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Abstract: Quantum dots (QDs) play a fundamental role in nanotechnology because of their unique
optical properties, especially photoluminescence (PL). Quantum confinement effects combined with
tailor-made materials make QDs extremely versatile for understanding basic physical phenomena
intrinsic to them as well as defining their use in a vast range of applications. With the advent of
graphene in 2004, and the discovery of numerous other two-dimensional (2D) materials subsequently,
it became possible to develop novel 2D quantum dots (2DQDs). Intensive research of the properties
of 2DQDs over the last decade have revealed their outstanding properties and grabbed the atten-
tion of researchers from different fields: from photonics and electronics to catalysis and medicine.
In this review, we explore several aspects of 2DQDs from their synthesis, functionalization, and
characterization to applications, focusing on their bioimaging, biosensing, and theranostic solutions

Keywords: 2D materials; quantum dots; synthesis; functionalization; characterization; fluorescence
properties; bioimaging; biosensing; theranostic applications

1. Introduction to 2D Quantum Dots

Quantum dots (QDs) are synthetic nanoparticles—in the range of 2 nm to 10 nm, of
crystalline materials in which their size dimensions influence the quantum confinement
of electrons and holes [1]. Although QDs were first theorized in 1970’s, they have been
only experimentally demonstrated in the 1980’s [2,3]. Semiconductor QDs are defined
as nanoparticles with spherical shape and crystalline core/shell structures, combining
elements from groups II–VI of the periodic table (CdSe, CdTe, CdS, PbSe, ZnS and ZnSe)
or III–V (GaAs, GaN, InP and InAs), and coated with an outer shell layer of ZnS or CdS
to prevent toxicity [4]. In a typical QD, the core emission is weak and relatively unstable,
whereas the shell is practically non-reactive and insulates the core. Organic molecules
can be covalently bonded to the shell, enabling conjugation of species (such as antibodies,
nucleic acids) to a hydrophilic QD [5]. Figure 1 shows a schematic representation of a QD
with core/shell structure and organic ligands attached.

Overall, colloidal QDs are classified into different categories, such as (i) core-type QDs,
defined as single component materials, such as chalcogenides (selenides, sulphides, or
tellurides) of metals (cadmium, lead or zinc), forming CdS, PbS, CdTe, CdSe, MoS2, among
others; (ii) core-shell QDs, made of two components and an external shell that allows
to improve the quantum yield and stability of nanocrystals (e.g., CdSe/ZnS). To further
enhance their efficiency, avoid photobleaching, or leaking of semiconductor nanocrystals,
an additional shell of semiconducting material is grown around QDs; (iii) alloyed QDs:
multicomponent materials with gradient internal structures (e.g., CdSxSe1−x/ZnS) used to
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tune the electronic and optical properties, but preserving the crystallite size [6,7]. Several
synthesis routes allow to obtain these artificial nanocrystals in mass scale with controlled
size, shape, composition, structures, and unique physical and chemical properties. Of
particular interest are their optical properties, such as photo- and electro-luminescence, that
allow fine tuning of the spectral selectivity of such objects, as well as amphiphilic nature,
and colloidal properties. Currently, QDs have been popularly used for light-emitting
diodes (LEDs) [8], displays [9], photovoltaic cells [10,11], transistors [12,13], quantum
computing [14], bioimaging [15,16], biosensing [17,18], among others.
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Figure 1. Schematic illustration of a shell-core quantum dot (QD) with organic ligands covalently
attached to the shell.

The field of two dimensional (2D) materials has developed significantly over the past
two decades and achieved certain levels of maturity in terms of scientific accomplishments
and technological advances for industrial applications. The electronic and optical response
of 2DQDs arise from the quantum effects that play an important role in their physical
properties [19]. Among the main advantages of 2DQDs are highly tunable photolumi-
nescence (PL) effect, enhanced photostability, atomically-thin structure, molecular size,
biocompatibility, and easy functionalization [20,21]. Because of their small dimensions,
QDs lead to quantization of energy levels according to the laws of quantum mechanics.
2DQDs can be thought as quantum wells that geometrically confine electrons, as it can
be seen in Figure 2a. Hence, the size of 2DQDs directly influences the optical properties,
ensuring that only specific wavelengths of light can be either emitted or absorbed.

