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Abstract: Artisanal and small-scale gold mining (ASGM) has made several environmental impacts,
resulting in the significant siltation of water bodies due to the deposition of sediments on riverbanks.
Based on this perspective, this study aims to investigate the water bodies and regions most impacted
by mining activities, especially in relation to the increase in the Total Suspended Solids (TSS) caused
by ASGM, focusing on the territories of Suriname and French Guiana, over the period from 2017 to
2023, through the creation of an algorithm in Google Earth Engine. This research also aims to map
and describe active mining in this region using the Classification and Regression Tree (CART) method,
which achieved an overall accuracy of 82% and a kappa index of 0.77. The results reveal that from
2017 to 2024, there was an increase of 148.09 km2 in mining, with an average increase in TSS of up to
167 mg/L in water bodies most affected by mining activities. Finally, the continued importance of
using remote sensing technologies, such as GEE, together with innovative methodological approaches,
to monitor and manage natural resources in a sustainable manner is highlighted.

Keywords: mining; total suspended solids; environmental monitoring; remote sensing; Google Earth
Engine; image classification

1. Introduction

The global gold mining industry generally focuses on large companies, but in many
parts of the world, especially in developing countries, mineral extraction is predominantly
driven by artisanal and small-scale gold mining (ASGM), forming a diverse and complex
sector [1,2].

ASGM is a widespread practice in developing countries in the Americas, Asia, and
Africa [3–5]. In the Amazon, this activity began in the 1950s in areas known as mining and
currently involves hundreds of thousands of people due to the increase in gold prices in
recent years [6].

Despite its economic importance, ASGM (Figure 1) has caused several environmental
impacts, being one of the main drivers of deforestation globally [7], causing significant
geomorphic changes to the terrain [8], including mercury contamination, the sedimentation
of waterways, and environmental degradation [4,9]. This practice results in the significant
siltation of water bodies due to the deposition of sediments on riverbanks, where the
exploitation of alluvial deposits is common [2]. This affects water quality, increasing the
Total Suspended Solids (TSS) and reducing the penetration of sunlight necessary for the pro-
duction of organic matter by aquatic organisms [10], in addition to impacting fish [11] and
benthic communities [12].

River sedimentation is a globally recognized problem in gold mining regions such
as Indonesia, Ghana, French Guiana, and Peru, where most operations take place on
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riverbanks or directly in riverbeds [11]. This process significantly contributes to the increase
in suspended solids in the water, damaging the quality and health of aquatic ecosystems.
In the Brazilian Amazon, sediment resulting from mining can reach one or two tons per
gram of gold produced [4], further intensifying this problem.
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Figure 1. Illustration of artisanal or semi-industrial gold mining activities in French Guiana [13]. 
From top left to boĴom right: (a) mechanical removal of surface soil horizons, (b) stripping off of 
gold-bearing material with water jets to recover gold particles and nuggets, (c) digging of a 
derivation canal, (d) seĴling basin, and water turbidity in Combat Creek (e) before and (f) during 
artisanal small-scale gold mining activities. 

River sedimentation is a globally recognized problem in gold mining regions such as 
Indonesia, Ghana, French Guiana, and Peru, where most operations take place on 
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ecosystems. In the Brazilian Amazon, sediment resulting from mining can reach one or 
two tons per gram of gold produced [4], further intensifying this problem. 

Furthermore, the accumulation of sediment in riverbeds can alter river channel 
morphology, affecting the availability of suitable habitats for various aquatic species, such 
as obstructing fish spawning areas and destroying important habitats such as sandbars 
and rocky boĴoms, essential for the life cycle of many species. 

Artisanal and small-scale mining (ASM) causes harmful effects due to the extraction 
and processing of minerals with hazardous chemicals; the poor management of mining 
waste; and insufficient restoration, remediation, and rehabilitation activities [8]. These 
factors not only harm the natural environment, but also put human health at risk. 

The 2023 State of the Industry Survey [8] reveals several environmental impacts of 
ASM, many of which are associated with the negative health effects on populations 
involved in ASM and local communities. Soil erosion, deforestation, the contamination of 
streams and wetlands, soil pollution, and dust emission are the environmental impacts 
most frequently mentioned in the Mine Site Questionnaire [8]. 

