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Abstract: Over the past few decades, machine learning (ML) has demonstrated significant advance-
ments in all areas of human existence. Machine learning and deep learning models rely heavily on
data. Typically, basic machine learning (ML) and deep learning (DL) models receive input data and
its matching output. Within the model, these models generate rules. In a physics-guided model, input
and output rules are provided to optimize the model’s learning, hence enhancing the model’s loss
optimization. The concept of the physics-guided neural network (PGNN) is becoming increasingly
popular among researchers and industry professionals. It has been applied in numerous fields such
as healthcare, medicine, environmental science, and control systems. This review was conducted
using four specific research questions. We obtained papers from six different sources and reviewed
a total of 81 papers, based on the selected keywords. In addition, we have specifically addressed
the difficulties and potential advantages of the PGNN. Our intention is for this review to provide
guidance for aspiring researchers seeking to obtain a deeper understanding of the PGNN.

Keywords: physics-guided neural network (PGNN); machine learning (ML); deep learning (DL);
data-driven models; loss optimization

1. Introduction

A hybrid modeling technique called physics-guided neural network (PGNN) uses
data and physical knowledge to train machine learning (ML) models, especially neural
networks. The goal of classical machine learning, particularly data-driven models, is to
derive correlations and patterns directly from the data. These data-driven models, however,
tend to be inconsistent and data-hungry [1].

There are two methods for incorporating physics into a machine-learning model.
Firstly, enhance the input data by using feature engineering techniques, which include
estimating extra features based on principles derived from physics theory. Secondly,
include a physical inconsistency term into the loss function to serve as a regularization
mechanism, imposing penalties on physically inconsistent predictions. The integration
of these methodologies results in the development of a unique algorithm called physics-
guided neural network (PGNN). PGNNs can achieve generalization more effectively since
physics models are not as dependent on individual data distributions. Furthermore, PGNNs
provide a valuable contribution to the current endeavors in Explainable AI (XAI) by
generating findings that are both physically consistent and easily understandable, hence
improving the interpretability of the model. Because of the PGNN’s influence on model
optimization and adaptability in the domain, we have decided to do this review. A sample
figure shows in Figure 1 as PGNN structure.
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Figure 1. Difference between data-driven model vs. PGNN.

By fusing data-driven methods with the advantages of physics-driven models, PGNN
aims to overcome this. A PGNN is created when ML models are trained using a combination
of physical and mathematical information [2]. The goal of incorporating physics-based
limitations, formulas, or concepts into the learning process is to improve the interpretability,
dependability, and performance of the model.

In certain cases, data-driven models could perform better than physics-driven models,
although they might not be consistent or might need a lot of data [3]. PGNN aims to com-
bine data and physics expertise to provide the best of both worlds. This works especially
well in situations when gathering a lot of training data is difficult or costly.

There are two steps [4] in the process of using a physics-guided neural network
(PGNN). First, they build hybrid physics–data (HPD) models, which are hybrid models
made by fusing neural networks with physics-based models. Second, the learning goal
of the neural network is trained using physics-based loss functions that are created using
scientific knowledge.

Physics-guided neural network (PGNN) models are a cutting-edge deep learning
technique that integrates physics ideas into neural network topologies [5]. PGNNs create
a new way of doing things called theory-guided data science. This is different from
traditional black-box algorithms because it tries to limit and explain model predictions
from a physics point of view [6]. PGNNs combine scientific knowledge with data science
techniques to eliminate physical disparities and bridge the gap between empirical data and
theoretical understanding.

Creating a PGNN requires three essential steps:

1. To construct a hybrid system, physics-based model knowledge and neural networks
are combined.

2. The learning aim of the neural network is achieved by using scientific knowledge as a
physics-based loss function.

3. Optimizing empirical loss and physical consistency in model training.

PGNNs leverage physical principles to overcome the limitations of either data-driven
or strictly physical models. They embed physics-based equations into the loss function to
guarantee that model predictions adhere to accepted physical boundaries. By combining
theoretical concepts with actual data, PGNNs increase generalization performance and
provide interpretable model outputs, facilitating communication between data scientists
and domain specialists.

2. Type of PGNN

Physics-guided neural networks (PGNNs) utilize supervised deep learning (DL) mod-
els to incorporate the known physics of a phenomenon. Extraction of intricate features
from carefully controlled experiments or computer simulations allows for this. PGNNs
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employ various neural network topologies [7]. A figure illustrating the types of PGNN is
shown below in Figure 2.

Figure 2. Types of PGNN.

The intelligent combination of these diverse neural network types enhances the
model’s capability to identify and convey intricate links present in the data. PGNNs
can quickly learn and use the physical rules that govern the observed events by combining
different neural network topologies [8].

3. Application of PGNN

PGNN has a huge application area. An example of an application is provided in
Figure 3.

Figure 3. Application of PGNN.

3.1. Biomedicine

• Drug discovery using predictive modeling.
• Using medical data to forecast patient outcomes.
• Medical diagnostics and image analysis [3].

3.2. Material Science

• Forecasting characteristics and actions of materials.
• Increasing the rate of material discovery.
• Enhancing the methods for synthesizing materials.

3.3. Fluid Dynamics

• Fluid flow pattern modeling and prediction [9].
• Heat transfer and turbulence simulation.
• Creating more aerodynamically efficient systems.



Digital 2024, 4 849

3.4. Earth Sciences

• Forecasting the effects of climate change.
• Examining and simulating geological mechanisms.
• Examining how environments impact ecosystems.