Especially interesting are the photoluminescence (PL) properties of 2DQDs, schemati-
cally illustrated in Figure 2b. Specifically, this phenomenon can be understood in terms
of having an electron in a low energy state that is excited to a higher electronic excited
state leaving a hole behind. Such excited electron can interact with atoms in the mate-
rial, emit and absorb phonons (resulting in atomic vibrations) and/or recombine with its
counterpart left-over hole, leading to photon emission [22]. The PL effect will be further
discussed below.

As the properties of QDs, regardless their dimensionality, are governed by the laws of
quantum mechanics, in the simplest approximation, they can be though as an empty box
of volume Lx × Ly × Lz in each correspondent direction (x, y, z), and impenetrable walls.
An electron inside of such box is described by a wave-function Ψ (x, y, z), obeying the
Schrödinger equation [23]. To solve this elementary problem, one can use the Schrödinger
equation and calculate the energy of an electron, E, inside of the box:
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where me is the electron mass, (nx, ny, nz) are the three non-zero integers (nx, ny, nz = 1, 2,
3, 4 . . . ) and } is the reduced Planck constant. The dimensionality only enters through the
size of the box Lx × Ly × Lz . Each set of integers (nx, ny, nz) represents a quantum state
that, according to the Pauli exclusion principle, can be occupied only by 2 electrons (one
spin up and another spin down). At zero temperature, the states are occupied starting from
the lowest energy states, that is, with the smallest integers (nx = 1, ny = 1, nz= 1), until a
final number of electrons, Ne, occupies the QDs. The highest energy occupied state of the
QDs, has a maximum energy, EF, the so-called Fermi energy [23].
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A three dimensional quantum dot (3DQD) can be seen as a box, where Lx, Ly and Lz
have similar size, say, a few nm. In this context, a 2DQD can be seen as a special case of
3DQD, where Lx and Ly have similar size (a few nm), but Lz is much smaller, say, of the
order of atomic dimensions (a few angstroms) [24,25]. Note that, from Equation (1), for
a given state, that is, for a fixed set of integers (nx, ny, nz), the energy grows as 1/L2

x,y,zx
as the size of the box is reduced. According to Equation (1), if Lz is reduced to atomic
size, the energy of the states with nz > 1 “float upwards” in energy. This means that the
energy states become so large that, eventually, they surpass the EF and cannot be occupied
anymore. In this limit, only states of nz = 1 are occupied and the 3DQD becomes a 2DQD.

Graphene is the world’s first 2D material and has unique properties, such as high
electrical and thermal conductivities, high optical activities, large surface area, ultrafast
carrier mobility, flexibility, lightness, mechanical stability, and tuneable chemical function-
ality. In particular, for graphene-based micrometre-sized devices, the zero band gap and
low electromagnetic absorptivity make the use of this material in optoelectronic devices
less than optimal [26–28]. Alternatively, synthesized nm-sized graphene quantum dots
(GQDs) are highly stable and conductive with a unique fluorescence resultant from the
modification of its electronic states due to their dimensions.

GQDs have interesting characteristics such as PL, low toxicity, high chemical and
photostability against bleaching and blinking, biocompatibility and high solubility. These
properties make GQDs extremely attractive for a large number of promising applications
in bioimaging, biosensing, optoelectronics, photovoltaics, and energy storage and energy
conversion devices [22,29–32]. Beyond graphene [15,33–36], there have been great efforts
dedicated to exploration of other materials for 2DQDs, such as graphene oxide [37,38]
transition metal dichalcogenides (TMD) [39], phosphorene and MXenes [29], hexagonal
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boron nitride (hBN) [40], apart from other thousands of crystals with nano and sub-nano
thickness. Currently, 2DQDs have become a cutting-edge research topic and have great
appeal to several industrial sectors, however there are limitations for real life applications
mainly related to the potential risks of quantum dots in the biomedical field [20]. Apart
from biomedical applications, QDs have been used commercially in several products and
the levels of exposure of them to humans, animals, and plants had significantly increased
over the past decades.