In recent years, malaria epidemics have been reported in French Guiana and 
Suriname in regions where these mining activities occur, aggravated by the presence of a 
highly concentrated vulnerable population without access to healthcare [8]. Additionally, 
this malaria was then spread when the highly mobile artisanal and small-scale miners 
returned home [14]. 

Another negative point of artisanal and small-scale gold mining (ASGM) in the 
Amazon is associated with socioenvironmental conflicts, such as human rights violations 

Figure 1. Illustration of artisanal or semi-industrial gold mining activities in French Guiana [13]. From
top left to bottom right: (a) mechanical removal of surface soil horizons, (b) stripping off of gold-
bearing material with water jets to recover gold particles and nuggets, (c) digging of a derivation
canal, (d) settling basin, and water turbidity in Combat Creek (e) before and (f) during artisanal
small-scale gold mining activities.

Furthermore, the accumulation of sediment in riverbeds can alter river channel mor-
phology, affecting the availability of suitable habitats for various aquatic species, such as
obstructing fish spawning areas and destroying important habitats such as sandbars and
rocky bottoms, essential for the life cycle of many species.

Artisanal and small-scale mining (ASM) causes harmful effects due to the extraction
and processing of minerals with hazardous chemicals; the poor management of mining
waste; and insufficient restoration, remediation, and rehabilitation activities [8]. These
factors not only harm the natural environment, but also put human health at risk.

The 2023 State of the Industry Survey [8] reveals several environmental impacts
of ASM, many of which are associated with the negative health effects on populations
involved in ASM and local communities. Soil erosion, deforestation, the contamination of
streams and wetlands, soil pollution, and dust emission are the environmental impacts
most frequently mentioned in the Mine Site Questionnaire [8].
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In recent years, malaria epidemics have been reported in French Guiana and Suriname
in regions where these mining activities occur, aggravated by the presence of a highly
concentrated vulnerable population without access to healthcare [8]. Additionally, this
malaria was then spread when the highly mobile artisanal and small-scale miners returned
home [14].

Another negative point of artisanal and small-scale gold mining (ASGM) in the Ama-
zon is associated with socioenvironmental conflicts, such as human rights violations and the
misappropriation of lands from indigenous communities that trigger conflicts and tensions.

In this context, this research aims to fill a significant gap in the analysis of the environ-
mental impacts of gold mining in often-neglected areas of the Amazon, specifically in the
territories of Suriname and French Guiana. While gold mining in the Brazilian Amazon has
been widely studied and documented, mining activities in these adjacent regions, although
equally relevant in terms of environmental and socioeconomic impact, often do not receive
the same attention from the scientific community and policymakers.

Given that many of these settlements operate informally within remote protected areas
and indigenous lands in the Amazon, the use of satellite imagery to delineate historic and
active mining areas as well as spectral assessments of water quality via remote sensing
becomes the only viable tool for a more accurate understanding of changes in river water
quality related to gold mining practices in the region. This set of information, which
includes changes in land use and water quality associated with artisanal and small-scale
gold mining (ASGM), is of great interest to land managers as it helps in assessing the
social and environmental implications of the activities of gold mining. At the same time,
these data are essential to inform the development of public policies aimed at recovering
degraded areas and promoting the sustainable use of water and mineral resources in the
region [6,9,11].

Based on this perspective, this study’s main objective is to investigate the water bodies
and regions most impacted by mining activities, especially in relation to the increase in the
Total Suspended Solids (TSS) caused by artisanal and small-scale gold mining (ASGM) in
the Amazon, focusing on the territories of Suriname and French Guiana, over the period
from 2017 to 2023, through the creation of an algorithm in Google Earth Engine. This
research also aims to map and describe active mining in this region, drawing a parallel
with their proximity to the most affected water bodies. In doing so, we seek to provide
insights into patterns of mining activity and associated environmental effects, contributing
to a more comprehensive understanding of the impacts of gold mining in these neglected
areas of the Amazon.

2. Materials and Methods
2.1. Research Area

The study area (Figure 2) refers to northeast Suriname and northwest French Guiana,
covering the northern portion of the Amazon. The extension coordinates are as follows: top
left, −55.7909, 6.0316 (longitude, latitude); bottom right, −52.6653, 3.0696 (longitude, latitude).