3.5. Lake Temperature Environmental Monitoring

• Monitoring and predicting the temperature of lakes [4].
• Comprehending the effects of global warming on aquatic environments.

3.6. Control Systems and Robotics

• Robotics control: To improve motion planning and control tactics, PGNNs may be
used in robotic control systems.

• Autonomous vehicles: By taking into account environmental influences and physical
limitations, PGNNs help forecast and optimize the behavior of autonomous vehicles [10].

• Wind energy: PGNNs help maximize energy efficiency in wind turbine installation
and design.

• Solar energy: By predicting solar panel performance in response to environmental
conditions, PGNNs may help maximize the harvesting of solar energy [11].

3.7. Economics and Finance

• Stock market prediction: By combining market dynamics and economic concepts,
PGNNs are utilized to model and forecast stock market movements.

• Financial risk management: By taking into account the influence of several economic
aspects, PGNNs help improve risk assessment models in finance.

• Image reconstruction: By combining physical limitations, PGNNs used in computer
vision may enhance image reconstruction, producing sharper and more accurate pictures.

• 3D object identification: By using physical characteristics and limitations throughout
the learning process, PGNNs help with 3D object identification.

3.8. Aviation Technology

• Structural health monitoring: to guarantee dependability and safety, PGNNs are able
to forecast and track the structural health of aircraft and spacecraft components [12].

• Flight control systems: by taking system dynamics and aerodynamics into account,
PGNNs help to optimize flight control systems [12].

3.9. Science of the Environment

• Air quality prediction: pollutant emissions, weather patterns, and geographic char-
acteristics are among the variables that PGNNs are utilized to model and forecast
air quality.

• Ecological modeling: by forecasting how changes in the environment would affect
biodiversity, PGNNs help model ecological systems.

It is important to note that PGNNs are not only used in these fields; in fact, scientists
are always looking into new ones where physics-based modeling and neural networks may
work together to provide more insightful and accurate predictions. PGNNs’ multidisci-
plinary character enables them to be used to a wide range of scientific and engineering
issues involving the interaction of intricate data patterns and physical rules.

4. Constructing Hybrid Physics–Data Models

There are two main steps in physics-guided neural networks (PGNN): (a) creating
hybrid models that combine physics-based models and neural networks; these are called
hybrid physics data (HPD) models; and (b) using scientific knowledge as physics-based
loss functions in the learning process of neural networks.
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Constructing hybrid physics–data models begins with a predictive learning scenario
where a set of input drivers, D, are physically linked to a target variable, Y. Typically,
a neural network model, fNN : D → Y, is trained over a dataset to estimate the target
variable, Ŷ. Alternatively, a physics-based numerical model, fPHY : D → Y, can simulate
the target variable, YPHY, based on its physical associations with the input drivers. However,
calibrating physics-based models often demands laborious parameter adjustments using
observational data, and YPHY might offer an incomplete depiction of the target variable due
to simplified or missing physics, leading to discrepancies with observations. Consequently,
the fundamental aim of HPD modeling is to amalgamate fPHY and fNN to mitigate their
inherent shortcomings and exploit the information from both physics and data.

A key equation in constructing this model is

fHPD : X = [D, YPHY] → Y,

where the input X consists of both the observed drivers D and the simulated physics-based
outputs YPHY.

This hybrid physics–data model (HPD) learns the mapping from the combined input
[D, YPHY] to the target variable Y. The physics-based output YPHY is crucial for injecting
physical knowledge into the learning process. This enables the model to correct any
potential biases or errors in the pure physics model and improve generalization through
the data-driven learning provided by the neural network. The HPD model may predict
Ŷ = YPHY, assuming the physics-based model is accurate and YPHY fits well with the
observations of Y. However, the HPD model, fHPD, has the capacity to adjust for any
systematic errors in YPHY by extracting intricate features from the space of input drivers.
This process bridges knowledge gaps and enhances the overall model performance.

Through the combined use of data-driven neural networks and physics-based sim-
ulations, HPD models are able to provide predictions that are more resilient to physical
limitations and flexible enough to be applied to actual data.

5. Enhancing Model Training with Physics-Based Loss Functions

In traditional HPD model training, model complexity is controlled while the empirical
loss of the model’s predictions Ŷ on the training set is minimized. However, the size of the
labeled training set, which is often restricted in scientific situations, limits the efficacy of
this strategy. Furthermore, models educated just on empirical loss could not follow the
laws of physics. In order to solve this, data science models are guided toward physically
compatible answers via the use of physics-based loss functions.

Equations G(Y, Z) = 0 and H(Y, Z) ≤ 0 represent the physical connections the
target variable Y has with other physical variables Z. These equations, which can involve
either partial differentials or algebraic operations, illustrate essential principles of physics.
Loss.PHY, a physics-based loss function, assesses whether model predictions Ŷ contradict
certain physics-based equations:

Loss.PHY(Ŷ) = ||G(Ŷ, Z)||2 + ReLU(H(Ŷ, Z))

where ReLU(.) represents the rectified linear unit function. The term G(Ŷ, Z) expresses
equality-based physical relationships, while H(Ŷ, Z) ≤ 0 represents inequality constraints.
The term |G(Ŷ, Z)|2 penalizes deviations of the model predictions Ŷ from the physical
equality constraints. The term ReLU(H(Ŷ, Z)) enforces inequality constraints, ensuring
that only positive violations contribute to the loss, thereby guiding the model to stay within
physically valid regions.