There have been experimental and theoretical researches on understanding not only
the toxicity of quantum dots to the human body through in vivo and in vitro analyses,
but also simulating the interactions of DNA molecules with functional groups attached
to 2DQDs [7,41–46]. Such studies are of paramount importance to clarify what are the
long-term consequences of such small-size nanoparticles on biological systems. In fact, the
size of 2DQDs interconnects their intrinsic features (such as photoluminescence properties)
to the quantum confinement and optical properties advantages, making them promising
candidates for imaging, sensing, tracking, and real-time monitoring of diseases [47,48].
More recently, a research group developed an ultrasensitive and nucleic amplification-free
electrochemical biosensor based on BN-QDs capable to detect and diagnose SARS-CoV-2.
Such biosensors have been shown as potential candidates for accurate, sensitive and timely
diagnosis for clinical analysis with results recognition as short as 30 min of incubation
time [49].

Generally, there are two types of approaches to produce 2DQDs: (i) top-down methods,
in which a macroscopic layered 3D crystal is exfoliated and broken down to 2DQDs;
(ii) bottom-up methods, in which 2DQDs are chemically grown from properly chosen
molecules under suitable conditions [34,50–52]. The particle size, edge type, bandgap
extension, presence or absence of functionalization, are important characteristics of QDs
that can be tailored by choosing different strategies according to the desired properties
and applications [53]. It has been demonstrated that the PL property of 2DQDs is one of
the most fascinating characteristics of these nanomaterials. Also, several microscopy and
spectroscopy techniques have been used to characterize different types of 2DQDs, assisting
researchers in researching of the optical and electronic characteristics of such objects. In this
review, we summarize recent studies on the synthesis and functionalization of 2DQDs, their
PL properties, and the main characterization techniques used for these systems. Finally, we
discuss the advances in the applications of such quantum systems.

2. Synthesis of 2D Quantum Dots

The methods for synthesizing nanomaterials can be classified into two main categories:
top-down and bottom-up approaches (see Figure 3). The former is done via either physical
or chemical interactions to reduce a bulk layered 3D crystal into smaller structures. Some
popular top-down techniques to produce 2D materials are the micromechanical and the
liquid-phase exfoliation processes [54–56], for which non-uniform 2DQDs are produced
due to a large distribution of sizes and morphologies obtained. The latter is achieved
through the use of molecular and/or atomic precursors as starting materials, allowing to
get greater control over QD’s morphologies. The synthesis via chemical vapor deposition
(CVD), thermal decomposition of small molecules, and epitaxial grown on monocrystalline
substrates are a few examples of bottom-up methods [34,50–52]. These synthetic routes are
used for production of most of the 2DQDs with tunable size, controlled edge structures, or
even for doping or functionalization of such materials, leading to potentially large-scale
productions [22]. Herein, for a better understanding, each technique is discussed separately.

2.1. Top-Down Approaches

In a top-down approach, bulk layered 3D materials are exposed to extreme conditions,
such as relatively concentrated acids, oxidizing agents or high temperature, to produce
2DQDs. Since such aggressive conditions are required, it is extremely challenging to control
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the QDs morphology and size distributions [22,57]. Several top-down routes have been
developed and a few are listed below.
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2.1.1. Hydrothermal or Solvo-Thermal

Hydrothermal process is a popular wet chemistry method that allows to produce com-
plex materials with high crystallinity of an aqueous solution in a high temperature—high
pressure reaction environment. Overall, it is considered a low cost, eco-friendly and
nontoxic technique to synthesize high quality 2DQDs made of graphene and reduced
graphene oxide (rGO) [33,48,49], molybdenum disulphide (MoS2) and tungsten disulphide
(WS2) [12,50]. Briefly, bulk 3D layered precursor materials are lacerated into small pieces
due to the breakdown of van der Waals and covalent bonds, converting the raw materials
into products [16,48].

2.1.2. Electrochemical Exfoliation with Ion Intercalation

The electrochemical cleavage of materials, such as carbon nanotubes, graphite rods,
graphene films and CVD-grown graphene generates a high yield of GQDs. In electro-
chemical exfoliation, the hydroxyl and oxygen radicals from oxidation of water actuate as
“scissors” at the edges and defect sites of the material to produce quantum dots [58]. This
strategy is of great interest for production of pure materials since does not require the use
of chemical oxidants as the driving force for intercalation/exfoliation. The relatively large
interlayer distance between sheets of TMD materials is advantageous for obtaining large
scale production of 2DQDs. By intercalating lithium (Li) and potassium (K) ions into the
bulk structure, exfoliation is promoted, and the lateral dimensions of TMDs are reduced,
providing TMD-QDs of the order of 2–5 nm [59]. In addition, it has also been shown that
mass production of MoS2 QDs is viable via variable electrochemical methods [60,61].

