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Abstract: Evidence found in the literature indicates that dimeric flavonoids constitute
important therapeutic options against cancer. Using these molecules to prevent cancer
progression might be a novel and promising therapeutic approach with advantages like
fewer side effects, easy access in nature, overall health benefits and overcoming drug
resistance. Cancer is a complex disease and still not understood, but there are some
common mechanisms and biological characteristics underlying tumor progression that
have been scrutinized over the years. This information was summarized in a conceptual
framework designated as hallmarks of cancer. Dimeric flavonoids exert biological effects in
several pathways involved in cancer hallmarks including cell growth, cell cycle, apoptosis,
metastasis and metabolism.

Keywords: cancer; drug resistance; dimeric flavonoids; hallmarks

1. Cancer and Therapeutic Natural Products
Cancer is a huge problem of public health that involves a group of diseases character-

ized by the uncontrolled growth and proliferation of abnormal cells, and if the spread of
those cells is not controlled, it can result in the death of the patient [1]. Cancers are still a
leading cause of death worldwide, and each year, in the European Union, 2.6 million people
are diagnosed with cancer and more than 1.2 million deaths occur due to this disease [2].

According to the World Health Organization (WHO), in 2022, the most common
cancers worldwide were breast, lung, colorectal and prostate cancers. In the same year,
the cancers that caused the highest number of deaths were lung, colon and rectum, liver,
stomach and breast [3].

The choice of cancer treatment depends on several factors associated with the stage of
the cancer and the patient himself. The most conventional treatments for cancer therapy
around the world include chemotherapy, radiotherapy and surgery. Recently, more targeted
therapies are being applied, especially immunotherapy [4–6]. The primary goal of these
treatments is to eliminate cancer cells while sparing normal cells. However, these con-
ventional cancer treatments have several limitations: moderate to high toxicity to normal
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cells, tissues and organs; lack of specificity for multiple subtypes of the same cancer or
non-available options; side effects for the patient (like depression, fatigue, vomiting and
hemorrhages) and drug resistance [6–9].

Therefore, there is an ongoing need to develop more effective treatments that target
cancer cells more effectively but cause fewer side effects [8].

The role of plants in healthcare is prehistoric and has already been documented in
various cultures. In fact, the WHO recognizes that 65% of the world’s population primarily
resorts to traditional medicine using plants as primary healthcare [9].

Natural products extracted from plants have a long history of being used to treat
cancer by directly or indirectly altering signal pathways that affect the phenotypes of cancer
cells, inducing apoptosis and inhibiting cell proliferation and angiogenesis [10,11].

For example, components of Ginkgo biloba, a plant traditionally used in Chinese
medicine, can significantly inhibit the growth and proliferation of liver and gastric can-
cer cells, among other cancers [12]. For example, bilobetin triggers apoptosis, cell cycle
arrest, ROS production, and DNA damage, while also inhibiting CYP2J2 activity [13]. In
gastric cancer, ginkgolic acid inhibited cancer cells’ proliferation, migration and epithelial–
mesenchymal transition and promoted apoptosis and oxidative stress [14,15] The study of
Kim et al. emphasized Ginkgo biloba extract’s role in regulating tumor suppressors such as
p53 and pro- and anti-apoptotic proteins like Bax and Bcl-2 [16].

In a study of seaweeds’ potential anticancer activity, natural products extracted from
the brown seaweed Sargassum vulgare have shown that algal polysaccharides inhibit cell
proliferation and angiogenesis [2]. Curcumin, a bioactive compound extracted from Cur-
cuma longa, showed anticancer activity against lung cancer by acting on the Wnt/β-catenin-
dependent pathway and inhibiting the expression of vascular endothelial growth factor [17].
Foumani et al.’s study showed the capacity of colchicine from Colchicum autumnale to in-
hibit cell growth at a low concentration and promote apoptosis (by inducing Bax and p53
expression and decreasing Bcl2 expression) in MCF-7 and 4T1 breast cancer lines [18].

