A8C5B8E2 5 0 495,851.125408

Nidogen 2a (osteonidogen) OS = Gadus
morhua OX = 8049 PE = 4 SV = 1 A0A8C5D3Y0 5 0 1,349,773.1182679997

Polypeptide
N-acetylgalactosaminyltransferase

OS = Gadus morhua OX = 8049 GN =
galnt6 PE = 3 SV = 1

A0A8C5BP60 5 0 42,686.3808994

SRSF protein kinase 2 OS = Gadus morhua
OX = 8049 GN = srpk2 PE = 4 SV = 1 A0A8C5CES3 5 0 20,084.879869999997

Uncharacterized protein OS = Gadus
morhua OX = 8049 PE = 4 SV = 1 A0A8C5CCX7 5 0 211,271.979502

Vinculin OS = Gadus morhua OX = 8049
PE = 3 SV = 1 A0A8C5A430 5 0 411,121.875006

a Female count: the count of females associated with each protein entry. b Male count: the count of males
associated with each protein entry. c Abundances (average): quantitative protein abundance measurements were
averaged for all-male groups.

3.2.1. Identified Otolith Protein Profile Common in Both Sexes

Some common abundant protein families were quantified in both sexes. In this
study, among the proteins recognized, actins, were ubiquitous between sexes. α-actins
are found in muscle tissues and are a significant constituent of the contractile apparatus.
Developmental stage-specific muscle protein isoforms have also been reported for several
fish species during the development [49–51]. Sixteen proteins related to the actin family
were detected in this study (Table S11, Supplementary Excel sheet).

In addition, we quantified tropomyosins, which are actin-binding proteins that play a
crucial role in regulating the actin cytoskeleton and muscle contraction [49,52]. Six proteins
(tropomyosin 1 (alpha), tropomyosin alpha-3 chain-like, tropomyosin 4a, tropomyosin
alpha-1 chain-like, tropomyosin 3, tropomyosin 2 (beta)) were detected in this study
(Table S12, Supplementary Excel sheet).

We also detected that the tubulin proteins, which are the principal component of
microtubules, are a heterodimer of two closely related proteins, α- and β-tubulin [49,53]. α-
and β-tubulin were detected in this study (Table S13, Supplementary Excel sheet).

Similarly, we detected that the tyrosine 3-monooxygenase/tryptophan activation protein
β-polypeptide belongs to the 14–3–3 family and plays a critical role in signal transduction by
attaching to proteins containing phosphoserine. These are involved in different cellular pro-
cesses, including cell cycle progression, survival pathways, and metabolic regulation [49,54,55].
Three proteins (tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein,
beta polypeptide a, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation
protein, eta polypeptide, and Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase acti-
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vation protein, theta polypeptide b) were detected in this study (Table S14, Supplementary
Excel sheet).

The keratin proteins were consistently present across all individuals. Keratin proteins
are ubiquitous and varied in their types between different age groups. Specifically, type II
keratins were predominantly observed in the younger group, whereas type I keratins
were more prevalent in the older group [49,56–58]. Both types were detected in our data
(Table S15, Supplementary Excel sheet).

Otolith Heat Shock Proteins

HSPs are expressed in response to various types of stress. This includes thermal,
anoxia, acidosis, hypoxia, exposure to toxins, intense protein breakdown, and microbial
infections [59,60]. They are classified into five families based on molecular weight as well
as domain structures and functions: Hsp110, Hsp90, Hsp70, Hsp60, Hsp40, Hsp10, and
small HSP families [60,61]. We identified and quantified eleven proteins belonging to the
Hsp90, Hsp70, Hsp60, and Hsp40 families, as shown in the heatmap (Figure 5) and listed
in Table S16, Supplementary Excel sheet.
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Hsp90 can suppress thermal aggregation and facilitate protein folding by reducing
misfolding via interactions with aggregation-prone unfolding intermediates [60,62–64].
Hsp70 assists in folding newly synthesized polypeptides, refolding of misfolded proteins,
protein transport across organelles, and degradation of proteins. This protein is essential
for maintaining cellular protein homeostasis, especially under stress conditions [65,66].
HSP60 proteins play a critical role in regulating mitochondrial protein homeostasis. HSP60
has been primarily considered to reside in the mitochondria, where HSP60 and HSP10 form
a complex and facilitate mitochondrial protein folding. Studies on channel catfish have
shown that HSP60 is implicated in the immune response to bacterial infections, suggesting
it may be crucial for disease defense in fish [60,67]. Hsp40 proteins specifically interact
with Hsp70, regulating its activity by stimulating ATP hydrolysis, which is essential for the
chaperone’s function in binding and releasing unfolded or misfolded protein substrates.
This interaction is vital for maintaining cellular protein homeostasis, particularly under
stress conditions that lead to protein damage [68].