2.1.3. Acid Etching

In this approach, bulk carbon-based precursors, such as carbon fibers, carbon nan-
otubes, graphene oxide, carbon black, among others are treated using strong acids, such as
nitric acid (HNO3), in which the negatively charged oxygenated groups make the surface of
materials hydrophilic, and some defect sites are boosted. As a result, large-scale production
of GQDs is possible using acid etching with improved performance [57,62].
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2.1.4. Ultra-Sonication

This is a cost-effective and environmental-friendly route to reduce the lateral size
dimensions of precursors by using mechanical forces. The approach takes advantage of
the weak van der Waals interactions between stacked layers of 2D materials, such as MoS2,
WS2, black phosphorous (BP), and graphene, leading to the formation of quantum dots
based on these materials [20,40,63]. Some purification steps and thermal processes are
used to cleave 2D structures by ultrasonic treatment in order to produce nanometer-sized
structures at room temperature [37].

2.1.5. Electro-Fenton

Electrochemically induced Fenton (electro-Fenton) reaction has been shown as an
attractive method to produce 2DQDs due to its high effectiveness, fast treatment rate, and
environmentally compatibility. In electro-Fenton process of graphene oxide, hydrogen
peroxide (H2O2) is generated in situ at the cathode, and ferrous ions are added to the
system in order to enhance the oxidation activity and form hydroxyl radicals. The ferrous
ions (Fe2+) regenerate at the cathode, and further produce additional hydroxyl radicals
in the electrochemical mode. Since graphene and GO sheets are aromatic structures, they
easily react with hydroxyl radicals, breaking the nanosheets apart and transforming them
into GQDs with great photoluminescence properties. Following the same electrochemical
procedures and using pre-Fenton reagents (O2 and Fe2+), it has been also shown that MoS2
nanosheets could react with hydroxyl radicals and form MoS2-QDs with nanoporous facets
by electro-Fenton reactions on a mass scale. For this high yield approach, the reaction time
determines the effect of the presence of radical groups [64].

2.2. Bottom-Up Approaches

In contrast to the top-down approaches, the bottom-up routes of 2DQDs are based on
small organic or inorganic precursors, such as reactive atoms and molecules that produce
more complex structures. Because they are versatile and highly customizable, they provide
greater control of structural dimensions and morphologies, and consequent articulation of
specific properties of the products. Thus, surface modification or doping during syntheses
offer well-defined molecular size, shape and properties to higher performance 2DQDs,
with high-yield and low cost mass production [65,66]. The limiting factor is associated with
the formation of relatively small size 2DQDs compared to the top-down counterparts.

2.2.1. Template Synthesis

Template-assisted synthesis includes the oriented growth of materials on the top of
specific substrates. The template is usually removed through high temperature or pH
adjustments, leaving only the 2DQDs by-products copying the template design. It has
been shown that the intermolecular carbonization of 1,3,4-Tri-amino-2,4,6-trinitrobenzene
(TATB) favors the formation of small and controlled-sized nitrogen-doped GQDs in a
soft-template synthesis approach [67]. Another group demonstrated the production of
large photoluminescent disk-like GQDs by using hexa-peri-hexabenzocoronene (HBC),
a polycyclic aromatic hydrocarbon (PAHs) as a precursor. TATB and HBC are aromatic
molecules with a tendency to form graphitic-like multilayered structures after thermal
processes that are commonly used as precursors as well as soft templates. Another common
nanostructures and morphologies obtained are nanowires and nanosheets [66].