Flavonoids, a group of natural substances with variable phenolic structures, whether
in monomeric or dimeric form, show selectivity for tumor cells and have a radio- and
chemoprotective effect on healthy cells, but are radio- and chemosensitizers for cancer
cells [19,20]. A study in an in vivo murine model of Ehrlich carcinoma showed that
apigenin had a radiosensitizing effect marked by inducing apoptosis and downregulation
of angiogenic and lymphangiogenic regulators [21]. Li et al. demonstrated that quercetin
in combination with a low dose of radiation markedly inhibited HT-29 and DLD-1 colon
cancer cells’ proliferation by inhibiting Notch-1 signaling [22]. Ichrak et al. demonstrated
that kaempferol, in combination with 5-Fluorouracil chemotherapy, had a synergistic
inhibitory effect on cell viability, induced cell cycle arrest and apoptosis, and decreased
reactive oxygen species in chemo-resistant LS174 colon cancer [23].

Amentoflavone sensitizes oral squamous cells to cisplatin [24] and lung cancer cells
to carboplatin [25,26]. This compound also potentiates the effect of sorafenib in osteosar-
coma [27] and hepatoma cancer cells [28].

While chemotherapy drugs were demonstrated to be effective against cancer growth
during the primary stages of treatment, many patients develop resistance as the therapy
time progresses, remaining the major challenge of conventional therapies [6,7]. In those
cases, cancer cells evolve or adapt in ways that make them less susceptible or completely
resistant to the effects of the drugs meant to kill or inhibit their growth [29]. This phe-
nomenon can be developed by cancer cells through different mechanisms like genetic
mutations, drug efflux pumps, DNA damage and repair, and epigenetic regulation [29].
Overall, it is a complex process because resistance to one drug can lead to cross-resistance
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to other drugs with similar mechanisms of action and, consequently, result in treatment
failure, relapse or limited therapeutic options [5].

Additionally, flavonoids also reduce chemotherapy resistance by having a synergic
effect with chemotherapeutic drugs. In sorafenib treatments, for example, rhamentin
decreased the metabolic clearance and also sensitized hepatocellular cancer cells to the
drug [30], and apigenin increased the cytotoxic effect of that drug in HEpG2 cells by promot-
ing apoptosis and decreasing cell migration and invasion [31]. Apigenin also had a synergic
effect with abivertinib, promoting the inhibition of diffuse large B-cell lymphoma in vitro
and in vivo in a mouse model by inhibiting p-GSK-3β and its downstream targets [32].
Wang et al. showed that cancer cells’ chemoresistance to bortezomib can be overcome by
using the flavone scutellarin, which increased apoptosis in an in vivo murine model of
multiple myeloma [33].

Similar results from other studies have increased interest in finding active compounds
in plant extracts, considered by the scientific community an important source of anticancer
drug discoveries [13,34–36].

2. Flavonoids
2.1. Flavonoids

Flavonoids are a group of low-molecular-weight polyphenols found in plant-based
products like fruits, vegetables and beverages like wine, juices, and tea [37,38]. This group
of compounds can be classified into flavones, isoflavones, flavanones, flavonols, antho-
cyanidins and flavans depending on the oxidation state of the central carbon in the chemical
structure [39,40]. In plants, flavonoids have a role in allowing cell growth and protecting
against biotic and abiotic stress, UV light, freezing, heat and drought. Additionally, they
protect plants against harmful microorganisms [38,41]. These properties offer numerous
health benefits, making them essential in various applications. Their significance lies in
their antioxidative, anti-inflammatory, antimicrobial, and anticarcinogenic properties, along
with their ability to regulate key cellular enzyme functions [39].

Rutin has shown the ability to induce apoptosis, modulate angiogenesis and oxida-
tive stress and inhibit cell growth in colorectal, gastric, breast, prostate and other can-
cers [42]. Silibin activates cellular checkpoints and cyclin-dependent kinase inhibitors
(CDKIs) and, consequently, promotes cell cycle arrest in prostate, lung, colon, breast and
cancers. This compound also showed anti-angiogenic activity by targeting VEGF and VEGF
receptors [43]. Quercetin, besides its antioxidant and anti-inflammatory effects, also has
anticancer activity that relies on cell cycle inhibition and influences apoptosis by regulating
p53, Bcl2 and SOD-mediated apoptotic signaling pathways in breast, prostate, colon, ovar-
ian and lung cancer cells. In vivo, it showed no toxicity after prolonged oral administration
in mice [38,44]. Apigenin is able to interact with various miRNA inhibitors and miRNA
mimics to suppress cancer cell growth and proliferation [45], induces apoptosis via activa-
tion of pentose phosphate pathway-mediated NADPH generation in HepG2 cells [46] and
has effectively enhanced the action of cetuximab, significantly reducing p-STAT3 levels in
HONE1 and CNE2 nasopharyngeal carcinoma cells [47].