Unlike traditional loss functions, Loss.PHY can be computed without requiring actual
observations of the target variable, Y, allowing its evaluation on unlabeled data instances.
This ability to assess Loss.PHY on unlabeled data makes it a powerful tool for guiding the
model to adhere to physical laws even in cases with sparse or incomplete data.
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Minimizing empirical loss, model complexity, and physical inconsistency is the overall
learning goal of PGNN, which incorporates Loss.PHY as follows:

arg min
f

Loss(Ŷ, Y) + λR( f ) + λPHYLoss.PHY(Ŷ)

Here, the following is true:

• Loss(Ŷ, Y) represents the empirical loss, typically a mean squared error or cross-
entropy, which measures how closely the model predictions Ŷ match the actual target
Y from the data.

• R( f ) is a regularization term that controls model complexity, preventing overfitting.
• The hyper-parameter λPHY determines the relative importance of reducing physical

inconsistency compared with minimizing empirical loss and model complexity.

By ensuring that model outputs conform to established physical laws, PGNNs can
achieve superior generalization, even in scenarios with limited or incomplete training data.
Moreover, the model’s outputs are comprehensible to subject matter experts, thereby pro-
moting scientific advancement. To minimize this objective, various optimization techniques,
including stochastic gradient descent (SGD) and its variants, can be utilized, employing
automated differentiation for efficient gradient computation.

6. How PGNNs Work

Physics-guided neural networks (PGNNs) use a hybrid technique to improve predic-
tion accuracy while maintaining compatibility with well-established scientific principles.
Specifically, they integrate neural networks with models based on physics. The elements
and functionality of PGNNs are described in this synopsis.

6.1. Components

• Physics-based models: These simulations of physical processes, such as heat transport,
fluid dynamics, or quantum mechanics, incorporate domain-specific information.

• Neural networks: Neural networks are universal function approximators that
are capable of learning complex mappings between input characteristics and
predicted outputs.

6.2. Hybrid Setup

PGNNs use a hybrid framework consisting of the following components:

• Observational features and physics-based simulations: PGNNs use both empirical
data and results from physics-based simulations, making the most of each knowl-
edge source.

• Neural network architecture: Integrate with the combined input of simulated outputs
and observational characteristics, a customized neural network architecture is created.
This allows the model to provide predictions that combine theoretical understanding
with empirical observations.

• Physics-based loss functions: The neural network’s learning goal incorporates these
loss functions. They improve accuracy and consistency by directing the training
process to generate predictions that comply with accepted physics rules by encoding
well-known physical principles.

PGNNs provide predictions that are correct and based on basic scientific principles by
combining the explanatory power of physics-based models with the adaptability of neural
networks. Concerning established physics, this integration allows PGNNs to address a
broad spectrum of challenging issues in several domains.
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7. Comparison with Other Approaches

In order to accomplish this integration,we clarify three [7] different frameworks.
Table 1 are physics-guided neural networks (PgNN), physics-informed neural networks
(PiNN), and physics-encoded neural networks (PeNN).

Table 1. Comparison of PgNN, PiNN, and PeNN Frameworks.

Aspect PGNN PiNN PENN

Definition
Neural networks that incorporate
physical principles into their training to
model complex phenomena.

Designed to solve PDEs by incorporating
physical laws into the training process.

Combines the strengths of PgNN and
PiNN, allowing hard-encoded prior
knowledge while being adaptable to
physical scenarios.

Applications

Structural analysis, topology
optimization, health condition
assessment, fluid mechanics, solid
mechanics, etc.

Fluid mechanics, fluid dynamics, neural
particle methods. Advanced variants
include PhySRNet, PDDO-PiNN, PiELM,
DPiNN, and PiNN-FEM for
computational mechanics.

Effective in modeling complex material
responses and damage, as well as in
extrapolation tasks.

Advantages
Can effectively utilize sparse data and
incorporate physical constraints to model
complex phenomena.

Can deduce governing equations and
unknown boundary conditions,
improving predictive capabilities.

Demonstrates superior performance in
accuracy and computational efficiency
compared with PgNN and PiNN.

Limitations

Statistics-based training, sparse datasets,
interpolation issues, boundary condition
challenges, resolution-dependent,
average solutions, diversity struggles.

Training complexity, convergence issues,
generalization limitations, high
computational cost, inverse problem
difficulty.

Geometry restrictions, overfitting,
training complexity, implementation
difficulty, memory cost, initial setup.

Experimental Case Study

Tadesse et al. [13] predicted mid-span
deflections in composite bridges using
ANN with a maximum RMSE of 3.79%.
Hung et al. [14] applied ANN to predict
the ultimate load factor in a non-linear
steel truss with high accuracy.

Cheng and Zhang [15] developed
Res-PiNN for fluid simulation with
superior results over traditional PiNN.
Lou et al. [16] applied PiNN to inverse
multiscale flow modeling.

You et al. [17] introduced IFNO for
material response modeling,
outperforming FNO in hyperelastic and
brittle materials. Dulny et al. [18]
combined NeuralODE with the Method
of Lines for PDE problems but faced
limitations with elliptical
second-order PDEs.

Model Flexibility Limited flexibility, mainly for
graph-structured problems.

High flexibility, effective across multiple
physics domains.

Specialized for implicit modeling of
complex material behavior.

Performance and Accuracy
Stable and accurate in graph-related
domains but less effective in
continuous fields.

Enhanced PiNN variants (e.g., Res-PiNN)
show improved accuracy in handling
complex phenomena.

IFNO outperforms traditional methods in
material modeling but struggles with
elliptical PDEs.

