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Abstract: In this study, the static E50 and υ parameters of rock materials were investigated using
P-S wave velocities and Shore hardness (SH), using non-destructive measurement methods. In this
study, the multiple linear regression (MLR), multiple non-linear regression (MNLR), and artificial
neural network (ANN) models were used to estimate and determine the static E50 and υ parameters.
When comparing the models defined by MLR, MNLR, and ANN to the R2 values, it was found that
the ANN models, which estimate the E50 and υ parameters of rock materials using non-destructive
methods (Vp, Vs, Vp/Vs, ρd, and SH), achieved higher accuracy than the MLR and MNLR models.
The originality of this study is rooted in the fact that ores such as galena, chromite, and barite were
studied for the first time from a rock mechanics perspective, providing an innovative viewpoint. In
addition, the use of all non-destructive measurement methods, Vp, Vs, and Shore hardness tests, also
increases the importance of the study findings.

Keywords: Young’s modulus; Poisson’s ratio; destructive/non-destructive measurement methods;
regression; ANN modeling

1. Introduction

Determining the physicomechanical parameters of rock materials can be accomplished
using two methods: destructive and non-destructive. While destructive methods include
tests such as the uniaxial compressive strength (UCS), triaxial compressive strength (TCS),
and direct (TS) and indirect tensile strength (ITS), non-destructive methods include ex-
perimental tests such as seismic wave velocities, and Schmidt and Shore hardnesses. The
measurement of the physicomechanical properties of rocks has been conducted based on
both the ISRM (1981) [1] and the ASTM (1984) [2] standards. Destructive measurement
methods are generally conducted in the laboratory using specific test equipment that
contains the core specimens. Moreover, in destructive measurement methods, when rock
materials are generally weak, thin-bedded, or heavily fractured, they may not be suitable
for the sample preparation and measurements required for mechanical tests. On the other
hand, non-destructive measurement methods are based on the measurement of seismic
velocities or the hardness of the rock, sometimes in situ but usually in the laboratory [3–6].
Additionally, non-destructive tests are easier because they require less sample preparation,
and the test equipment is simple to use. They can also be easily used on the mine site.
Therefore, non-destructive measurement methods are faster, simpler, and more economical
than destructive measurement methods.

Hardness is one of the physical properties of materials, and the Schmidt and Shore
hardness (SH) measurements are the best-known methods for rock materials. While very
large rock masses are required for the Schmidt hardness measurement, smaller rock pieces
can also be measured for the Shore hardness measurements. In addition, SH is widely used
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to estimate the hardness of rock materials because it is an easy-to-use and inexpensive
method. Similarly, the seismic velocities (Vp and Vs) of rock materials are easy and simple to
measure and values are calculated according to the cleavage, crystalline structure, fracture
structure, elasticity, porosity, and density properties that define the physicomechanical
properties of the rock materials.

Two of the most important physicomechanical parameters of rock materials are the
E50 and υ. These parameters are very important in tunnel design, rock blasting and
drilling, slope stability, pillar design, and many construction and mining activities. These
parameters are also used to express the resistance of materials to deformation under shear
or compressive stresses. The E50 and υ are affected by many factors such as the crystalline
structure of the rock material, cleavage, crack structure, elasticity, anisotropy state, and
mineralogical composition [7,8].

One of the engineering problems related to rock materials stems from the incorrect
evaluation of their physicomechanical properties. First of all, high-quality core samples are
required to determine the E50 and υ parameters. However, sometimes it is not easy to obtain
smooth cores, especially from very fractured, weak, or very hard rock materials [9–11].
Moreover, even if high-quality cores can be obtained to perform tests such as UCS, TS,
and ITS, it is a costly, laborious, and time-consuming process in terms of human errors,
instrument calibration issues, and internal factors. Therefore, engineers often estimate
E50 and υ parameters from other static and dynamic rock parameters by using the estima-
tion equations published in the literature for their required projects. Of course, the accuracy
of these estimation equations is debatable.