Interest in the anticarcinogenic effects of flavonoids has grown due to in vitro and
in vivo experimental evidence showing that they interfere with cancer processes such as cell
proliferation, apoptotic and autophagic cell death, cell cycle arrest, angiogenesis, invasion
and metastasis [40–42].

There are some clinical trials already completed or in progress for studying the efficacy
and safety of flavonoids [42]. Catechins are in phase I and II trials for prostate, breast
and cervical cancer; apigenin in phase II for colorectal cancer; quercetin in phase I for
prostate cancer; cyanidin for colorectal adenocarcinoma; and genistein in phase II for



BioChem 2025, 5, 2 4 of 18

bladder, prostate and breast cancer. All these trials were approved by the Food and Drug
Administration (FDA) [41].

2.2. Dimeric Flavonoids

A newly identified subclass of two-flavone structures, called dimeric flavonoids, like
agathisflavone, amentoflavone and robustaflavone, has sparked scientific interest due
to its revealed pharmacological effects like analgesic, anti-inflammatory, antimicrobial,
antioxidant and anticancer activity [48,49]. Dimeric flavonoids are a type of flavonoids
composed of identical or different flavonoid units linked by C-C or C-O-C bonds, which
are connected symmetrically or asymmetrically through an alkyl- or alkoxy-based linker
of varying lengths. Typically, dimeric compounds consist of pairs of flavone–flavone,
flavone–flavanone, and flavanone–flavanone subunits, as well as dimers of chalcones and
isoflavones [22,50].

There are few studies of dimers compared to monomeric flavonoids, which leads
to less data about their distribution and role among plants. However, according to the
existing literature, most dimeric flavonoids are extracted from the leaves and roots of plants,
therefore, they are compounds easily obtained through the diet [51,52].

The dimer structure of the flavonoids can improve drug–receptor interactions, result-
ing in more effective and stronger biological responses. Moreover, flavonoid dimers have a
slightly increased bioavailability and metabolic bioactivity, resulting in an increased effect
with a longer duration. The broader range of metabolites produced also contributes to their
enhanced action [52].

Considering the significance of natural products as sources for new medications and
due to the high incidence of several cancers and resistance to available therapies, it is crucial
to research the anticancer properties of biflavonoids for these specific cancers [13,53].

A comparison of the anticancer activity of monomeric versus dimeric forms of
flavonoids is often made [54–56].

Dimeric flavonoids’ biological activity affects the molecular mechanisms cancer cells
need to undergo to succumb to the multistep process of tumorigenesis, known as hallmarks
of cancer [57,58].

3. Dimeric Flavonoids and the Hallmarks of Cancer
In 2000, Hanahan and Weinberg published a review outlining the state of the art

of knowledge that recapitulated the complexity of cancer [59]. They conceptualized the
core set of six traits common to almost all cancer types: “self-sufficiency in growth signals,
insensitivity to anti-growth signals, evading apoptosis, limitless replicative potential, sustained
angiogenesis and tissue invasion and metastasis”. Additionally, they introduced the concept of
enabler capabilities, as characteristics that normal cells need to acquire to form a malignant
tumor: genome instability [59]. A decade after the first publication, the panorama of cancer
research had changed significantly, and the constantly emerging evidence has allowed
the refinement of hallmarks of cancer, leading to a revised update where the authors
added two more fundamental functional properties acquired in the tumorigenic process:
reprogramming of energy metabolism and evading immune destruction. Moreover, they
also added tumor-promoting inflammation as a new enabling characteristic [60]. In 2022,
in the latest update of the iconic saga, the authors added the last two emerging hallmarks,
namely unlocking phenotypic plasticity and non-mutational epigenetic reprogramming,
and two more enabling characteristics involving polymorphic microbiomes and senescent
cells [61].