In this polygon, the mapping of mines will occur throughout its extension, while
the analysis of the TSS will focus on the main water bodies in the region, including Lake
Brokopondo, Lake Sinnamary, the Maroni River, and the Suriname River. These bodies
of water play fundamental roles in local ecosystems and are essential for the lives of the
communities that inhabit this area of the Amazon.
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Figure 2. Study area.

2.2. Overall Methodological Workflow

Below, we present the methodological flowchart (Figure 3) of this study, in which we
detail the steps divided between pre-processing, processing, and the final results. In pre-
processing, we process the Sentinel image collection from 2017 to 2023 and perform filtering
to remove clouds. In processing, we apply the TSS to the water bodies of interest and
map the mining areas. The final result includes the products obtained for spatiotemporal
analysis, visualization, and download.

The first stage of this study involved creating the algorithm in Google Earth Engine
(GEE). GEE is a cloud-based geospatial image processing and analysis platform that offers
a broad set of data and tools for spatial and temporal analysis. Its ability to process
large volumes of data quickly and efficiently makes it a powerful tool for environmental
monitoring studies and spatiotemporal analysis.



Mining 2024, 4 514Mining 2024, 4, FOR PEER REVIEW 5 
 

 

 
Figure 3. Overall methodology. 

2.2.1. Imagery Time-Series for Monitoring Water Quality and Mining Areas 
To monitor water quality and mining areas over time, an approach based on a time 

series of satellite images was used. Specifically, images from the Sentinel-2A satellite 
(Table 1), belonging to the Coperni2us program, were used due to its high spatial 
resolution and revisit frequency suitable for environmental studies. 

Table 1. Sentinel-2A bands table [15]. 

Band Name 
Spectral Range 

(nm) 
Spatial Resolution 

(m) 
Band 1 Coastal aerosol 443 60 
Band 2 Blue 490 10 
Band 3 Green 560 10 
Band 4 Red 665 10 
Band 5 Red Edge 1 705 20 
Band 6 Red Edge 2 740 20 
Band 7 Red Edge 3 783 20 
Band 8 NIR (Near Infrared) 842 10 

Band 8A Narrow NIR 865 20 
Band 9 Water vapor 945 60 

Band 10 SWIR—CIRRUS 1375 60 
Band 11 SWIR 1 1610 20 
Band 12 SWIR 2 2190 20 

Figure 3. Overall methodology.

2.2.1. Imagery Time-Series for Monitoring Water Quality and Mining Areas

To monitor water quality and mining areas over time, an approach based on a time
series of satellite images was used. Specifically, images from the Sentinel-2A satellite
(Table 1), belonging to the Coperni2us program, were used due to its high spatial resolution
and revisit frequency suitable for environmental studies.

Table 1. Sentinel-2A bands table [15].

Band Name Spectral Range
(nm)

Spatial Resolution
(m)

Band 1 Coastal aerosol 443 60
Band 2 Blue 490 10
Band 3 Green 560 10
Band 4 Red 665 10
Band 5 Red Edge 1 705 20
Band 6 Red Edge 2 740 20
Band 7 Red Edge 3 783 20
Band 8 NIR (Near Infrared) 842 10

Band 8A Narrow NIR 865 20
Band 9 Water vapor 945 60
Band 10 SWIR—CIRRUS 1375 60
Band 11 SWIR 1 1610 20
Band 12 SWIR 2 2190 20
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This collection contains previously atmospherically corrected and harmonized images,
ensuring the consistency and quality of the data throughout the analyzed period.

To select suitable images, the following code was used:
var collection = ee.ImageCollection(“COPERNICUS/S2_SR_HARMONIZED”)

.filterDate(‘2017-01-01’, ‘2023-12-31’)

.filterBounds(geometry3)

.filter(ee.Filter.lt(‘CLOUDY_PIXEL_PERCENTAGE’, 10));
This code allows you to filter the Sentinel-2 image collection for the period of interest (from

January 2017 to December 2023) and restrict the study area through the spatial delimitation
defined by the variable “geometry3”. Furthermore, the “CLOUDY_PIXEL_PERCENTAGE”
filter was used to select only images with less than 10% cloud cover, ensuring the quality of the
data used in the analysis.

Despite limiting the analysis to images with a cloud coverage of 10% or less, the
challenge of correctly classifying the TSS values was still identified, as some of them actually
corresponded to covered areas by clouds. Considering this issue, a more sophisticated
cloud filter was implemented, which now removes pixels affected by clouds during the
final classification step.