2.2.2. Pyrolysis/Carbonization of Organic Precursors

It consists of a cost-effective and mass production combustion process, in which QDs
are nucleated and grown by exposing organic molecules to high temperatures [68]. Organic
compounds, such as coffee grounds, glycerol or citric acid are frequently used as precursors
in pyrolysis processes to obtain 2DQDs, such as GQDs and glutathione-functionalized
GQDs (GQDs@GSH), making this process environmentally friendly [29,34,69].
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2.2.3. Chemical Vapor Deposition (CVD)

A direct synthesis to produce GQDs with controlled growth parameters (temperature,
pressure, time) and proper substrate (such as, copper or nickel) inside furnaces. Although
relatively expensive, due to the requirement of high temperature, vacuum and restrict
usage of specific substrates, the process is simple and the source can be either liquid or
gaseous precursors. Among the advantages of this technique, one can highlight high
quality, purity, and more controlled properties of products [33,63].

2.2.4. Colloidal Chemical Synthesis

Colloidal semiconductor QDs have been synthesized by wet chemistry methods using
molecular precursors and can possess up to 108 atoms with diameter of the order of ~100 nm.
The surface treatment of QDs with specific ligands allows physic-chemical stability and
change the electronic properties of the material [70]. In a facile colloidal chemical route,
ammonium tetrathiomolybdate ((NH4)2MoS4) is used as precursor combined with oleyl
amine (OLA), which acts as both reducing as well as stabilizing agent. The resultant
hydrophobic material (MoS2 monolayers) is further functionalized with cationic surfactants
and transferred to an aqueous phase in order to obtain MoS2QDs with good dispersability,
low toxicity, and great photoluminesncence properties, being promising for applications in
bioimaging. Cd-based quantum dots and rare-earth doped nanocrystals are also obtained
using colloidal chemical routes [71,72].

2.2.5. Other Approaches

Amidst other techniques, chemical synthesis and ruthenium-catalyzed cage opening of
fullerene are alternative bottom-up techniques used to synthesize 2DQDs. These techniques
are more complex and require prevention against aggregation of materials in the final
steps [29].

3. Functionalization of 2D Quantum Dots

Numerous strategies have been demonstrated to provide surface modification of
2DQDs, allowing to modify their properties and further improve their performance in
distinct applications. Examples include enhanced solubility and reactivity, and enriched op-
tical and electronic properties, making functionalized 2DQDs more attractive for advanced
technology applications, such as cancer therapy, bioimaging, biosensing, optoelectronics,
and energy storage systems [73]. Overall, 2DQDs can be functionalized via surface chem-
istry or interactions in order to module their properties. The introduction of oxygenated
functional groups on 2DQDs induce the formation of QDs with much smaller dimensions
due to the stronger reactivity of oxygen-based species [74]. The most popular functional
groups attached to 2DQDs are S-H, COOH, COO−, and C=S [75], and the edges of 2DQDs
particularly act as excellent anchors for coupling molecules due to their highly defective
nature [45]. For example, some studies have suggested that N and/or S doped GQDs have
high electrocatalytic activity and conductivity for lithium batteries (see Figure 4a) [76–78].
Also, GQDs functionalized with carboxylic groups have great affinity for water, and there-
fore, have been demonstrated as biocompatible materials with boosted ability for covalent
bonding with biomolecules for diagnostic purposes [45].

The functionalization of the edges of GQDs with antibodies or peptides has been
demonstrated as crucial in cytotoxicity studies for imaging specific cancer cells and toxicol-
ogy studies. For example, insulin conjugated GQDs have been used as specific labelling
and dynamic identification of insulin receptors in 3T3-LQ adipocytes [79] (see Figure 4b).
Experiments on surface chemistry functionalization or reduction of GQDs with low toxicity
to MC3T3 cells enable to modulate the surface chemical groups and tune their photolu-
minescence response. Specifically, blue luminescence is observed for GQDs with edges
functionalized with alkylamines. Upon reaction, the original –COOH and epoxy groups of
GQDs are replaced by –CONHR and –CNHR groups. Blue luminescent reduced GQDs
are obtained when sodium borohydride (NaBH4) is used as reducing agent, transforming
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carbonyl, epoxy, and amide moieties into –OH groups and minor surface defects (see
Figure 3c) [15].
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Figure 4. Scheme of functionalization synthesis of 2DQDs. (a) Growth mechanism of N doped GQDs
(N:GQDs) and S,N co-doped GQDs (S,N:GQDS) by using citric acid (CA) as carbon source and urea
and thiourea as N ang S sources. Reprinted with permission from [76]. (b) Route for conjugation
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permission from [79]. (c) Surface modification of GQDs (grafting): alkylamines groups connected
QDs structure, resulting blue luminescence m-GQDs, and reduction using NaBH4 to obtain blue
luminescent r-GQDs. Reprinted with permission from [15].