New therapeutic strategies with the ability to disrupt the characteristics and acquired
capabilities of tumor cells began to emerge [60,61]. Several studies marked the potential
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anticancer activity of dimeric flavonoids as compounds that disrupt the hallmark features
(Figure 1) [22,53,62–64].
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3.1. Dimeric Flavonoids and Self-Sufficiency in Growth Signals

Self-sufficiency in growth factors was the first recognized hallmark of cancer and
perhaps the most fundamental trait [57]. Normal cells are unable to proliferate in the
absence of mitogenic growth signals produced by other cells. In opposition, cancer cells
obliviate the need for stimulation from their neighbor cells [57]. In cancer cells, proliferation
is powered by their ability to autonomously secrete mediators such as growth factors or
cytokines, to which they are responsive, in a process designated autocrine stimulation [63].
An example of a molecule secreted in an autocrine way is TGF-β (Transforming Growth
Factor β), one of the most important molecules implicated in several tumorigenic processes
including tumor growth [64]. Also, Platelet-Derived Growth Factors (PDGFs) and their
receptors can be secreted by cells from glioblastoma [65], sarcoma [66], gastric [67] and
lung cancers [68] to modulate the tumor microenvironment and induce tumor growth,
angiogenesis and metastasis [69,70]. Ginkgetin is capable of disrupting the hormonal
pathway of the estrogen receptor (ER), downregulating the expression of ER-α in breast
cancer cells and inducing apoptosis [71,72].

Around 70–90% of cancers express the EGFR (Epidermal Growth Factor Receptor),
which has been associated with poor prognosis in breast [72] and cervical cancers [73]. The
activation of the receptor results from an autocrine loop [72].
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Additionally, the activation of intricate signaling networks induces a prolifera-
tive outcome in cancer cells. The major pathways accounting for cell proliferation are
PI3K/AKT/mTOR and Ras/Raf/MEK/ERK [74]. Both are highly conserved and well-
characterized intracellular signaling transducers, responsible for transmitting extracellular
cues to the intracellular targets responsible for the activation of proliferative genes [75].

3.2. Dimeric Flavonoids and Evasion of Growth Suppressors

The sustainment of proliferative signaling is complementary to cancer cells’ capacity
to evade growth suppressors [57]. In normal cells, proliferative signals are counteracted
by mechanisms operating to maintain cellular quiescence and tissue homeostasis. Cancer
cells overrule inhibitory signals that halt their growth [57]. The cell cycle contains multiple
pathways and checkpoints that inhibit cellular proliferation and growth, but the most
prominent mechanisms are related to retinoblastoma protein RB (pRB) [76]. The RB1 gene
was the first tumor suppressor to be identified; mutations affecting this gene increase the
predisposition to retinoblastomas [77] and osteosarcomas [78]. RB forms a complex with
the E2F transcription factor; when RB is phosphorylated, the repression of target genes
that regulate cell cycle progression from the G1 to the S phase is released [76]. The dimeric
flavonoid Ginkgetin triggered cell cycle arrest by decreasing the expression levels of RB
protein in hepatocellular carcinoma cell lines [79].

Growth factors, such as TGF-β and Smad4, can also impact the cell cycle. In the early
stages of tumorigenesis, TGF-β exhibits a suppressive role, promoting the blockage of the
cell cycle. As the tumor progresses, the cells become insensitive to it, and Smad4 plays a
determinant role in this switch of function [59,80,81]. TGF-β is inhibited in breast cancer
cells by chamaejasmenin B [82] and in bladder cancer cells by proanthocyanidins [81].

3.3. Dimeric Flavonoids and Evading Programmed Cell Death

Cancer cells have an increased resistance to death. In response to external signals, the
cell undergoes a genetically programmed process of suicide called apoptosis. Although
apoptosis is a vital occurrence for maintaining tissue homeostasis, in cancer, aberrant
cellular multiplication is an essential trait for sustaining tumorigenesis [83–85]. To evade
apoptosis, cells can engage in two major pathways: the intrinsic or mitochondrial pathway
and the extrinsic or death receptor pathway, regulated by intracellular and extracellular
signals, respectively [85]. The extrinsic pathway is activated when cell ligands interact with
their receptors on the cell surface such as Fas ligand connecting to Fas ligand and TNF-α
connecting to the TNFR1 receptor, triggering a cascade of caspase activation. Neochamae-
jasmin B induced apoptosis through the activation of caspase-3 and caspase-10 in insect
neuronal cells [86]. Other ligands may trigger a different signaling pathway, namely the
NF-κB pathway [87]. The transcription factor complex NF-κB has pro-survival functions by
promoting the transcription of several anti-apoptotic genes, including Bcl-2 family mem-
bers (for example, Bcl-XL and A1/Bfl-1) that can impair death dependent on mitochondrial
mechanisms [57]. Amentoflavone suppresses tumor progression in bladder cancer by inter-
fering in intrinsic and extrinsic apoptosis pathways, increasing the expression of apoptotic
proteins (BAX, FAS, FAS-L) and diminishing the expression of anti-apoptotic proteins and
metastasis-associated proteins in bladder cancer cells [88].