Below is the implemented code:
var s2Clouds = ee.ImageCollection(‘COPERNICUS/S2_CLOUD_PROBABILITY’)
.filterBounds(region1)
.filterDate(fromDateSentinel, toDateSentinel);
var s2_orig = ee.ImageCollection(‘COPERNICUS/S2_SR_HARMONIZED’)
.filterBounds(region1)
.filterDate(fromDateSentinel, toDateSentinel);
var MAX_CLOUD_PROBABILITY = 10;
function maskClouds(img) {

var clouds = ee.Image(img.get(‘cloud_mask’)).select(‘probability’);
var isNotCloud = clouds.lt(MAX_CLOUD_PROBABILITY);
return img.updateMask(isNotCloud); }

function maskEdges(s2_img) {
return s2_img.updateMask(

s2_img.select(‘B8A’).mask().updateMask(s2_img.select(‘B9’).mask()));}
s2_orig = s2_orig.map(maskEdges);

var s2SrWithCloudMask = ee.Join.saveFirst(‘cloud_mask’).apply({
primary: s2_orig,
secondary: s2Clouds,
condition: ee.Filter.equals({leftField: ‘system:index’, rightField: ‘system:index’})});
var s2CloudMasked = ee.ImageCollection(s2SrWithCloudMask).map(maskClouds);
The “maskClouds” and “maskEdges” functions are used to mask clouds in images

(Figure 4). The first function masks the pixels affected by clouds, while the second function
masks the edges of the images.

After applying the cloud and edge masks, the two collections are combined using the
“ee.Join.saveFirst” function. Finally, a new collection of images where the clouds have been
masked is created, using the “map” function to apply the “maskClouds” function to all
images in the combined collection, from 2017 to 2023.
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Figure 4. Practical demonstration of the filter. From top left to bottom right: (a) Sentinel-2A image
from 8 June 2023 over Lake Brokopondo, with the presence of clouds, (b) TSS classification over the
original image, (c) classification after removing the clouds.

Mapping of Mining Areas

In the collection of images processed from 2017 to 2023, in order to map the mining
areas, the first step was to define the land cover classes for training; with prior knowledge
of the study area and the mining context present in the region, six classes were defined
(Table 2): water, vegetation, deforestation, cloud, cloud shadow, and mining. Due to the
spectral difference of these 6 targets of interest being distinct, the classification process is
subsequently facilitated.

Table 2. Class training table.

Training Class Number of Samples

Mining 100
Water 40

Vegetation 30
Cloud 30

Shadow 30
Deforestation 30

Total 260

Figure 5 below illustrates the process of training classes on satellite images to identify
mining areas.

After training, the Classification and Regression Tree (CART) method was applied,
which is a non-parametric classifier that does not require any a priori statistical assumptions
regarding the distribution of the data.
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CART is a classification method that operates at the pixel level and uses the pixel
intensities of training samples (polygons) to build a decision tree that assigns a class to each
pixel in the image (20 m). Bands 3 (560 nm), 4 (665 nm), 8 (842 nm), and 11 (1610 nm) were
used, selected based on their spectral properties and ability to provide relevant information
for classifying areas of interest.
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Figure 5. Demonstration of some points used in training. From top left to bottom right: (a) training
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In Google Earth Engine, the CART algorithm (ee.Classifier.smileCart) is configured
with two parameters: MaxNodes, which determines the maximum number of leaf nodes
in each decision tree, and MinLeafPopulation, which establishes the minimum number
of points required in a set training tool to create a node. These parameters have been set
to default values: no limit on the maximum number of nodes and one on the minimum
number of points for creating nodes.

The CART classification (Figure 6) proved to be effective in differentiating the six
classes of interest, including the precise detection of mining areas, which subsequently
underwent a validation process, which is further discussed in the results.

The resulting layer was exported to the Tiff file type in Google Drive for further
analysis and discussion.
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Monitoring Water Quality

The use of satellite sensors combined with remote sensing techniques has been used
to estimate TSS in coastal and inland waters [16,17].