Capabilities

Speed Improvement ✓ ✓ ✓

Easy Network Training ✓ × ×

Training Without Labeled Data × ✓ ×

Physics-Based Loss Function × ✓ ✓

Continuous Solutions × ✓ ✓

Spatiotemporal Interpolation × ✓ ✓

Physics Encoding × × ✓

Operator Learning × × ✓

Continuous-Depth Models × × ✓

Spatiotemporal Extrapolation × × ✓

Solution Transferability × × ✓

PGNN

Physics-guided neural networks (PgNNs) are deep learning models that incorporate
physical principles from experiments, laws, or differential equations into their training
process, enhancing their performance in solving complex scientific problems. By combining
data-driven approaches with established physical laws, PgNNs integrate various neural
architectures, including Multilayer Perceptrons (MLPs), Convolutional Neural Networks
(CNNs), and Graph Neural Networks (GNNs), to accelerate simulations, particularly in
computational fluid dynamics (CFD) and material design. While PgNNs require substantial
computational resources for training, they offer significantly faster and more efficient
simulations once trained.

PgNNs have been successfully applied across several domains, particularly in areas
like mesh generation, optimization, scientific computing, structural analysis, topology
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optimization, health condition assessment, fluid mechanics, solid mechanics, etc. For in-
stance, in fluid mechanics, PgNNs have reduced the computation time required for solving
Navier–Stokes equations and predicting fluid dynamics [19]. Deep learning models like
STENCIL-NET have shown [20] to improve adaptive discretization for complex equations,
boosting both speed and accuracy.

In material design, trained PgNN models predict optimal designs without the need for
iterative processes, drastically reducing computation time. Various researchers have proposed
advanced architectures that further enhance these capabilities. For example, Saurabh et al. [21]
developed a two-stage approach using a CNN-based encoder–decoder and conditional GAN
to find near-optimal topological designs, while Banga et al. introduced a 3D CNN that
reduced topology optimization time by 40% with 96% accuracy. Baker et al. [22] combined
low-resolution GAN with SRGAN for high-resolution topology solutions in heat transfer
structures, offering further improvements in computational efficiency.

Moreover, PgNNs have been applied in inverse design problems, where models
predict structures with optimal mechanical properties. PgNNs have also been integrated
into multiscale simulations, replacing traditional solvers like Finite Element Methods (FEM)
to speed up macro-scale simulations by bypassing lower-scale calculations.

Despite their advantages, PgNNs face challenges such as overfitting and computa-
tional demands during training. While methods exist to mitigate overfitting, prediction
accuracy can still suffer when tested outside the training dataset. However, studies con-
sistently show PgNNs’ potential as either standalone surrogate models or integrated with
conventional solvers like FEM, offering a powerful tool for faster, more accurate scientific
computing in fields ranging from fluid dynamics to material design.

8. Review Method

This review paper is based on PGNN between 2021 and 2024. We used a systemic
analysis for this publication. Systematic reviews help to gather information. The process
that we used to conduct is the systematic review process. There are more than 16,000 peer-
reviewed publications in this research. For primary analysis, we have chosen limited
papers. Our systematic review was conducted in ten steps, as shown in Figure 4.

Figure 4. Steps of systematic review method.

8.1. Research Question

This survey aims to provide answers to the following PGNN research questions:
PGNN integrates neural networks with physics-based constraints. The ensuing RQs

serve as guiding our questions:
RQ1: How to enhance the loss function in PGNN?
Problem: The loss function in PGNN plays a critical role in balancing physical con-

straints with data-driven learning. Enhancing this function could improve the model’s
predictive accuracy by capturing more intricate physical relationships. Current research
focuses on refining the loss function to minimize errors and improve PGNN performance.
Researchers have likely refined the model’s loss function to improve approaches. We are
examining these progressions in the current state of PGNN.

RQ2: What are the application domains in PGNN?
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Problem: A significant challenge lies in identifying the specific fields where PGNN
can be most effectively applied. The integration of physics into machine learning offers
potential in various domains, but understanding which fields benefit the most from PGNN
is crucial. PGNN may have proven useful in several scientific and technical fields. We have
identified these areas and revealed the flexibility and effectiveness of PGNN.

RQ3: How does PGNN help build correlations using a knowledge graph?
Problem: PGNN has the potential to use knowledge graphs to establish meaningful

correlations through structured data. Understanding how PGNN utilizes these graphs
to form accurate connections is crucial for improving prediction accuracy. By examining
this inquiry, we can determine how PGNNs use structured data to improve their ability to
make accurate connections.

RQ4: What are the research challenges?
Problem: PGNN faces several challenges, including scalability, interpretability, robust-

ness, and generalization. Overcoming these issues is essential for enhancing the model’s
performance and expanding its applicability to diverse fields. Addressing this question
enables us to identify issues for potential research over PGNN. These challenges might
encompass scalability, interpretability, robustness, and generalization. Researchers can
devise innovative strategies for these obstacles.

8.2. Keyword Selection

To gather a thorough set of publications about physics-guided neural networks
(PGNN), keyword searches were used on search engines like Google Scholar. It is ad-
vised to use the following keywords:

Physics Guided Neural Network,
PGNN,
Physics Informed Neural Network,
PINN,
PHynet,
Semi-Supervised Graph Neural Network,
PGDL, and
PeNN.

We create search queries that yield relevant articles using suitable connectors for
these keywords.

8.3. Collection of Documents and Filtering (Inclusion/Exclusion Criteria)

We have collected documents from several databases using our search strategy. We
search, filter the results by inclusion and exclusion criteria, and then choose the articles
most relevant to our review.

The inclusion criteria are defined in response to the study’s research goals and scope.
We include publications that discuss the physics of guided neural networks and their
approaches.