3.4. Dimeric Flavonoids and Angiogenesis

In order to grow, the tumor must be properly nourished with nutrients and oxygen
in addition to being cleared of metabolic wastes and carbon dioxide [57]. Angiogenesis is
the process of the creation of new blood vessels from existent capillaries to support the
growth and metastasis of the tumor [59]. This dynamic process is carefully regulated by
pro- and anti-angiogenic molecules, the major ones being vascular endothelial growth
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factor (VEGF) and tyrosine kinase inhibitors (TKIs), respectively [89]. Amentoflavone
induces anti-angiogenesis of breast cancer cells by inhibiting the expression and secretion
of VEGF through NF-κB inactivation [90]. Angiogenesis is not only required to sustain
tumor growth but is also a pivotal trait for potentiating invasiveness, metastasis and tumor
recurrence [91].

3.5. Dimeric Flavonoids and Tissue Invasion and Metastasis

Eventually, the primary tumor spreads and invades adjacent tissues and ultimately
metastasizes to distant sites from the initial cancer. The metastatic cascade includes three
phases: dissemination and tissue invasion, dormancy and organ colonization [92]. The
capability of migration and invasion of surrounding tissues is the primary property ac-
counting for metastasis. Cancer cells must undergo alterations involving cell–cell adhesion
molecules, cell–matrix adhesion molecules and extracellular matrix remodeling enzymes.
During malignant transformation, cells lose adherens junctions that are mainly mediated by
cadherins [93]. E-cadherin is the best-characterized tumor suppressor protein and therefore
an antagonist of invasion and metastasis [94]. Integrins are connected to the actin cytoskele-
ton and provide an anchor to the matrix through related proteins. In this way, besides being
responsible for cell adhesion, integrins are also a connector to the extracellular environment,
regulating pathways downstream of the actin cytoskeleton involved in cell growth and
proliferation. Matrix metalloproteinases (MMPs) are responsible for degrading the blood
vessels and extracellular matrix to enable extravasation [95]. In turn, increased expression
of MMP enhances epithelial-to-mesenchymal transition (EMT) [96]. During carcinogenesis,
the cells undergo a coordinated program in which cells lose their epithelial characteristics
and transition to a mesenchymal phenotype [97].

In lung cancer cells, sotetsuflavone suppresses invasion and metastasis by reversing
EMT, upregulating E-cadherin expression and decreasing MMP-9 and MMP-13 expression
via the TNF-α/NF-κB and PI3K/AKT signaling pathways [98]. Hinokiflavone significantly
inhibited migration and invasion by impairing EMT in breast cancer cells, by upregulating
the expression levels of E-cadherin and reducing the expression levels of N-cadherin [99].
Moreover, the same diflavonoid is able to interfere with migration and invasion by down-
regulation of MMP-2 and MMP-9, conjugated with inhibition of the phosphorylation of p38
and Akt signaling molecules [61]. This compound also demonstrated an anti-metastatic
effect by decreasing MMP-9 in human nasopharyngeal carcinoma cells [100].

The adaptation of cancer cells in the metastatic site is also dependent on hypoxia,
mainly sustained by HIF-1α, which also promotes angiogenesis by increasing VEGF [101].
Morelloflavone inhibits tumor angiogenesis by blocking VEGF in ex vivo and in vivo
prostate cancer models. The phosphorylation and activation of the Raf/MEK/ERK pathway
affect the activity of the VEGF receptor (VEGFR2) [102].