This approach to estimating suspended solids in water generally follows two distinct
approaches: empirical, which is based on the direct correlation between measured TSS
and satellite data [18]; and analytical methods, which depend on the measured optical
properties of water [19,20]. This research demonstrates that the green and red bands have a
significant relationship with TSS up to approximately 100 mg/L. The use of the red band to
estimate TSS in waters through empirical regressions is well documented in the literature.
Previous studies, such as those by Harrington et al. [17] and Mertes et al. [21], for MSS data
demonstrated this approach comprehensively.

For this study, a robust empirical model was implemented between in situ TSS and the
red band of the TM sensor on the Landsat 5 satellite, established from two field campaigns
in the Amazon to measure radiometric quantities and concentrations of TSS, described in
detail in Lobo et al. [18].

In order to recover the TSS concentration from the surface reflectance, a non-linear
regression was established between TSS and ÿsurf(red) derived from reference images, in
which it was observed that the best empirical correlation between TSS and ÿsurf (ÿ) was
given by a power function (R2 = 0.94, RMSE = 1.33%) using the red band [18].
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Even though the curve was constructed based on data from the ÿsurf(red) satellite
up to 22%, it is believed that this function can be extrapolated to values up to 35%. This
equates to approximately 300 mg/L TSS [18]. It is important to note the strong correlation
between TSS and in situ ÿsurf(red).

Briefly, a model was developed that correlates SST measurements in the field with the
red band of the Landsat 5 and Sentinel-2A satellites. This model uses red band reflectance to
calculate SST concentrations in water. The data demonstrated a strong correlation between
measured and predicted values, confirming the effectiveness of the model for accurate SST
estimates from satellite imagery.

The non-linear regression obtained for the Landsat 5 TM sensor, described previously,
was adapted for Sentinel-2A. So, the script in Google Earth Engine looked like this:

var TSS = function(image) {
var TSSn = image.expression(

‘((RED/2.64)**(1/0.45)) + 2.27’, {
‘RED’: image.select(‘B4’).multiply(0.01)})

var TSSname = TSSn.rename([‘TSSn’]);
return TSSname;}

This function calculates the TSS from the spectral bands of the Sentinel-2A image.
First, the red band of the image is selected, represented by the variable “RED”. Then, the
pixel values from that band are converted to reflectance by multiplying them by 0.01, as
the original values are in digital counting units (DN). The formula for calculating TSS is
then applied to the converted red band. After calculation, the result is renamed to “TSSn”
to represent the Total Suspended Solids (TSS). Finally, the function returns the resulting
TSS image (Figure 7), where each pixel represents the TSS estimate based on the red band
of the Sentinel-2A image.
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From this new band, the following processes were carried out with the analysis of
the TSS in all water bodies in the extension of the study area based on the collection of
previously treated images from Sentinel 2, from 2017 to 2023.

3. Results
3.1. Validation of Gold Mining Areas

In the process of validating mining areas, the accuracy of the CART classification used here
was evaluated. The objective was to evaluate the reliability of the classification results obtained
from the analysis of satellite images. This assessment was crucial to ensuring the credibility of
the identified mining sites for subsequent analysis and decision-making processes.

To conduct validation, a total of 50 mining points (Figure 8) were established across
the study area. Each validation point was visually inspected using high-resolution imagery
from Google Earth Pro, which utilizes high-resolution image mosaics. Specifically, images
from Maxar Technologies, 2024 Airbus, and CNES/Airbus were used.
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Of the 100 validation points established, 80 were correctly classified as mining areas
by the CART algorithm, with a kappa index of 0.746, indicating substantial agreement
between the classification results and the reference data obtained from high-resolution
images using Google Earth Pro.

Table 3 presents a confusion matrix used to evaluate the performance of a classification
model. This matrix compares the predictions made by the model with the actual classifica-
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tions, based on a dataset containing the 100 validation points. The results are categorized
into two classes: “Mining” and “Non-Mining”.

Table 3. Confusion matrix table.

Predicted Mining Predicted Non-Mining Total

Actual Mining 80 5 85
Actual Non-Mining 2 13 15

Total 82 18 100

Of the 82 cases predicted as “Mining”, the model got 80 right (true positives) and
2 wrong (false positives). On the other hand, of the 18 cases predicted as “Non-Mining”,
there were 13 hits (true negatives) and 5 errors (false negatives).