Because of their relatively small size (large specific surface area), 2DQDs can interact
with cells through different mechanisms, such as endocytosis, pinocytosis, and phagocyto-
sis [80]. Therefore, experimental and theoretical studies have been performed in order to
verify whether such nanomaterials are suitable for nucleic acid delivery applications [81].
From experiments, GO has shown to be less cytotoxic than pristine graphene [82,83],
however, the levels of oxidation and surface chemistry functionalization of GO sheets
are decisive on different cytotoxicity and genotoxicity levels [84–86]. In another work,
GQDs were functionalized using boric acid (H3BO3(s)), using a bottom-up molecular fusion
method based on nitratred pyrenes. The resultant material (B-GQDs) has superior optical
properties and long-wavelength PL emission with high quantum yield (Φ), being promising
for luminescent composites in luminescent solar concentrator applications [87].

From theoretical studies, molecular dynamics (MD) simulation and density functional
theory (DFT) calculations have been used to test how DNA molecules interact with GQDs
and functional groups [41]. Other theoretical simulations have been performed in order to
understand the effect of functional groups, such as OH-, SH, and NH2, in 2DQDs. The use
of density-functional theory (DFT) revealed that the functionalization on B and N atoms
of BNQDs changed their bandgap and the semiconducting states, indicating that the elec-
tronic states are modified by the presence of functional groups [88]. DFT calculations also
suggested that the light absorption of 2DQDs based on BP is tailored by the introduction of
other functional groups, such as benzene rings and anthracene [89]. Hydrogen (H2) evolu-
tion applications have also attracted attention of researchers that developed a novel hybrid
photocatalyst comprising of cadmium selenide (CdSe) quantum dots (CdSe-QDs). Briefly,
CdSe-QDs are supported with strong affinity on thiol (-SH) functionalized graphitic carbon
nitride (g-C3N4) sheets (TF-g-C3N4). The functionalized heterostructure (CdSe-TF-g-C3N4)
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demonstrated enhanced photocatalytic rate of H2 generation, optimum morphology due to
intimate interfacial attachments [90].

4. Photoluminescence Properties of 2D Quantum Dots

The fluorescence phenomenon has been intensively explored since it was first observed
by George Gabriel Stokes in 1852 [91]. In a simple experimental setup, Stokes demonstrated
that fluorite glows in the dark upon illumination by ultraviolet (UV) light. He named
this process as fluorescence [92]. A simple way to describe the photoluminescence (PL)
phenomenon is shown in Figure 2. A 2DQD of size L can be seen, in first approximation,
as a potential well with infinitely high walls infinite. Quantum mechanics tells us, that,
in such confined geometry, the electronic states will be quantized (Equation (1)). The PL
mechanism (see Figure 2b) involves a photon with energy Ei (and frequency υi) being
absorbed (1) by an electron in the QD; (2) the excited electron can decay by emission
of phonons (thermal vibrations) via non-radiative mechanisms, without producing light;
(3) the electron recombines with the hole emitting a photon with lower energy Ef (and
frequency υf).

The aromatic and conjugated molecular groups capable to absorb UV light and present
fluorescence are called fluorophores. Interest around the mechanism of fluorescence (nomen-
clature used by chemists to indicate the absorption and emission of light by atoms or
molecules) and PL (nomenclature used by physicists to depict the absorption and emission
of light by semiconductor) is due to the interest in application of photoluminescent materi-
als in areas that range from chemistry to biology [93]. For QDs, the luminescence appears
from the recombination of electron-hole (e-h) pairs through radiative routes, known as
exciton decay. However, for non-radiative routes, such decay may diminish the fluores-
cence yield. Henceforth, in order to enhance the efficiency of PL in QDs and modify their
photo-physical properties, core shell-typed QDs techniques may be used, in which shells of
different semiconductors with larger band gaps are grown as coatings [20].