The exclusion criteria are intended to exclude research that does not accord with
the goal or methodology of PGNN. For example, we exclude works that do not discuss
PGNN models.

After applying these inclusion and exclusion criteria, we pick papers most relevant to
the PGNN research subject and study scope. These chosen articles serve as the foundation
for the following phases of the review process, such as bibliometric analysis, document
examination, and discussion of results.

8.4. Source Material and Search Strategy

Our literature search encompassed various technical conferences/journals, includ-
ing ACM, Elsevier, IEEE, Springer, Wiley, and Google Scholar. The time period of our
investigation spanned from 2021 to 2024.
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We reviewed the abstracts of the identified papers and filtered them based on our
inclusion and exclusion criteria. Through this process, we set to 81 publications. These
studies are summarized in Table 2. Although our search may not have captured all papers,
we believe it accurately reflects the current trends.

Table 2. Search engines and number of primary studies.

Search Engine Primary Studies

ACM Digital Library 7
Elsevier ScienceDirect 11
IEEEXplore Digital Library 4
Springer Online Library 35
Wiley InterScience 13
Google Scholar 11

Total 81

8.5. Analysis Data Collection and Database Selection

In this section, we examined all 81 published papers to address our research inquiries.
We have collected information relevant to our research inquiries, including the paper’s
summary, references, type, contribution, application domains, loss function and enhanced
loss function techniques, evaluation details, and suggested challenges. The collection
and publication of all data are documented in https://shorturl.at/i6idF (accessed on 21
May 2024). During our investigations, we conducted a comprehensive evaluation and
analysis of each document to authenticate and validate the information collected from
them. In our search for documentation, we found many papers but chose only those that
were open-access and relevant to our study, Table 3.

Table 3. Search engines used and number of results.

Search Engine Search Queries Results Primary Studies

ACM Digital Library acmdlTitle,recordAbstract,author keyword:“physics guided neural
network” Or“physics Informed neural network” 130,654 7

Elsevier ScienceDirect

pub-date > 2021 and pub-date < 2024 and
TITLE-ABSTR-KEY(“physics guided neural network”) or
TITLE-ABSTR-KEY(“PGNN”) or TITLE-ABSTR-KEY(“PINN”)[All
Sources(Computer Science)]

35 11

IEEEXplore Digital Library

((((“Document Title”:“PGNN”) OR “Abstract”:“PGNN”) OR “Author
Keywords”:“PGNN”) OR ((“Document Title”:“physics guided neural
network”) OR “Abstract”:“physics guided neural network”) OR
“Author Keywords”:“physics guided neural network”) OR
((“Document Title”:“physics informed neural network”) OR
“Abstract”:“physics informed neural network”) OR “Author
Keywords”:“physics informed neural network”)) and refined by Year:
2021–2024

251 4

Springer Online Library “PGNN” OR “physics guided neural network” OR “physics informed
neural network” within 2021–2024 161 35

Wiley InterScience
“PGNN” in Article Titles OR “physics guided neural network” in
Abstract OR “physics informed neural network” in Keywords
between years 2021–2024

1477 13

Google Scholar

“PGNN” “physics guided neural network” “physics informed neural
network”, None of the words: “Physics” “Physics guided Deep
Learning”,“PHynet”, “Semi-Supervised Graph Neural Network”,
“PGDL”, Date filter: 2021–2024

2280 11

https://shorturl.at/i6idF
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8.6. Publication and Citation Frequency

PGNN (physics-guided neural networks) and PINN (physics-informed neural net-
works) have gained significant attention and application in recent years due to a rising
interest. Consequently, there has been a substantial rise in the number of papers and
patents associated with PGNN and PINN. The number of articles, patents, and citations
associated with PGNN and PINN over time would most likely be shown in Figure 5. We use
’Dimensions’ (https://www.dimensions.ai/) to search for ’PGNN’ in our annual review.
We have collected data from 2015 to 2024.

Figure 5. Citation papers’ years (2015–2024).

This number would most likely indicate that there has been an increase in interest in
PGNN and PINN over time, as an increasing number of researchers are incorporating these
methodologies into their work and expanding upon the findings of prior studies.

In general, the trends are becoming an increasingly significant part of developing and
implementing PGNN or PINN.

8.7. Bibliography Analysis Using Knowledge Graph

Using BERT embeddings, we have built a knowledge graph, Figure 6, from the
abstract of the reviewed literature by a series of discrete stages. Initially, for each word in
the abstracts, we computed BERT embeddings using the BERT tokenizer and “bert-base-
uncased”. Each word was tokenized, the tokenized input was fed into the BERT model,
and the token was extracted as the pooled output. These mappings, which link each word
to its matching BERT vector, are kept in dictionaries.

We next determined the word embedding pairs’ cosine similarity. Establishing the
semantic connections between words depends critically on this similarity metric. Making
use of these parallels, we build a knowledge network. We divided the abstracts into words
and made a blank graph. To the graph, we add every word as a node. We next include
edges between each pair of nodes, where the weight of each edge indicates how similar the
words are that are connected. By this procedure, the abstract information may be seen and
understood analytically since nodes stand in for words and edge weights for the strength
of their semantic connections.

https://www.dimensions.ai/
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Figure 6. Co-relatation analysis using a knowledge graph.