Table 4 presents the performance metrics of the CART model in classifying mining
areas, based on 100 validation points. The 97.6% precision indicates the proportion of
correct positive predictions, while the 94.1% recall highlights the classification’s ability
to correctly identify existing mining areas. The F-Score of 95.8% reflects a good balance
between precision and recall. Furthermore, the 93% accuracy indicates the proportion of
correct predictions in relation to the total number of predictions made by the model.

Table 4. Metrics table.

Metric Value

Precision 97.6%
Recall 94.1%

Accuracy 93%
F-Score 95.8%
Kappa 0.746

The kappa index of 0.746 suggests substantial agreement between the model classifica-
tions and the reference data, obtained from high-resolution images from Google Earth Pro.
These metrics provide a comprehensive assessment of CART’s performance in the specific
task of identifying mining areas.

Mapping has proven to be effective in identifying the main components of mining
areas (Figure 9) and their associated infrastructure elements, including waste piles; both
dams and tailings ponds; airstrips, which are often used for mining and the transport of
materials and workers; industrial equipment; mining facilities; and the mineral extraction
areas themselves. Furthermore, the classification allowed us to differentiate between active
mining areas and the surrounding areas, offering a clear view of the regions of interest and
their distinctive characteristics.

After validation, an additional review was carried out of the mining areas identified
by the validation samples that were not initially identified by the CART algorithm, as well
as the sample areas that were not classified as mining. As a result of this process, 7.25 km2

of new mining areas was added to the classification, while 1.61 km2 of previously classified
areas was removed. This refined review has significantly contributed to a more accurate
representation of areas of mining activity in the region.
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3.2. Total Mining Area

To quantify the extent of areas mapped as mining, each land cover class was analyzed
in relation to its total area. Using an area calculation function, it was possible to determine
the total mining area over the last 7 years, from 2017 to 2023.

The mapping of these areas was conducted within a polygon covering a total area of
15,882 km2. This extensive territory was subject to detailed analysis using satellite images
acquired over a period of seven years, from 2017 to 2023. Figure 10 below presents the
map of mining areas mapped in each year, from 2017 to 2023, highlighting the spatial
distribution of mining activities throughout the study period.

The map of mining areas over the years 2017 to 2023 reveals distinct patterns in
the distribution and expansion of mining activities. In 2017, mining areas were more
concentrated in established mining centers, which served as the focus of activities, with
little dispersion in adjacent regions. In 2018, the concentration of activities continued in the
main mining centers, although with a slight increase in expansion to nearby areas. This
expansion was still limited and did not cover vast areas outside the established centers.

The most notable transition occurred between 2019 and 2020. During this period,
mining areas became significantly more sparse. The expansion of mining activities was
observed, especially in the lower southeastern arm of Lake Brokopondo, which began
to be mined for the first time. This change marked an important dispersion of activities,
suggesting an increase in the search for new mining areas outside traditional centers. In
2021, there was a continuation of the dispersion trend observed in 2020, with mining
activities spread over a larger area. Although mining centers still remained active, new
areas began to be explored.
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Figure 10. Map of mining mapped in each year, from 2017 to 2023.

From 2022 onwards, there will be a significant increase in mining activities not only
in scattered areas, but also in large mining centers. These centers have experienced a
renaissance and intensification of operations, reflecting a combination of continuity in
existing operations and the addition of new mining activities.

Below, Table 5 describes the total mining area in square kilometers for each year,
providing a panoramic view of the expansion or contraction trends in mining activity over
the analyzed period.

Table 5. Total area of mining.

Year 2017 2018 2019 2020 2021 2022 2023

Mining (km2) 148.344724 194.933177 275.098510 231.627975 280.586329 285.746225 296.431852

Mining (m2) 148344724 194933177 275098510 231627975 280586329 285746225 296431852

Detailed analysis of the data reveals a variation in the total mining area over the years,
with increases and decreases in different periods. In 2017, the registered mining area was
148.34 km2. The following year, there was an increase to 194.93 km2, indicating an increase
of approximately 46.59 km2. However, in 2019, a more significant increase was observed,
reaching 275.10 km2, which represents a significant increase of 80.17 km2 compared to the
previous year.
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In contrast, the year 2020 saw a decrease in the mining area, recording 231.63 km2, a re-
duction of approximately 43.47 km2 compared to 2019. However, this decline was followed
by a further increase in 2021, when the mining area reached 280.59 km2, representing an
increase of 48.96 km2.