As a result, HSPs are very crucial in maintaining cellular protein homeostasis through
their chaperone functions. The presence of HSPs in both male and female fish reflects their
fundamental role in cellular processes that are essential for the survival of all organisms,
regardless of sex. These proteins are part of the cell’s response to stress, assisting in protein
folding, repair, and protection against damage caused by various stressors. Consequently,
they play a crucial role in protecting the cod from the harmful effects of stress. [69–76].
Therefore, we predict that the presence of the eleven detected HSP chaperone proteins in
our otolith samples could indicate climate change impacts.

Identification of Otolith Protein Bioindicators of Endocrine Disruptors

As mentioned in Section 3.1, a notable finding is the presence of vitellogenin-2-like
protein, which directs egg development, showing a marked increase in abundance (193.2) in
all female quantitative measurements [39]. However, its presence, albeit in lower abundance
in males (38.1), indicates potential exposure to exogenous estrogens or estrogen mimics in
aquatic environments [77–80]. This has been confirmed by previous studies of vitellogenin-
2-like plasma levels in male vertebrates exposed to certain xenobiotic endocrine disruptors
with estrogen-mimicking activity [81–84].

The zona pellucida sperm binding protein, which shows a focal role in the oocyte and
gamete development, is the main predictor of fertilization capacity. Although the zona
pellucida sperm binding protein-specific marker is present in higher abundance in females
(192.4), it was also detected in males in low abundance (7.6) [79,80]. We speculate that the
presence of vitellogenin-2-like protein and the zona pellucida sperm-binding protein in
males is due to exposure to endocrine disruptors.

3.3. Bioinformatics Analyses
3.3.1. Gene Ontology (GO)

Next, we analyzed the proteins in both males and females based on annotated func-
tions. Out of 1416 gene symbols, 328 genes had associated annotations from both sexes. We
provide a conclusion chart (Figure 6), showing the visualization representing the number
of genes associated with specific terms and functional groups.

A large portion of the biological function identified is mRNA transport (38.71%)
(Figure 7A), [85]. The next most common biological process is the purine nucleoside
monophosphate biosynthetic process (25.81%) [86].
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A large portion of the cellular components (Figure 7B) is composed of genes that
encode proteins associated with the proteasome complex (62.5%) [87]. Genes associated
with the ribosomal subunits (12.5%) are critical for protein translation [88]. The smallest
slice shown represents genes linked to intracellular ribonucleoprotein complexes (2.5%),
which are involved in gene transcription [89].
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A significant portion of the molecular functions of the proteins (Figure 7C) are asso-
ciated with threonine-type endopeptidases (25.0%). Enzymes are vital in breaking down
proteins by cutting internal peptide bonds in polypeptide chains. Another quarter of the
genes is involved in the transport of peptides across cellular membranes. Oxidoreductase
activity, acting on NAD(P)H (12.5%) and oxidoreductase activity, acting on a sulphur group
of donors (12.5%); each category accounts for an equal proportion of the genes and indicates
a significant role for oxidoreductase enzymes. Flavin adenine dinucleotide (FAD) binding
(12.5%), this group of genes is associated with binding FAD, a cofactor involved in key
metabolites for the maintenance of life and is involved in a wide range of physiological
processes [90]. Cell adhesion molecule binding comprises 12.5%.
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Figure 7. The distribution of identified genes across various functional groups. (A) This pie chart
represents the distribution of genes across biological processes. (B) This pie chart represents the
distribution of genes associated with specific cellular components. (C) This pie chart represents the
distribution of identified genes across molecular functions. (D) This pie chart represents the distribu-
tion of identified genes categorized by their molecular functions, according to Kyoto Encyclopedia of
Genes and Genomes (KEGG). The sizes of the slices are proportional to the number of genes involved
in each process. Significant level of enrichment ** p < 0.01and * p < 0.05. This figure was created by
Cytoscape software.

A significant proportion of proteins is involved in the catabolism of branched-chain
amino acids (valine, leucine, and isoleucine) (25.0%) (Figure 7D), which not only act as
building blocks for tissue protein (accounting for 35% of the essential amino acids in mus-
cle), but also have other metabolic functions [91]. Lysosomes (12.5%), genes associated with
lysosomal function, suggest involvement in degrading and recycling cellular waste, cellular
signalling, and energy metabolism [92,93]. Proteasome (12.5%) indicates a notable represen-
tation of genes involved in the proteasome pathway, which is critical for the cell cycle, cell
survival, and cellular homeostasis [94]. Pentose phosphate pathway (12.5%), a significant
number of genes are involved in this pathway, which is crucial for nucleotide synthesis and
the generation of NADPH for reductive biosynthesis [95]. Glutathione metabolism (12.5%)
reflects genes involved in the synthesis and metabolism of glutathione, a major antioxidant
that is critical in the regulation of the redox state of cells [96]. Glycan degradation (12.5%)
genes are associated with the degradation of various glycans, complex carbohydrates
that play major metabolic, structural, and physical roles in biological systems [97]. The
ribosome comprises 2.5%, and a portion of the genes is related to the ribosome, indicating
the importance of protein synthesis machinery in the cell [98].
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3.3.2. Protein–Protein Interaction (PPI) Analysis