2. Previous Studies

Researchers [3,12–18] have conducted numerous studies on estimating the E50 and υ us-
ing other static tests such as UCS, ITS, Schmidt hardness, and rock mass rating (RMR89) [17]
for various rock material types. These researchers [3,10–18] have developed many simple
linear or simple non-linear equations for estimating the E50 or υ values. However, most
of the equations are not suitable for all types of rock environments when estimating these
parameters (E50 and υ), and those suitable tend to provide accurate results only for specific
rock types, such as the sedimentary or metamorphic groups. Sonmez et al. (2006) [19]
estimated the E50 value using the ANN model with the UCS and the unit weight (γ) for
different types of intact rocks. However, obtaining the UCS and γ values are far from
being an alternative for estimating the E50 values, as the sample preparation and testing
process is as tedious and difficult as obtaining the E50 values themselves. Meanwhile, other
researchers [9,20,21] have tried to estimate the E50 and υ with the Shore hardness (SH) test
with simple linear or simple non-linear regressions, but the relationships were revealed to
have a low correlation. Karakus et al. (2005) [22] proposed a good model with a high
mboxemphR2 value (0.982) using the MLR model to estimate the E50 and υ based on the
findings from some rock mechanic experiments. However, the use of point load index (Is)
and uniaxial compressive strength (UCS) tests in the model is far from being an alternative
method as the preparation of the core samples for these tests is onerous.

Other researchers [4,7,20,23–28] have also investigated the relationships between the
non-destructive measurement tests and the static physicomechanical parameters (destruc-
tive measurements) for the same type of rock materials at a mining site, or for specific
groups of rock materials such as those of sedimentary or metamorphic origins. When the
results of the research were examined, it was shown that there were significant correlations
between the seismic velocities, especially the Vp velocity, of rock samples taken from a
similar particular group or region. Armaghani et al. (2016) [8] further investigated the
estimation of E50 from the Vp, porosity (n), Schmidt hardness (Rn), and point load strength
(Is(50)) values for granite samples using the MLR and ANN models. They not only found
MLR and ANN models with very low coefficients of determination (R2 = 0.643 and 0.596,
respectively), but also used laborious and difficult methods to determine the properties of
the materials such as the porosity and the point load strength in the models.
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As can be seen from the previous studies, although many testing methods are widely
used in the estimation of the physicomechanical parameters of rock materials, there is
limited research on the use of non-destructive measurement methods for estimating the
E50 and υ values of rock materials. Moreover, the determinant coefficients (R2) for the
estimation models were low and the error values (RMSE and MAE, etc.) were high.
Therefore, it is inevitable that the development of the models for estimating the parameters
with easier, less laborious, less time-consuming, cheaper, and higher accuracy methods will
continue to be an important research topic for many researchers.

Artificial neural networks (ANNs) have attracted great attention in recent years for
the estimation of various physicomechanical parameters such as UCS, ITS, shear strength
parameters, and the modulus of various rock materials [8,19,29–35]. The reason that
ANN has become especially popular is that it allows for more flexible operations between
variables with a greater number of input variables, overcoming the low coefficients of
determination obtained from regression analyses such as MLR and MNLR. Therefore, ANN
has a great capability for modeling the physicomechanical behavior of rock materials [29]
and has been shown by many researchers to provide more accurate estimates of the
physicomechanical parameters of rock materials than the other statistical models. Some
researchers [8,30–36] have shown that ANNs provide much more realistic estimations
than the other statistical models for estimating the physicomechanical parameters of rock
materials. In this context, this study aimed to determine the static E50 and υ parameters
of rock materials using non-destructive measurement methods (Vp, Vs, and SH) through
MLR, NMLR, and ANN models.

3. Materials and Methods

In this study, non-destructive measurement models were developed to estimate the
E50 and υ of rock materials by using the properties of ultrasonic wave velocities (Vp and Vs),
dynamic density (ρd), and Shore hardness (SH) values. These non-destructive measurement
methods do not require special specimen preparation requirements such as coring and
large specimen sizes. Also, they are much easier to use compared to the stress-strain tests
used to obtain E50 and υ values. These non-destructive tests can be used to estimate rather
than measure the E50 and υ values. The main advantages of non-destructive measurement
methods are their ease of use and flexibility.

This study aims to estimate the E50 and υ obtained using stress-strain curves under
compression from non-destructive measurement methods (Vp, Vs, Vp/Vs, ρd, and SH) using
the MLR, MNLR, and ANN models. A series of analyses were performed on a total of
17 rock types of different geological origin, including sedimentary (8), metamorphic (2),
igneous-volcanic (4), and mafic-ultramafic igneous ores (3). This study will be the first
study on a very different sample group, including mafic and ultramafic igneous ores such
as sulfide ore, galena, and chromite. In this respect, it will be an important contribution to
the literature.