3.6. Dimeric Flavonoids and Reprogramming of Energy Metabolism

Cancer cells undergo metabolic reprogramming processes that fuel the increase in
their growth and proliferation rate [103]. Regardless of the presence of oxygen, cancer
cells shift their metabolism, relying on glycolysis for energy production. Despite the lower
efficiency of ATP production, glycolysis is linked to oncogene activation and mutation of
tumor suppressors [58]. Pyruvate kinase type M2 (PKM2) is an enzyme that rate-limits
the final reaction of glycolysis and is activated by the oncogene MYC being upregulated
in cancer cells [104–106]. In addition, Myc also increases the uptake of glutamine and
glutaminolysis for the synthesis of Glutathione (GSH). GSH is an antioxidant that plays a
primary role in eliminating excessively produced reactive oxygen species (ROS) responsible
for oxidative stress damage. Is responsible for clearing hydrogen peroxide (H2O2), singlet
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oxygen (O2
−), hydroxyl radicals and lipid peroxides [39]. Both Procyanidin A and B have

reportedly protected prostate cancer cells against H2O2-induced oxidative stress [105].
Studies relating the potential anticancer activity of dimeric flavonoids in the disruption

of the hallmark features are indicated in Table 1.

Table 1. Summary of dimeric flavonoids’ anticancer activity and mechanism of action related to the
hallmarks of cancer.

Dimeric Flavonoid Cancer Type Cell Lines Mechanism of Action Hallmark of Cancer Literature
Reference

I-4, II-4-di-O-
methylrobustaflavone

Blood
Colon

P-388
HT-29 Promotes cell death. Evading programmed

cell death [106]

Brachydin A Prostate

PC-3 Induces apoptosis. Decreases
expression of pAKT.

Evading programmed
cell death [107]

DU145

Suppresses cell migration and
tumor invasion. Increases
levels of effector caspases

(CASP3, CASP7, and CASP8)
and inflammation markers

(NF-kB and TNF-α).

Activating tissue invasion
and metastasis

Evading programmed
cell death

[108]

Induces necrosis and
apoptosis. Decreases

cell proliferation.

Evading programmed
cell death [109]

Brachydin B Prostate

PC-3

Induces apoptosis and
necrosis. Overexpression of

the p21 protein and cell cycle
arrest. Decreases expression

of pAKT.

Evading programmed
cell death
Evasion of

growth suppressors

[107]

DU145
Suppresses cell migration and

tumor invasion in 2D and
3D cultures.

Activating tissue invasion
and metastasis [110]

Brachydin C Prostate

PC-3
Induces apoptosis.

Overexpression of the p21
protein and cell cycle arrest.

Evading programmed
cell death
Evasion of

growth suppressors

[107]

DU145
Suppresses cell migration and

tumor invasion in
2D cultures.

Activating tissue invasion
and metastasis [111]

Brachydin E and F Prostate PC-3

Targets nuclear receptors,
mainly glucocorticoid

receptors, having
anti-proliferative effects.

Self-sufficiency in
growth signals [112]

Chamaejasmine

Breast MDA-MB-231

Induces apoptosis (activates
Bax and inhibits Bcl-2) and

cell cycle arrest in the G2/M
phase (decreases cyclins Cdk2

and cdc2).

Evading programmed
cell death
Evasion of

growth suppressors

[113]

Lung
Bone

A549
KHOS

Anti-proliferative effect.
Induces cell cycle in G0/G1

phase and apoptosis by PARP
cleavage and caspase-3

activation. Leads to
accumulation of p53 protein

expression. Induces DNA
damage by phosphorylation

of H2AX. Downregulates
CDK2, cyclin E, Rb and pRb

proteins in A549 cell line.

Self-sufficiency in
growth signals

Evasion of
growth suppressors

[114]

Liver
Bone
Colon

Cervical

HepG2 and
SMMC-7721
MG63 and

U-2 OS
HCT-116

HeLa

Anti-proliferative effect. Self-sufficiency in
growth signals [114]
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Table 1. Cont.

Dimeric Flavonoid Cancer Type Cell Lines Mechanism of Action Hallmark of Cancer Literature
Reference

7,7′′-di-O-
methylchamaejasmivon Breast MDA-MB-231

Induces apoptosis through
alteration of mitochondrial

membrane potential and
increases reactive
oxygen species.

Evading programmed
cell death

Reprogramming of
energy metabolism

[62]

Cupressoflavone
Prostate PC-3 High cytotoxic selectivity. Evading programmed

cell death [115]

Lung A549 Specific cytotoxicity. Evading programmed
cell death [116]

Delicaflavone

Colorectal HT29, HCT116

Inhibits PI3K/Akt/mTOR
and Ras/MEK/Erk signaling

cascades. Leads to cell
cycle arrest.

Evasion of
growth suppressors [117]

Cervical HeLa, SiHa, H8 Induces apoptosis through
mitochondrial pathway.