The KG image Figure 6 was added to help graphically illustrate how a knowledge
graph based on the abstracts we reviewed utilizing BERT embeddings may be constructed
and analyzed. The graph, in which each node represents a word and the edges between
them show the degree of similarity based on cosine distance, shows the semantic relation-
ships between important concepts. These knowledge graphs give an organized picture
of the semantic connections among concepts, which improves the learning process of
models such as physics-guided neural networks (PGNNs). Even with sparse labeled data,
a model can obtain deeper contextual information by capturing these linkages through KGs,
which enhances generalization and interpretability. The edge weights, which represent
an additional layer of semantic similarity, may provide the PGNN models with a more
comprehensive grasp of the relationships between various features, which can aid in the
model’s ability to identify patterns and connections in the data. Consequently, KGs can
greatly enhance a model’s capacity to examine and comprehend intricate links across a
variety of domains, in addition to acting as warehouses of organized knowledge.

Our incorporation algorithm is provided below in Algorithm 1.
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Algorithm 1 Constructing a knowledge graph from abstracts using BERT embeddings.

Require: Abstracts Abstracts
Ensure: Knowledge graph G

1: Load the BERT tokenizer and model from pre-trained “bert-base-uncased”
2: Tokenize the abstracts into words and store them in words
3: Initialize an empty dictionary word_embeddings
4: for each word word in words do
5: Tokenize word using the BERT tokenizer
6: Obtain BERT embedding for word by feeding tokenized input into BERT model
7: Extract the pooled output (representation of [CLS] token) and store in

word_embeddings[word]
8: end for
9: Initialize an empty graph G

10: for each word word in words do
11: Add word as a node in G
12: end for
13: for each pair of words (wordi, wordj) in words do
14: Compute the cosine similarity between word_embeddings[wordi] and

word_embeddings[wordj]
15: Add an edge between wordi and wordj in G with weight equal to their similarity
16: end for
17: return G

8.8. Document Analysis

This part presents a summary of the past surveys in the literature.
In their paper, Huang et al. [23] introduced a physics-guided neural network (PGNN)

for reconstructing channeled spectropolarimeter (CSP) data. By incorporating the phys-
ical model of CSP into the network, they improved accuracy and achieved lower RMSE
compared with other methods. Similarly, Wu et al. [24] developed a physics-informed
neural network for predicting milling surface roughness. On the other hand, Daw et al. [4]
combined physics-based models with neural networks to advance scientific discovery.
Their hybrid models merge physics-based simulations with observational data, showing
superior accuracy and consistency in lake temperature modeling.

Similarly, Kumar et al. [9] presented the Herschel Bulkley Network (HB-Net) for mod-
eling non-Newtonian fluid flow, which enhances the ability to capture complex rheological
phenomena. Another significant contribution is from Li et al. [12], who developed a hybrid
CNN-PGNN framework for dynamic fault detection in aeroengine control systems by
combining deep learning with physics-based models. Similarly, Daw et al. [4] proposed
a comprehensive PGNN framework that integrates neural networks with physics-based
models to improve scientific modeling. Likewise, Muralidhar et al. [25] developed PhyNet,
a deep learning network for drag force prediction that integrates physics into its design.

We review some papers on graph-based methods where according to [26], LightGCL
is a graph-contrastive learning model that uses Singular Value Decomposition (SVD) to
enhance training efficiency and minimize bias and noise. LightGCL outperformed 16
advanced models in five datasets, notably in sparse data circumstances. Candidate-aware
Graph Contrastive Learning for Recommendation (CGCL) [27] improves node embeddings
in sparse interaction graphs by using semantically analogous contrastive pair embeddings,
outperforming DNN, GNN, and GCL methods. Similarly, HOPE [28] introduces a high-
order graph ODE approach for analyzing high-order correlations in dynamic systems,
proving effective for long-term forecasting. Scorpius et al. [29] use LLMs to create toxic
abstractions, risking scientific knowledge graph integrity. In another work [30], a graph-
based disentangled representation learning model is presented that improves context-
specific citation production using citation graphs for relevance. Moreover, Wei Ju et al. [31]
analyze GCL methodology and applications in drug discovery, recommender systems,
and traffic forecasting, dividing augmentation techniques into rule-based and learning-
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based methods. Lastly, Wei Ju et al. [32] explore GNN challenges in practical applications,
including imbalance, noise, privacy, and OOD instances to improve GNN robustness and
reliability in bioinformatics and finance.

9. PGNN Equations

The interaction between physics and neural networks is captured via equations used
in PGNN. A simplified representation is as follows:

Relation 1. Given input features Y and physics-based features Z, we have

G(Y; Z) = 0

Relation 2. The physics-based prediction at the next time step (n + 1) is

Ŷ(PB)
n+1 = Yn + h f (tn+1, Ŷ(k)

n+1, Un)

The following information is here:

• h represents the time step (tn+1 − tn).

• Ŷ(k)
n+1 is the neural network prediction at time step (n + 1).

• Un denotes any additional physics-based inputs.

10. Description, Benefits, and Applications of Key Concepts

Physics-guided neural networks (PGNNs) merge the interpretability of physical prin-
ciples with the adaptability of deep learning, resulting in enhanced prediction accuracy
and reliability also established physical laws to inform and constrain the neural network’s.
Some key concepts are provided below in a Table 4.

Table 4. Descriptions, Benefits, and applications of key concepts.

Keyword Description Benefits Applications

PGNN

Physics-guided neural network (PGNN) is a
neural network architecture that includes ideas
from physics into its design and training process.
The purpose of this integration is to enhance the
model’s performance, interpretability, and gener-
alization by using the underlying physical laws,
restrictions, or relationships present in the data.
PGNNs are especially valuable in scientific and
technical fields where comprehending fundamen-
tal physical events is essential for precise fore-
casting and decision-making. Some examples of
these fields include fluid dynamics, material sci-
ence, and structural mechanics.