3.1. Materials

A total of 17 different rock types were collected from various regions in Turkey. At
least nine samples were taken from each rock type, at least 3 in the X-Y-Z direction. The
mineralogical properties of the rock types used in the tests are presented in Table 1.

As shown in Figure 1a–d, the core samples of 54 mm diameter were prepared from
the collected rock masses in the laboratory. In the non-destructive experimental studies,
Vp and Vs were first measured in the core specimens with a sonic wave viewer, and then
Shore hardness (SH) was measured in the same core specimens with a Shore Scleroscope
C-2 (as seen in Figure 1g).

In the destructive experimental studies, according to the test procedures recommended
by ASTM D7012-14e1 (2017) [37], stress-strain measurements were performed on core
specimens under compression, as shown in Figure 1e,f. The static E50 and υ values were
calculated from the stress-strain curves which were simultaneously recorded using a
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computer. After the destructive and non-destructive tests, statistical modeling studies were
started. While the Vp and Vs wave velocities (m/s), Vp/Vs ratios, dynamic densities (ρd,
t/m3), and Shore hardness (SH) values were also used as input data in the modeling, the
E50 and υ values were then considered as output data.

Table 1. The materials used for the tests along with their mineralogical properties.

No. Description Geological
Origin Mineralogical Properties

1 Limestone-1 Sedimentary 50% clay content

2 Limestone-2 Sedimentary very low porosity, sandy limestone texture

3 Limestone-3 Sedimentary micritic texture, fracture filling calcite, and contains a small amount of
opaque minerals

4 Limestone-4 Sedimentary sparitic and homogenously textured

5 Siltstone Sedimentary contains 60% quartz

6 Green-Marl Sedimentary contains a small amount of silica

7 Gypsum Sedimentary less opaque and subhedral minerals

8 Barite Sedimentary 15% anhedral particle, may be subject to tectonism, a hydrothermally
deposited ore

9 Feldspar Metamorphic coarse crystalline albite mineral, contains 50% quartz minerals

10 Marble Metamorphic contains equidimensional and anhedral calcite crystals

11 Trass-1 Igneous-Volcanic contains amphibole, sanidine, and biotite

12 Trass-2 Igneous-Volcanic contains 50% quartz minerals

13 Andesite-1 Igneous-Volcanic porphyritic, altered

14 Andesite-2 Igneous-Volcanic porphyritic, less altered

15 Galena Mafic/Ultramafic-
Igneous ore also contains pyrite and chalcopyrite

16 Sulfide ore Mafic/Ultramafic-
Igneous ore contains galena, pyrite, chalcopyrite, and quartz

17 Chromite Mafic/Ultramafic-
Igneous ore contains 80% chromite, olivine, and serpentine
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galena (d); electrical resistance lateral and axial strain gauges glued to the feldspar core specimen
(e); strain-gauge bonded rock specimen under compression (f); Shore Scleroscope C-2 used in the
experiments (g).



Mining 2024, 4 646

3.2. Sonic Wave Velocity (Vp and Vs) Tests

In this study, sonic wave velocity measurements (Vp and Vs) were applied according
to the ASTM D2845-08 (2008) [38] standards. For the measurement of Vs and Vp, specimens
should be cylindrical (core) or cubical or cut straight so that both sides of the specimen are
parallel (Figure 2a). The easiest among these is to cut the samples neatly from both sides.
For this, samples can be cut on a rock-cutting machine. In our study, sonic velocity tests
were performed on a total of 10–15 core specimens taken from three directions (3–5 cores
from each direction) to determine the static E50 and υ values, taking into account the
anisotropic condition of each rock block sample.
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The OYO sonic viewer (OYO Corporation, Tokyo, Japan) (Model 5217-A), which
includes a battery, a receiver, a transmitter, an ultrasonic pulse generator, and a signal data
acquisition and display system (as shown in Figure 2b), was used to measure the ultrasonic
wave velocities (Vp and Vs) of the rock materials. Before measuring the ultrasonic wave
velocity, the ends of the core specimens were first polished, and a thin layer of grease was
then applied. The ultrasonic wave (Vp and Vs) velocities are calculated using the travel
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time of the measured wave and the distance between the transmitter and the receiver, i.e.,
the measured sample length.