In 2022, the total mining area continued to grow, reaching 285.75 km2. Finally, in 2023,
the mining area reached its highest value during the analyzed period, totaling 296.43 km2.

The following bar graph (Figure 11) presents an overview of the annual variation in
the area occupied by mining during the period studied, allowing an understanding of
fluctuations in the extent of mining operations over time.
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Figure 11. Mining graph by year, from 2017 to 2023.

When comparing the area mined in 2017 with that recorded in 2023, we observed a
significant absolute difference of 148.09 km2, in relation to the average percentage increase
in the mined area, and it was found that the average growth rate during this period was
approximately 99.23%.

The data reveal that in 2017, mining activity was mainly concentrated in large-scale,
industrial mining areas. However, from 2018 onwards, an expansion of alluvial mining
areas was observed along the Maroni and Lawa Rivers, as well as in the vicinity of the
northeast and southeast arms of Lake Brokopondo, culminating in a significant increase
by the year 2019. In 2020, this expansion slowed down, but from 2021 to 2023, there was a
resumption of growth, both in areas located more than 500 m from water bodies and in
their surroundings.

3.3. Analysis of TSS in Water Bodies in Relation to Mining

The first development of this study consists of the creation of a comprehensive map
(Figure 12), highlighting all the water bodies present in the region in question. Additionally,
each of these bodies of water was added with an additional layer representing the average
TSS during the period from 2017 to 2023. These data were complemented by generating
graphs that present points specific to these water bodies, providing a detailed analysis of
trends observed over time.

A correlation was observed between the presence of mines in the vicinity of water
bodies and the mean TSS and standard deviation values. In regions (Figure 13) where
mining activity was detected more, there was a significant increase in average TSS levels,
as well as greater variability represented by the standard deviation. These results suggest a
direct relationship between mining activity and water quality in these areas.
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The standard deviation, in this context, emerges as a crucial metric for understanding
the variability in TSS values and their possible origins. It allows us to distinguish whether
the observed variations are the result of natural hydrological processes or whether they are
associated with siltation caused by mining activity. Notably, water bodies with higher stan-
dard deviations were readily related to the presence of mining in their vicinity, highlighting
the significant influence of this activity on water quality.

Table 6 presents the average TSS metrics between the years 2017 and 2023 for the water
bodies studied.

Table 6. Table of metrics for water bodies.

Water Body Average TSS (mg/L) Standard Deviation (mg/L)

Maroni River 45.69 17.75
Suriname River 12.72 8.52

Brokopondo Lake 34.91 21.71
Sinnamary Lake 14.52 5.68

Based on the data presented in this table, we observed significant variations in TSS
levels in different bodies of water in the region. The Maroni River stands out with the
highest average TSS value, recording 45.69 mg/L, along with the highest standard devi-
ation, indicating considerable variability in TSS levels over time, justified by the CART
classification, which displayed several mining polygons along its course, contributing to
the load of suspended solids in this body of water.

In the case of Lake Brokopondo, although its average TSS value is slightly lower
(34.91 mg/L) than that of the Maroni River, the standard deviation is even higher, indicating
an even more significant variability in TSS levels, which is justified by the extensive mining
activity in its southeast and northeast branches described previously.

On the other hand, both the Suriname River and Lake Sinnamary exhibit lower
average TSS values, recording 12.72 mg/L and 14.52 mg/L, respectively. These two bodies
of water in question stand out due to the low number of mining polygons found in their
surroundings. In the case of Sinnamary, only 1.81 km2 of mining was identified in its
surroundings, and because this polygon is approximately 3 km from the lake, there was no
direct interference with the concentration of solids in this system.

The most critical point of mining activity was identified at Lake Brokopondo
(Figure 14). From 2017 to 2023, a gradual increase in the average TSS was observed
throughout the period studied. In 2017, the average TSS was recorded at 35 mg/L, and
this value increased to 40 mg/L in 2018. The following year, in 2019, there was a further
increase, bringing the average TSS to 45 mg/L. In 2020, the increase continued, with
the average TSS reaching 50 mg/L. In 2021, the increase appeared to have stabilized,
recording an average TSS of 52 mg/L. However, between 2022 and 2023, a significant
increase was observed, with the average TSS reaching 60 mg/L in 2023.