Enhanced efficiency and
comprehension by using
ideas derived from physics

– Enhanced
generalization
resulting from an
understanding of the
fundamental physical
principles at play

– Computational fluid
dynamics

– Material science
– Structural mechanics

Physics-Informed Neural
Network

A physics-informed neural network (PINN) is
a kind of neural network model that incorpo-
rates the understanding of physics principles di-
rectly into its structure or training process. These
networks use physics-based constraints or equa-
tions to direct their learning process, allowing
them to more effectively capture fundamental
physical correlations and enhance their ability to
make accurate predictions, particularly in situa-
tions when data are few or unreliable. Physics-
informed neural networks (PINNs) have diverse
applications in computational physics, medical
imaging, and environmental modeling.

– Improved forecasting
precision using
physics-based
limitations

– Enhanced efficiency
in situations with
sparse or erratic data

– Computational
physics

– Medical imaging
– Environmental

modeling
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Table 4. Cont.

Keyword Description Benefits Applications

Physics-Guided Deep
Learning

A method known as “physics-guided deep learn-
ing” involves augmenting or guiding deep learn-
ing algorithms using physics-derived concepts.
Deep learning models may now take use of es-
tablished physical laws, restrictions, or correla-
tions to enhance their robustness, interpretabil-
ity, and performance thanks to this integration.
These models may become more broadly applica-
ble by adding knowledge of physics, particularly
in fields where physical principles control the un-
derlying events. Applications for physics-guided
deep learning may be found in astronomy, geo-
physics, and biophysics, among other scientific
fields.

– Improved efficiency
and durability by
using laws of physics

– Generalization in
physics-governed
domains

– Astronomy
– Geophysics
– Biophysics

Semi-Supervised Graph
Neural Network

A Semi-Supervised Graph Neural Network (SS-
GNN) is a neural network architecture especially
tailored for tackling semi-supervised learning
tasks on data organized as graphs. Graph neu-
ral networks (GNNs) expand conventional neu-
ral network designs to process data formatted as
graphs, enabling them to capture relational in-
formation and connections among data points
in a graph. SSGNNs, in the context of semi-
supervised learning, use both labeled and un-
labeled data to enhance model performance and
generalization. They are used in many fields,
such as social network analysis, recommendation
systems, and biological network analysis.

– Enhanced model
efficacy by using both
annotated and
unannotated data

– Efficient encoding of
information on data
organized as graphs

– Social network
analysis

– Recommendation
systems

– Biological network
analysis

11. Distinctive Characteristics and Advantages of PGNNs

Physics-guided neural networks (PGNNs) blend deep learning with physical prin-
ciples, allowing for more accurate modeling of complex systems. By integrating existing
knowledge of physics into their training, they produce predictions that are both under-
standable and consistent with physical laws. PGNNs are also effective in situations with
limited data, making them useful in fields where experimental information is not readily
available. Some are discussed below:

1. Hybridization: Physics-guided neural networks (PGNNs) integrate neural networks
with physics-based information, resulting in a potent fusion. This integration enables
PGNNs to harness the advantages of both methodologies, leading to models that are
more resilient and easier to comprehend.

2. Enhanced generalizability: By integrating physical constraints into the learning pro-
cess, PGNNs exhibit improved capacity to apply learned knowledge to new contexts,
particularly when dealing with limited data. This feature allows PGNNs to achieve
high performance on data that has not been previously seen and to make accurate
predictions beyond the data used for training.

3. Application in multiscale multi-physics phenomena: PGNNs are very effective in
speeding up the numerical simulation of intricate systems that exhibit both multiscale
and multi-physics phenomena. Their capacity to accurately represent the complex
interplay between many physical phenomena makes them indispensable in modeling
and forecasting the behavior of such systems.

4. Future research opportunities: Future research possibilities arise from the use of
PGNNs, providing prospects to investigate several facets of their use and advance-
ment. Potential areas for additional investigation are the examination of causal links,
the enhancement of algorithms to achieve better performance, and the integration of
deep learning solvers with scientific models. These research areas show potential for
enhancing the capabilities and uses of PGNNs in many sectors.
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Because they combine neural networks with information from physics, PGNNs have
unique benefits that make them perfect for solving difficult scientific and engineering
problems. They provide a viable route for future study and application development due
to their adaptability and room for further advancement.

11.1. Limitation of PGNN

Despite their potential, PgNNs face several limitations:

1. Statistics-based training: The main limitation of PgNNs is that their training process
is solely based on statistical correlations in data. As a result, their outputs may not
fully adhere to underlying physical laws and could violate them in certain cases [33].

2. Sparse training data: PgNNs struggle when the training dataset is sparse, which
is often the case in scientific fields. Sparse data leads to failure in extrapolating
predictions outside the scope of the training data, making the models less effective in
real-world applications [34].

3. Interpolation issues: Even for inputs within the sparse training datasets, PgNN
predictions may be inaccurate, especially in complex, non-linear problems. PgNNs
have difficulty interpolating across a wide range of physical parameters, such as
different Reynolds numbers in fluid dynamics [19].

4. Boundary and initial condition problems: PgNNs may not fully satisfy the bound-
ary and initial conditions under which the training data were generated. As these
conditions vary from problem to problem, the training process becomes prohibitively
costly, especially for inverse problems [35].

5. Resolution invariance: PgNN-based models are not resolution-invariant by design,
meaning that models trained at one resolution cannot be easily applied to problems
at different resolutions [36].