Evading programmed
cell death [118]

Lung A549, PC-9 Induces cell autophagy by
increasing LC3-II/LC3-I.

Evading programmed
cell death [119]

Hinokiflavone

Nasopharynx HONE-1
Inhibits cell migration and

invasion (effects
concentration-dependent).

Activating tissue invasion
and metastasis [100]

Breast MDA-MB-231

Inhibits cell migration and
invasion by interfering

with epithelial–
mesenchymal transition.

Activating tissue invasion
and metastasis [99]

Colon HCT116

Inhibits oncoprotein MDM2,
which consequently increases

p53 protein expression and
leads to cell cycle arrest in

G2/M phase and
induces apoptosis.

Evasion of growth
suppressors

Evading programmed
cell death

[120]

Nasopharynx KB
Inhibition of cell growth

(effect is time- and
concentration-dependent).

Self-sufficiency in growth
signals [121]

Colorectal CT26

Induces apoptosis by
upregulating protein Bax and

downregulating Bcl-2.
In vivo, reduced cell growth

and induced apoptosis,
without toxicity.

Evading programmed
cell death [122]

Melanoma A375, B16

Inhibits cell proliferation,
induces caspase-dependent
apoptosis and inhibits cell

migration by inhibiting
MMP-2 and MMP-9.

Evading programmed cell
death

Activating tissue invasion
and metastasis

[123]

Breast MDA MB-231 Reduction in tumor volume
in vivo studies with mice.

Self-sufficiency in
growth signals [99]

Isochamaejasmin

Cervix HeLa

Induces the expression of an
NF-kB-directed reporter gene.

Induces time-dependent
phosphorylation of the

mitogen-activated protein
kinases and p38.

Evading programmed
cell death [124]

Leukemia K562

Induces apoptosis mediated
by increasing the cleavage of

caspase-9, caspase-3 and
PARP, involved in the

Bcl-2-induced
apoptosis pathway.

Evading programmed
cell death [125]
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Table 1. Cont.

Dimeric Flavonoid Cancer Type Cell Lines Mechanism of Action Hallmark of Cancer Literature
Reference

Isoginkgetin Breast

MCF7 Specific cytotoxicity. Evading programmed
cell death [126]

MDA-MB-231

Induces apoptosis.
Inhibits invasion by

decreasing the production of
matrix metalloproteinases
(MMP-9, Akt and PI3K).
In vivo, inhibited tumor

growth in mice, with
dose-dependent effects.

Treatment with this
compound decreases the
expression of Ki67 and
MMP-2 in tumor cells.

Evading programmed
cell death

Self-sufficiency in
growth signals

Activating tissue invasion
and metastasis

[127]

Japoflavone D Liver SMMC-7721

Induces ERK-mediated
apoptosis and suppresses cell
proliferation. Decreases ROS

by activating the
KEAP1/NRF2/ARE signal

axis and inhibiting ERK
phosphorylation.

Self-sufficiency in
growth signals

Reprogramming of
energy metabolism

[128,129]

Lateriflavanone Colorectal HT-29 Inhibits proteasome and
promotes cell death.

Evading programmed
cell death [129]

Neochamaejasmin A Prostate LNCaP

Inhibits cell cycle regulatory
proteins (cyclin D and

cyclin-dependent kinase
inhibitor p21) and leads to

cell arrest cycle in G1 phase.
Alters mitochondrial

membrane potential. Induces
apoptosis by the

Fas–caspase8–caspase3
pathway.

Inhibits cell proliferation by
cellular uptake of
[3H]-thymidine.

Evasion of
growth suppressors
Reprogramming of
energy metabolism

Evading programmed
cell death

Self-sufficiency in
growth signals

[130]

Neochamaejasmin C Lung
Bone

A549
KHOS

Anti-proliferative effect.
Induces cell cycle in G0/G1

phase and apoptosis. Induces
DNA damage by

phosphorylation of H2AX.

Evasion of
growth suppressors
Reprogramming of
energy metabolism

[114]

Rhusflavanone Breast MCF-7

Promotes cell death by
inducing ferroptosis

(downregulates the ACSL4,
NOXO1, NOXA1, ACSL5,

STEAP3, LPCAT3, ATG7 and
TP53 genes). Promising

anti-resistance chemotherapy
agent in breast cancer.