Our research used the STRING database to construct a comprehensive map of the PPI
of the common otolith proteins within the Gadus morhua, listed in Table S17, Supplementary
Excel sheet. This network elucidates potential key proteins in Atlantic cod biological
processes and predicted PPIs, substantiated by evidence such as genetic co-occurrence and
experimental validations [99]. Due to the complexity of our dataset, this study will focus
on the top 20 proteins with the highest score, suggesting robust evidence from multiple
sources, including experimental data and literature support [100] (Figure 8).
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Key proteins identified include structural proteins such as Actin and Alpha Cardiac
and enzymatic proteins like Citrate synthase and Glyceraldehyde-3-phosphate dehydroge-
nase (Table S18, Supplementary Excel Sheet). The category of ribosomal proteins includes
Ribosomal protein S14 and Ribosomal protein L4. Additionally, signalling proteins like
RAN binding protein 2, and heat shock proteins like Heat shock protein 9. Lastly, proteins
such as the Eukaryotic translation elongation factor 2 are involved in the translation process.

This analysis enriches functional proteomic research in Gadus morhua and illustrates
the potential to chronicle the extensive protein interactions that underpin vital physiologi-
cal processes.

4. Conclusions and Future Directions

We have shown in this study the presence of five proteins within all males that
represent uniqueness to males and nine proteins unique to females. In addition, 802 proteins
were consistently found across all individuals.

In 2019, the bottom temperatures in NAFO Subarea 3K were significantly above
normal, reflecting the broader impacts of global warming. The fall bottom temperatures in
Subarea 3K were recorded to be between +0.5 ◦C and +2.5 ◦C above the long-term average
of around 4 ◦C, marking a return to warmer anomalies not seen since 2011 [101–103]. This
warming trend is consistent with the global patterns of ocean warming due to climate
change [104]. Temperature variations in aquaculture environments can be substantial and
can approach the upper critical thermal limits of 8–12 ◦C for Atlantic cod, which are lethal.
These shifts can occur quickly, such as an ~8 ◦C increase in less than 12 h during thermocline
inversions, particularly at depths where Atlantic cod tend to gather (≥5 m) [69,70]. Fish
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are unable to escape temperature fluctuations, inevitably facing stressful environments
completely. This thermal stress profoundly affects gene transcription, targeting genes linked
to oxidative stress response, apoptosis, protein folding, energy metabolism, synthesis,
membrane fluidity, and immune functions [69–76]. The proteins encoded by these genes
include some of the elements that regulate both the organismal and cellular stress responses.
As a result, HSPs play a crucial role in protecting the fish against the deleterious effects
of stress [69–76]. This is why we predict that the eleven HSP chaperone proteins detected
in otolith could be an indicator of climate change (Table S19, Supplementary Excel sheet);
however, this needs to be empirically determined.

Recent studies have brought to light significant evidence regarding the stress condi-
tions in fish, focusing on the impact of endocrine-disrupting chemicals (EDCs), treated
sewage, and other environmental factors [77,78]. This was discussed in the otolith’s proteins
of egg yolk precursors section. Although the zona pellucida sperm-binding protein-specific
marker is present in higher abundance in females, it was also detected in males [79,80].
Likewise, environmental effluence and exposure to EDCs and other contaminants can be
likely factors contributing to these observations [77–80].

Further comprehensive research is needed to elucidate the full range of influences
that are central to the alteration of sex markers in fish, ensuring that we consider all
possible sources of stress, whether they are pollutants or other environmental variables.
This evidence collectively indicates a significant stress response in fish to environmental
pollutants, warranting further investigation into the mechanisms of action and long-term
consequences of these exposures on aquatic life. It is also vital to conduct further studies
on the PPIs and their functional overlaps, to explore their evolutionary significance.

Finally, this study employs a quantitative shotgun proteomics approach and bioin-
formatic analysis to discover the unidentified proteins present in cod otoliths. Our results
show that diverse proteins are stored in otolith that were accumulated, thereby enabling the
discernment of both differences and similarities across protein profiles between sexes. We
speculate that circulating proteins released by various cells in the body into the endolymph
are captured by the otolith. In the future, we will explore the prospect of monitoring the
growth of the fish by investigating the proteins present in each separate concentric layer of
the otolith matrix.

In conclusion, this study suggests a broader applicative potential of otolith proteomics
in marine research. By transcending traditional views of otoliths solely as chronometers,
this study illuminates their capacity to provide invaluable insights into the proteomic
profiles reflective of varying life stages and environmental interactions of cod. Despite
these advances, our understanding of the otolith proteome remains nascent, with much
terrain still to explore. Future endeavours will focus on comparing protein profiles of
otoliths from different NAFO zones, trip, and depths. In the future, we plan to monitor
the growth protein of the fish by investigating the presence of the protein concentric
layers of the otolith matrix to follow the growth of the fish from embryo to adult. Such
comparisons will be expected to substantially enrich our comprehension of the otolith
proteome, opening new avenues for research and offering profound implications for marine
and environmental science.
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