6. Averaging effects: During training, PgNNs may treat minor variations in the func-
tional dependencies between input and output as noise, which can result in averaged
solutions. While the model performs optimally over the entire dataset, individual
case predictions may be suboptimal [37].

7. Complex dataset handling: PgNNs struggle when the training dataset is diverse,
i.e., when there are drastically different interdependencies between input and output
pairs. To address this, increasing the model size may help, but it requires more data
and makes training costlier and, in some cases, impractical [35].

8. Scaling to larger systems: As systems grow more complex, scaling PGNNs becomes
computationally expensive, making it difficult to apply them to large-scale problems [38].

9. Data quality and quantity: PGNNs rely heavily on high-quality, complete datasets.
Incomplete or noisy data can lead to poor performance, and obtaining clean data is
often costly and challenging [35].

10. Balancing physics constraints and flexibility: It is difficult to find the right balance
between adhering to physical laws and allowing flexibility in data-driven learning.
Too much focus on physics constraints can limit the learning process, while too much
flexibility can lead to physically inaccurate results [39].

11. Slower performance: PGNNs can be computationally slower than traditional methods
due to the complex optimization process needed to balance physics constraints with
data-driven learning [40].

To address these limitations, PgNNs can be further constrained by governing physical
laws, reducing the need for large datasets and improving their generalization capabilities.

11.2. Challenge of PGNN

Several unresolved research challenges arise from this survey, whether from recurring
issues found in the examined studies or gaps in the existing literature. These challenges
address Research Question RQ4:.

1. Challenge 1: Integration of Multiple Laws of Physics
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The incorporation of numerous physics principles into Physics-Guided Neural Net-
works (PGNNs) offers potential advantages, but it also poses some difficulties. To
maximize the performance of PGNN, it is necessary to solve open challenges such as
comparing various integration techniques, giving heuristics for their application, and
defining the combinability and order of physics laws [25,41–44].

2. Challenge 2: Instructions for Creating Efficient PGNN Models
It is crucial to establish standards for creating physics-guided neural networks (PGNNs)
that are successful. Although multiple PGNN designs can tackle different challenges,
their efficacy may differ. Systematic methodologies and guidelines are required to
develop PGNN models, which provide a comprehensive and sequential approach
suitable for both experienced practitioners and novices. The current understanding of
good PGNN design is often both complimentary and conflicting, suggesting a lack of
defined principles [45–49].

3. Challenge 3: Balancing Physics-Based Constraints with Data-Driven Flexibility
A key challenge in PGNNs is maintaining a balance between applying physics rules
and allowing flexibility for data-driven learning. If too much focus is placed on the
physics constraints, the model may struggle to learn effectively from data. On the
other hand, if the model is too flexible, it may break important physical laws. Recent
studies suggest [39] that a balanced approach for vapor compression systems using
two methods:

(a) Modular model implementation: Data-driven models for individual compo-
nents are built separately and integrated, allowing flexibility and reuse across
different systems.

(b) Physical conservation enforcement: Physical laws like mass and energy con-
servation are enforced, ensuring accuracy while maintaining the efficiency of
data-driven techniques.

11.3. Discussion the Future Research Direction of PGNN

Physics-informed neural networks (PINNs) have reached their limitations, prompting
researchers to investigate physics-guided neural networks (PGNNs) and their pros and
cons. By addressing several PINN difficulties, PGNNs may improve projected accuracy
and generalization. However, a recent study examines PGNN methodology limits. Study-
ing PGNN durability across datasets, their ability to handle complex systems, and their
interpretability in actual situations are important. The research community studies and
tests PGNNs in various scientific and technological sectors to improve their understanding
and application.

Improve [7] PGNN, PiNN, and PeNN for convergence, quicker training, accuracy,
and generalization with sparse datasets. Improve flexibility to multi-dimensional, multi-
physics, and different governing equations.

The method presented in [50] is beneficial for data-driven parametric differential
equation solutions and discoveries. Data-driven issue discovery for deterministic and
probabilistic ODE solutions will be developed from this technique. Reference [51] discusses
training algorithms that restore physical causality in PGNN, PiNN, and PeNN models,
resulting in predictions that are more accurate and consistent.

Early hyperparameter sensitivity is a limitation of the hybrid technique. Despite
employing auxiliary planes, bad parameter initialization might impede training. More
initial hyperparameters will be optimized in future studies.

PGNN, PiNN, and PeNN may address more engineering challenges by applying them
to complicated anisotropic materials, multiscale multi-physics phenomena, and structural
health monitoring [52].

The cPINNs [53] developed by may parallelize, reducing training costs, but they
cannot compute parallelly. CPINNs may be parallelized in future studies.

The goal of the research community’s efforts in these areas is to improve our knowl-
edge and ability to use PGNNs in a variety of scientific and technical fields.
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12. Conclusions

Physics-guided neural networks (PGNNs) offer a revolutionary synergy between
conventional physics-based modeling and neural networks. This hybrid method overcomes
the drawbacks of strictly data-driven models and improves interpretability, generalizability,
and scientific consistency.

In future work, we will integrate state-of-the-art graph contrastive learning techniques
into PGNNs to improve representation learning and model accuracy. Additionally, we will
optimize the tuning of GNN layers to further enhance the balance between data-driven
learning and physical laws.

PGNNs have a substantial impact on a variety of scientific fields and have shown to
be superior, particularly in situations when there is a lack of data. As PGNNs continue
to develop, new applications are being investigated, interpretability is being improved,
and this indicates that machine learning will continue to lead to innovative approaches to
the understanding of physical events.
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