The specific density value of a rock material is an important factor in engineering
studies. The density of the rock material was determined directly (destructive method)
by measuring, as well as indirectly (non-destructive method) by calculating. The specific
density can be determined using Archimedes’ principle in the laboratory. This is a time-
consuming and tedious process. For this reason, many researchers have been working to
determine the specific density value indirectly using seismic wave velocities (Vp and Vs)
since the 1970s. Telford et al. (1976) [39] investigated the relationship between the specific
density of rock materials and the seismic wave velocities. They stated that the dynamic
density of rock materials can be found from the P-wave velocity (Vp), using Equation (1).

ρd = 0.2Vp + 1.6 (1)

3.3. Shore Hardness Tests

The Shore hardness instrument is a non-destructive measuring instrument for use
on relatively small specimens and measures the relative values of Shore hardness (SH)
with a diamond-tipped hammer which falls freely from top to bottom onto a smooth
specimen [40]. The ISRM (1981) [41] has proposed a method using the C-2 model Shore
hardness instrument for rock materials.

Specimens can also be created for SH measurements like the ultrasonic wave velocity
measurements by obtaining cylindrical (core) or cubic specimens from the rock blocks or by
smoothly cutting from both sides of the rock specimen. The method of smooth cutting from
both sides of the rock specimens has become an easy method for determining SH, especially
if the specimens are small in size (a minimum surface area of 10 cm2 and a minimum
thickness of 10 mm) or cannot be cored [38]. In this study, Shore hardness measurements
were also carried out after the ultrasonic wave velocity tests were performed on the core
samples. Shore hardness measurements were accepted as the SH of the rock material after
calculating the arithmetic average of approximately 200 readings from ~10 cores, with at
least 20 readings from each core specimen.

3.4. The Stress-Strain Tests to Determine E50 and υ Values

In this study, cylindrical specimens (cores of 108 mm length and 54 mm diameter)
were used for measuring the E50 and υ values of rock materials. To meet the statistical
requirements, at least 15 core specimens were used for each rock sample. The E50 and
υ tests were carried out according to the ASTM’s recommended methods [37]. Stress-strain
measurements were carried out using an electronic servo-controlled UCS testing machine
(Figure 1f). The case where electrical resistance lateral and axial strain gauges were attached
to core specimens is shown in Figure 1e. E50 is defined as the ratio of axial stress to axial
strain under compression. This is obtained by plotting the axial stress versus the axial
strain curve and measuring the slope of the curve at 50% of the UCS. On the other hand,
υ is the absolute value of the ratio of the lateral strain to the axial strain under compression,
and it is dimensionless and ranges between 0.01 and 0.5.

4. Results and Discussion

Test procedures devised by the ISRM (1981) [1] and the ASTM (1984) [2] were applied
by obtaining at least nine specimens from intact cores taken in the X-Y-Z direction from
each of the 17 different rock samples collected from various regions in Turkey. The average
values of the geotechnical properties of the 17 rock samples which are the subject of
this study are recorded in Table 2. The values of the different rock sample properties
shown in Table 2 function as the boundary conditions of the presented MLR, NMLR, and
ANN models.
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Table 2. Statistical parameters of input (Vp, Vs, Vp/Vs, ρd and SH) and output (E50 and υ) variables.

Sample
Number

Number of
Cores Used for
Each Sample

E50
(N/m2) υ Vp (m/s) Vs (m/s) Vp/Vs

ρd
(t/m3) SH

1 12 1.47 0.39 3064 1635 1.87 2.21 20.95
2 12 5.94 0.31 4532 2448 1.85 2.51 34.66
3 12 11.97 0.29 6023 2657 2.27 2.80 55.03
4 12 10.88 0.30 6697 2792 2.40 2.94 67.05
5 11 4.42 0.32 3541 1968 1.80 2.31 32.31
6 9 6.89 0.33 3217 1785 1.80 2.31 32.31
7 12 1.82 0.37 5088 2246 2.27 2.62 8.40
8 9 13.12 0.33 4110 1989 2.07 2.42 29.25
9 9 2.35 0.40 1997 1124 1.78 2.00 65.00

10 12 10.64 0.37 5975 2947 2.03 2.79 53.64
11 10 3.87 0.35 2688 1552 1.74 2.14 38.55
12 9 1.32 0.36 2327 1265 1.84 2.07 13.00
13 12 5.75 0.34 4433 2390 1.86 2.49 65.93
14 12 6.69 0.32 4481 2233 2.01 2.46 82.85
15 9 14.34 0.28 4927 2488 1.98 2.58 31.46
16 9 14.17 0.30 4725 2576 1.84 2.55 45.38
17 9 11.67 0.29 4866 2332 2.11 2.57 39.45

Standard
deviation 4.50 0.04 1288 511 0.19 0.07 19.79

Output (Y) of the static Poisson’s ratio (υ) or Young’s modulus (E50) of the rock
materials were characterized as a function of the input Vp (X1), Vs (X2), Vp/Vs (X3), ρd (X4),
and SH (X5).