Both small-scale artisanal mining activities and larger activities, with industrial in-
struments, were detected, in which some points where, previously, there were TSS values
of 12 mg/L in 2017, now (in 2023), the value was 179 mg/L—a percentage increase of
1391.67%.
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4. Discussion

Using the CART (Classification and Regression Tree) algorithm to map mining areas
presents a series of advantages and disadvantages worth discussion.

In terms of advantages, the CART algorithm is known for its ability to handle non-
linear data and complex interactions between variables, which is often observed in remote
sensing images. Its decision tree-based nature allows an intuitive interpretation of the
results, facilitating the understanding of the relationships between the predictor variables
and the target class. Furthermore, CART is robust against outliers and can efficiently handle
large-scale datasets such as high-resolution satellite images.

On the other hand, the CART classification also has some limitations. One is the
tendency to generate complex tree models, which can be difficult to interpret and prone to
overfitting, especially when applied to datasets with many explanatory variables. Further-
more, CART’s performance can be affected by the inappropriate choice of parameters, such
as the maximum number of leaf nodes and maximum tree depth, which can lead to under-
or over-fitting models.

In summary, although the CART algorithm is a valuable tool for mining mapping in
remote sensing images, it is important to carefully consider its advantages and limitations
when interpreting the results and performing subsequent analyses.

Combining the CART algorithm with Sentinel-2A images proved to be an effective
strategy, especially considering the low spatial resolution of these images. This low resolu-
tion is particularly advantageous for identifying small-scale mining settlements throughout
the study area. Sentinel-2A’s ability to capture spectral information across multiple bands,
coupled with the robust and interpretable nature of the CART algorithm, allows for the
more accurate and detailed classification of mining areas, even in locations where activities
are smaller in scale. Thus, this union between these two provides a solid approach to
mapping and monitoring mining in areas of interest, contributing to a better understanding
and management of these environments.
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Among the six CART classes used—water, vegetation, deforestation, cloud, cloud
shadow, and mining—a notable correlation was observed between the deforestation class
and the mining activity in which their differentiation was difficult. This challenge in
differentiating between deforestation and mining can be attributed to several reasons,
including the spectral similarity between these classes, the overlapping of terrain features,
and the complexity of land use changes in the study area, as many deforested areas are
converted to mining activities, and vice versa. This difficulty highlights the need for
more refined and sensitive approaches for classifying remote sensing images, especially in
contexts where the classes of interest have similar spectral characteristics.

When comparing the mining areas along the border between French Guiana and Suri-
name, a significant distinction is observed. Water bodies located in French Guiana appear
to be relatively free from mining activity compared to adjacent areas of Suriname. This
difference in the presence of mining is reflected in the water quality of water bodies, espe-
cially in relation to the TSS. Areas less affected by mining have lower TSS levels, indicating
potentially better water quality compared to areas most impacted by mining activity.

The most critical point of mining activity was identified at Lake Brokopondo. The
presence of mining operations in its proximity raises concerns about possible water pol-
lution, habitat destruction, and changes in water quality, which could have far-reaching
consequences for both aquatic life and neighboring communities. Therefore, effective envi-
ronmental management strategies are essential to mitigate the adverse effects of mining
activities on Lake Brokopondo and preserve its ecological integrity.

The abundant availability of Google Earth Engine (GEE) imagery provides a significant
advantage for detailed spatiotemporal analyses across diverse study areas. The ability to
access a wide range of satellite images quickly and efficiently allows analysis to be carried
out over time with unprecedented spatial and temporal resolution. This wealth of data
was critical to our research, enabling a comprehensive investigation of mining patterns and
their impacts on water bodies over a seven-year period. The codes created in GEE for this
article were provided in the Supplementary Materials.

Finally, the continued relevance of using remote sensing technologies, such as GEE,
and innovative methodological approaches to monitor and manage natural resources in
a sustainable way is highlighted. These tools and techniques are essential to guide envi-
ronmental management policies and practices that aim to conserve and protect vulnerable
aquatic ecosystems from human activities, such as mining.

Supplementary Materials: The codes used are available at the following links: 3.2. Total Min-
ing Area—https://code.earthengine.google.com/f00df439945c56e560e8cfb75475c54a (accessed on
10 July 2024). 3.3. Analysis of TSS in Water Bodies in Relation to Mining—https://code.earthengine.
google.com/363ec3be617e1c0a8ee61a318164fda1 (accessed on 10 July 2024).
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