Equally important, 2DQDs also present PL effect [15,22,94]. This can be seen in
Figure 5a, comparing PL mechanism occurred in carbon-based quantum dots and semi-
conductor quantum dots (SQD) [37]. Likewise, Figure 5b illustrates the size-dependent PL
spectra with excitation source of 325 nm for GQDs in deionized (DI) water. It is clear that
the peak energy and the shape of the spectra depend on the size of GQDs. The inset image
shows different luminescence effect observed for different sizes of GQDs. Figure 5c indi-
cates the excitation-wavelength-dependence of shifts in PL peaks for different sizes of GQD,
in which similar behavior of peak shifts is present, regardless the excitation wavelength,
except for 470 nm [36].

The quantum yield (Φ) is defined as the ratio of number of photons emitted to the
number of photons absorbed by a material. The quantum yield quantifies how efficient is
the photon emission for fluorescent or photoluminescent materials. In Table 1, the main
categories of 2DQDs are summarized, including synthesis methods and quantum yield. It
has been reported that heteroatom doping, surface passivation, and edge effects have great
influence to considerably increase the Φ in 2DQDs. Generally, the higher is the Φ, the most
promising is the use of 2DQDs for biological and optoelectronic applications [22].

It has been demonstrated in vitro and in vivo that QD-tagged reduced graphene oxide
(QD-rGO) nanocomposite can be used in cell/tumour bioimaging with photo-thermal
therapy due to its strong fluorescence and low toxicity [47]. The fluorescence bioimaging
and photothermal therapy provide in situ monitoring, and nanocomposite can act as
a cell killer, being promising for cancer treatment and diagnosis. Such nanocomposite
generates heat, which is an extremely useful characteristic for photo-thermal therapies,
especially as it also allows in situ heat/temperature sensing. It was demonstrated that, for
samples prepared at equal molar concentrations (3.4 × 10−4 mmol), the PL response of
rGO-QDs is dependent on the size of the 2D material. Figure 6a,b show that regardless the
wavelength of the excitation/emission energy source, the fluorescence of ultra-small rGO
(US-rGO—38 nm) and small rGO (S-rGO—260 nm) are 15% and 50% lower, respectively,
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than the fluorescence of pure QDs. The size dependent fluorescence effect of rGO-based
QDs is illustrated in Figure 6c. A 350 nm laser wavelength coming from below the planar
sheets results in different fluorescence effect according to size dimensions of the material
(less fluorescence from larger—260 nm—than smaller sheets—38 nm) [47].
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Figure 5. (a) Schematic illustration and PL mechanism of carbon-based dots: GQDs, carbon quantum
dots (CQDs), carbon nanodots (CNDs)) and semiconductor quantum dots (SQDs). Reprinted with
permission © 2017 by MDPI [37]. (b) Size-dependent PL spectra with excitation source of 325 nm for
GQD in DI water. The inset shows the different luminescence effect with colors varying according
to average size of QD (12 nm, 17 nm and 22 nm). (c) Dependence of PL peak shifts ranging with
excitation wavelengths ranging from 300 to 470 nm for GQD with different sizes. Adapted and
reprinted with permission. Copyright © 2012, American Chemical Society [36].

Table 1. Categories, synthesis, and quantum yield (Φ) of 2DQDs. Adapted with permission © 2018
Elsevier Ltd. All rights reserved [22].

Categories 2DQDs Approach Synthesis Φ (%)

Single-element 2DQD

Carbon dots (CDs)
Bottom-up Hydrothermal method 80
Bottom-up Solvothermal method 11.4
Bottom-up Microwave radiation 11.7–22.9

Graphene quantum
dots (GQDs) Top-down Chemical etching from

coal precursor 0.6

Phosphorene quantum
dots (PQDs)

Top-down or
bottom-up

Sonication and
solvothermal 8.4

Top-down Sonication N/A

Double-element 2DQD
TMDs (MoS2, WS2)

quantum dots

Top-down Chemical etching by acid >95
Top-down Ultrasonication N/A
Top-down Lithium intercalation N/A