4.1. MLR and MNLR Analysis

The relationships between the independent variables and the dependent variables
can be investigated by using the MLR or MNLR analyses. In estimating the value, the
MLR models are expressed linearly and the MNLR models are expressed as a non-linear
function. The choice between the MLR and MNLR models is determined by the high
determination coefficient of the relationships to be obtained as seen in Equation (2) [8,42].

Y = β0 + β1×1 + β2X2 + β3X3 + β4X4 + . . . + βnXn, (2)

MNLR analysis estimates the model by forming a random non-linear relationship
between one or more independent variables and a dependent variable. The typical form of
the non-linear relationship is considered as seen in Equation (3).

Y = β0(X1
β1)(X2

β2)(X3
β3)(X4

β4) . . . (Xn
βn), (3)

where, while Y is the dependent variable, X1, X2, X3, X4, . . . , Xn are independent variables.
While β0 is the constant value, β1, β2, β3, β4, . . . , βn are the regression coefficients of linear
or non-linear independent variables [42–44].

The MLR and MNLR analyses are carried out using a computer software package
program since they involve quite complex calculations. In this study, the IBM
mboxemphSPSS 22 statistical software package was used to generate the MLRs between
five independent variables (Vp, Vs, Vp/Vs, ρd, and SH) and a dependent variable as the
output (E50 or υ). The stepwise method in the SPSS program, commonly used in this type
of modeling, is a technique for constructing a model by adding or subtracting estimative
parameters through a series of F-tests or t-tests. The E50 and υ values of the rock types were
introduced as dependent variables (outputs) and X1 (Vp, m/s), X2 (Vs, m/s), X3 (Vp/Vs),
X4 (ρd), and X5 (SH), as independent variables (inputs). However, the p-value and tolerance
of Vp/Vs and SH were calculated as near to 0 before the MLR was processed. This indicates
that the Vp/Vs and SH variances have the highest probability of multicollinearity when
all the variables are taken into account, therefore, Vp/Vs and SH were eliminated from
the model. As a result, Equations (4) and (5) are the most reliable regression equations
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for determining the values of E50 and υ using MLR analysis. Additionally, in Figure 3, the
predicted values of Es and υ are plotted against the experimental values to analyze the
accuracy of the MLR model.

E50 = −22.613 − 0.001 × (Vp) + 14.576 × (ρd), R2 = 0.582, (4)

υ = 0.575 − 4.066 × 10−5 × (Vs) − 0.055 × (ρd), R2 = 0.486, (5)
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As the independent variables are evaluated in terms of autocorrelation and multi-
collinearity, as seen in Equations (4) and (5), three potential independent variables (Vs,
Vp/Vs, and SH) were neglected for E50, while two independent variables (Vs and ρd) could
be evaluated for υ.

Some non-linear regression equations can be converted to a linear equation with an
appropriate transformation of the model equation. If the logarithm to base e of Equation (3)
was taken, it becomes a linear relationship as seen in Equation (6) [44].

Ln(Y) = Ln(β0) + β1Ln(X1) + β2Ln(X2) + β3Ln(X3) + β4Ln(X4) + β5Ln(X5) . . . βnLn(Xn), (6)

and so, an Ln(Y) regression over Ln(X1), Ln(X2), Ln(X3), Ln(X4), and Ln(X5) is used to
estimate the parameters β0, β1, β2, β3, β4, β5 and βn [44].

The β0, β1, β2, β3, β4, β5, and βn coefficients were determined using the stepwise
method in the SPSS 22 software program. The stepwise method commonly used in this
type of modeling is a technique for constructing a model by adding or subtracting estimative
parameters through a series of F-tests or t-tests. The model expressions were coded into the
solver based on the fitting result of the linear regression solver and a series of iterations
were run. Iteration runs were stopped when the relative reduction between sums of squares
was minimized.