Evading programmed
cell death [131]

Oxitrodiflavanone A Prostate PC-3 Promotes cell death. Evading programmed
cell death [132]

Ochnaflavone Breast MCF-7 Strong cytotoxic effects. Evading programmed cell
death [133,134]

Podocarpusflavone A

Breast MCF7
Induces cell cycle arrest at the
S phase, leading to alterations
in Topoisomerase I enzyme.

Evasion of
growth suppressors [133]

Melanoma A375
Inhibition of JAK2/STAT3
pathway. Cell cycle arrests

and induces apoptosis.

Evasion of
growth suppressors

Evading programmed
cell death

[134]

Ovarian A2780CP
Inhibits human

topoisomerase II
alpha enzyme.

Self-sufficiency in
growth signals [135]
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Table 1. Cont.

Dimeric Flavonoid Cancer Type Cell Lines Mechanism of Action Hallmark of Cancer Literature
Reference

Propolone A and B Prostate PC-3 Inhibits cell proliferation in
2D in vitro cultures.

Self-sufficiency in
growth signals [115]

Robustaflavone Breast MCF7
Induces cell death through

ferroptosis (accumulation of
reactive oxygen species).

Evading programmed
cell death [136]

Sotetsuflavone Lung A549
Induces cell autophagy

through PI3K/Akt/
mTOR pathway.

Evading programmed
cell death [98,137,138]

Volkensiflavone Ovarian OVCAR-3 High cytotoxicity. Evading programmed
cell death [121]

Amentoflavone Esophageal
squamous

KYSE-150 and
Eca-109 cell lines

Suppressed cell proliferation,
adhesion and invasion;

induced cell cycle arrest in G1
phase by targeting cyclin B

and CDK1;
promoted apoptosis.

Self-sufficiency in
growth signals

Evasion of
growth suppressors

Evading programmed
cell death

[139]

Ginkgetin

Bladder TSGH8301
cell line

Diminished proliferation;
reduced angiogenesis.

Self-sufficiency in
growth signals

Promoting angiogenesis
[88]

Ovarian cancer
A2780,SK-OV-3

and CP70
cell lines

Suppression of cell growth
through inhibition of

JAK2/STAT3 and MAPK
signaling pathway.

Self-sufficiency in
growth signals [140]

Liver
HepG2 and
SK-HEP-1
cell lines

Induction of cell cycle arrest
and promotion of apoptosis.

Evasion of
growth suppressors

Evading programmed
cell death

[79]

Involucrasin A Colon cancer HCT-116 cell line

Inhibits cell proliferation by
modulating Akt/MDM2/p53

pathway and induced
apoptosis by upregulating

caspases 6 and 9.

Self-sufficiency in
growth signals

Evading programmed
cell death

[141]

4. Conclusions
Dimeric flavonoids have demonstrated various bioactivities, including anticancer,

antimicrobial, anti-inflammatory, analgesic, antioxidant and vasorelaxant activities [50].
These compounds are abundant in nature and food, and their chemical structure rearrange-
ment is possible [62]. Additionally, these compounds seem to show some selectivity for
tumor cells, a fact that has sparked great interest in the scientific community for their use
as anticarcinogens [20].

Those mechanisms are correlated with the hallmarks of cancer, so dimeric flavonoids
can cause cell cycle arrest, induce apoptosis, inhibit angiogenesis and invasion, and lead
to anti-inflammatory/immunoregulatory effects and the inhibition of proinflammatory
enzyme effects [20]. In addition, dimeric compounds have antioxidant and analgesic
activities that contribute to anticarcinogen behavior [20]. The findings summarized in this
review highlight the great potential of applying dimeric compounds in cancer therapy,
residing in their availability in nature and possible laboratory restructuring, in reducing
toxicity levels of conventional drugs, in amplifying the action of chemotherapeutic drugs
and combating the mechanisms of resistance [60]. The main limitations related to the use
of dimeric flavonoids as future targets for anticancer therapy are still the lack of studies
carried out to elucidate their mechanisms of action. Furthermore, studies carried out with
these compounds use different methodologies, cancer models and concentrations, which
complicates a comparison between various compounds.
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This review reflects the present literature, showing that some dimeric flavonoids are
more extensively studied than others due to the wide range of biological action.

Thus, future work on the long road to implementing the clinical use of these dimeric
compounds is needed to clarify their mechanisms of action and toxicity. Further tests on
animal models and clinical trials that provide information on their safety and efficacy must
be developed [51].
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