In this study, regression relationships between five independent variables and one dependent
variable (E50 or υ) were revealed. In both regression relationship equations, the dependent vari-
ables X1, X2, X3, X4, and X5 are Vp, Vs, Vp/Vs, ρd, and SH, respectively. The βi coefficients were
estimated from the experimental results using the SPSS program that applies the least-square
method. The R2, VIF, T, and p-values were taken into account to evaluate the estimative per-
formance of the regression equations. Then, the best independent variables that did not show
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autocorrelation and multicollinearity were selected. As a result, the following equations were
obtained by MNLR analysis using the best independent variables.

When the independent variables are evaluated in terms of autocorrelation and mul-
ticollinearity, as seen in Equations (7) and (8), three potential independent variables (Vs,
Vp/Vs, and SH) were neglected for E50, while three independent variables (Vp, Vs, and ρd)
could be evaluated for υ. Additionally, in Figure 4, the predicted values of Es and υ are
plotted against the experimental values to analyze the accuracy of the NMLR model.

Ln(E50) = 11.519 × (Vp)−0.716 × (ρd)−5.868, R2 = 0.591, (7)

Ln(υ) = 0.6555 × (Vp)0.768 × (Vs)−0.843 × (ρd)−0.713, R2 = 0.630, (8)
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υ (b) of the rock materials.

As a result of the regression analyses, the E50 and υ values were estimated using
Equations (4) and (5) by MLR analysis and Equations (7) and (8) by MNLR analysis, and
these equations were determined with low coefficients of determination (R2). In addition,
since it is not expressed with two independent variables (Vp/Vs and SH), it is not suitable
to be considered as a reliable model for the E50 and υ estimation. Therefore, as a solution to
such problems, soft computational methods such as ANN can be used.

4.2. ANN Analysis

Using an ANN, a neural network model can be created that can estimate the desired
output from one or more inputs. Although various ANN types are used in the literature, the
most widely used is the backpropagation ANN (BP-MLP-ANN) [19,36,45–47]. The general
system structure of a backpropagation MLP-ANN model is shown in Figure 5a, and the
hyperbolic tangent activation function is shown in Figure 5b.

In this study, a multilayer perceptron network with hidden layers and an MLP-ANN
with a backpropagation architecture were also developed using the neural network function
in the SPSS 22.0 program. An ANN model usually has three layers: input layers, hidden
layers, and output layers. The input layer was created from five source points such as Vp,
Vs, Vp/Vs, ρd, and SH. The hidden layer was a non-linear processing unit and can have
more than one layer. The output layer was further evaluated by the network and produced
the E50 or υ, which are the desired result points from the model. The most applied transfer
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functions in the literature are the sigmoid and hyperbolic tangent activation functions. The
hyperbolic tangent activation function was preferred in this study because it provided the
most effective approach. On the other hand, no activation function was used in the output
layer. Additionally, 75% of the data was used for training and 25% was used for the testing
stage. Five combinations of the variables (Vp, Vs, Vp/Vs, ρd, and SH) were investigated
using SPSS to determine the optimal network architecture. The best input combinations for
the ANN models are given in Table 3. These models were selected based on the highest
determination coefficient (R2), the lowest root mean square error (RMSE), and the lowest
mean absolute error (MAE) to estimate the Es and υ values of rock materials.
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Table 3. Details of the four ANN models according to the best input combinations.

Model Input Combination Output R2 RMSE MAE

ANN-1 Vp, Vs, Vp/Vs, ρd,
SH

E50 (N/m2)
υ

0.891
0.961

1.490
0.007

0.947
0.005

ANN-2 Vp, Vs, Vp/Vs, SH E50 (N/m2)
υ

0.965
0.971

0.883
0.006

0.699
0.004

ANN-3 Vp, Vs, ρd, SH E50 (N/m2)
υ

0.925
0.956

1.252
0.008

1.037
0.006

ANN-4 Vp, Vs, Vp/Vs, ρd
E50 (N/m2)

υ
0.896
0.953

1.478
0.008

1.106
1.106

In this study, the hyperbolic tangent function shown in Equation (9) with the out-
put range of [−1, 1] was used. Further, the R2, MAE, and RMSE equations shown in
Equations (10)–(12) were used to verify the validity of the selected models.

tanh(x) =
ex − e−x

ex + e−x (9)

R2 = 1 −
∑
(

yi − ŷ .
i

)2

∑(yi − y)2 (10)
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MAE =
∑n

i=1

∣∣∣yi − ŷ .
i

∣∣∣
n

(11)

RMSE =

√√√√∑n
i=1

(
yi − ŷ .

i

)2

n
(12)

where n, yi,
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, and ŷi are the number of experiments, the experimental values, the mean of
the experimental values, and the estimated values, respectively.

The R2, RMSE, and MAE values calculated to determine the validity of the ANN
models are presented in Table 3. When Table 3 is examined, R2 values higher than 0.80 mean
that there are relationships with acceptable accuracy for these four models. However,
when the R2, RMSE, and MAE values in Table 3 were examined, it was determined that
ANN-2 gave more accurate estimates than the other models. The R2 values of 0.965 and
0.971 obtained by the ANN-2 model for E50 and υ, respectively, indicate that the models
have a very good relationship. The estimated error values for the E50 and υ were 0.883 and
0.006 for the RMSE and 0.699 and 0.004 for the MAE, respectively. The ANN-3 was ranked
as the second best model. The results of the ANN-1 and ANN-4 models were also acceptable
for estimating the E50 and υ. When the normalized importance values were examined, the
Shore hardness (SH) was found to have a great effect of 100% on both the E50 and υ values.

Figure 6 shows the best model architecture (ANN-2), which is shown to consist of one
input layer of four variables, one hidden layer of 10 neurons, and one output layer of one
variable (a 4-10-1 structure) by using the activation functions. Additionally, in Figure 7
the predicted values of Es and υ are plotted against the experimental values to analyze the
accuracy of the ANN-2 model.
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4.3. Comparison of Models

The E50 and υ parameters of rock materials were compared in terms of the estimated
values using the MLR, MNLR, and ANN models. As a result, it was revealed that the MLR
and MNLR models could not estimate either E50 or υ parameters very well. Additionally,
because of the complexity of the fracture process in rock materials, it is an expected result
that the coefficients of determinate (R2) of the MLR and MNLR models for E50 and υ are low.
On the other hand, the ANN models with the highest R2 values for estimating the E50 and
υ parameters were found to be much more suitable than the MLR and MNLR models.

A comparison of the estimated values generated by the ANN-2 model for each of the
17 experimental data points of the E50 and υ for the rock type samples is shown in Figure 8.
Apparently, the results indicate that the ANN-2 model was able to estimate both the E50 and
υ values very well within the acceptance limit. On the other hand, the estimated values of
the other ANN models were significantly different in accuracy from all the experimental
E50 and υ values. In addition, the ANN-2 model has the lowest RMSE and MAE and the
highest R2 values (see Table 3), which shows that it will be much more suitable than the
other ANN models.
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Although it is generally accepted that a substantial amount of data is needed to train
the neural network, it is important to note that ore samples such as galena, chromite, and
sulfur ore have not been used in any previous study. These specific properties are examined
for the first time in the context of rock mechanics.

5. Conclusions

This research aims to aid in the development of estimation models with the highest
accuracy for determining the E50 and υ parameters of different rock types using non-
destructive measurement methods (Vp, Vs, Vp/Vs, ρd, and SH). For this purpose, 17 different
rock types were considered, and multiple measurements were made to estimate the E50 and
υ with the best possible accuracy.

Model approaches were based on input data (Vp, Vs, Vp/Vs, ρd, and SH). These
approaches did not yield satisfactory results in the multiple regression analyses (MLR and
MNLR) expressed as correlation coefficients (R2 = 0.486–0.630). However, ANN models
developed using the same experimental data produced results with higher determination
coefficients (R2 = 0.891–0.971). These results indicate that ANN models are preferable for
the estimation and evaluation of E50 and υ compared to regression analysis models. From
these results, it was determined that all four ANN models were able to predict both E50 and
υ with higher accuracy and minimal errors. Among the ANN architectures tested, ANN-2,
with four input variables (Vp, Vs, Vp/Vs, and SH), 10 neurons, and one output variable
(E50 or υ), was the best architecture (4-10-1 structure). In addition, the results of sensitivity
analysis of both E50 and υ values to input variables showed that Shore hardness (SH) was
the most sensitive variable.

This study is the first in the literature to use a highly diverse sample set, including mag-
matic ores such as chromite, galena, and sulfide ores, in modeling. Overall, such estimation
models will be beneficial to more engineers in the sector if different geological types and
larger specimen sets are evaluated using similar research methods in the coming years.
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