Multi-element 2DQD MXene-type
quantum dots

Top-down or
bottom-up Hydrothermal method 10
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adsorption and conjugation. Reprinted with permission [47]. (d) UV-Vis absorption (UV-Vis ABS) 
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Figure 6. Fluorescence spectra of pure, small (S-rGO) and ultra-small (US-rGO) reduced graphene
oxide quantum dots emitting at (a) 600 nm, and (b) at 550 nm. (c) Schematic for the surface adsorption
of graphene oxide using an amphiphilic polypeptide (poly(L-lysine)) with the correspondent adsorp-
tion and conjugation. Reprinted with permission [47]. (d) UV-Vis absorption (UV-Vis ABS) spectra of
graphene quantum dots (GQDs)—inset image: photograph taken under visible light. (e) Optimal
excitation and emission PL spectra of GQDs—inset image: photograph taken under 365 nm UV light
Reprinted with permission and adapted. [15]. (f) Confocal laser scanning microscopy image (CLSM)
of HeLa living cells stained with 0.001 mg/mL of lysotracker for 20 min for MoS2/WS2 quantum
dots. (g) CLSM image of HeLa living cells incubated in DMEM (Dulbecco’s modified eagle medium)
containing 50 µ/mL. (h) The corresponding bright field image and (i) overlapped image of the living
cells. All scales are 40 µm. Reprinted with permission and adapted [16].

The reduction of dimensions of graphene, leading to GQDs, can tune its bandgap from
0 eV in macroscopic samples to values comparable to the energy gaps in benzene molecules
(around 3.1 eV). Consequently, the luminescence effect of GQD is manifested with many
advantages relative to traditional fluorescent materials. For instance, great attention has
been addressed to GQDs due to their optical activity, chemical stability, reasonable biocom-
patibility and low cytotoxicity. Previous reports correlate the luminescence phenomenon to
quantum size effect, zig-zag edges, and defects in the structure of graphene. For example,
GQDs have been synthesized by solvothermal reactions with radical groups bonded to their
edges, leading to surface modifications causing various optical properties [15]. The green
luminescent spectra of the surface modified GQDs for absorption and emission induced
by defect state emission can be seen in Figure 6d,e. The ultraviolet visible spectroscopy
(UV-Vis) analysis shows a shoulder peak at 320 nm Figure 6d attributed to surface passiva-
tion and the fluorescence spectra indicate that GQD have optimal excitation and emission
wavelengths at 416 nm and 516 nm, showing the green fluorescence under UV light.

More recently, it was shown that uniform MoS2/WS2 QDs with average size of 3 nm
can be prepared by the combination of sonication and solvothermal treatment of bulk
materials at room temperature. Such hybrid QDs are dispersed in water with great stability
and present strong fluorescence, low cytotoxicity and good biocompatibility, higher surface
area and several edged atoms. Figure 6f–i show MoS2/WS2 quantum dots as fluorescent
probes interacting with living cells for bioimaging, indicating their potential application as
cell-imaging agents and probes for in vitro imaging in biomedicine [16]. Some other studies
have been performed to better understand the PL properties and the electrochemilumines-
cence (ECL) features of boron nitride quantum dots (BN-QDs) [40,74]. In particular, tunable
blue/green PL with different size dimensions can be created by sonication-solvothermal
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treatment of bulk BN in different organic solvents. The as-prepared BN-QDs serve as fluo-
rescent sensing agent for label-free detection of ferric ions (Fe3+), HeLa cells bioimaging,
and fiber staining, whereas ECL properties were detected in BN-QDs using cysteine as
coreactant [74].

There are many other studies investigating the fluorescence properties of other 2DQDs.
For example, CdSe quantum dots have shown size-tunable emission of light in the visible
region spectrum. In a brief, the PL effect of CdSe-QDs originates from different factors:
(1) exciton recombination at the band structure, that is transitions from the lowest unoccu-
pied state of orbitals of Cd, to the highest occupied state of orbitals of Se, (2) deactivation of
electrons previously excited, and (3) surface states. By investigating the band structures
in CdSe-QDs, PL behaviour can be observed. In general, spectral shits of CdSe-QDs are
commonly attributed to size variations, temperature, pressure, and dielectric environments.
Such factors influence on the quantum confinement of excitons and changes on the bandgap
energies, especially due to exciton-phonon coupling, confinement energy, surgace charges,
and surface chemical changes [95].

In fact, photo luminescent GQDs with wavelength-controllable emissions and fluores-
cence colour tuneable by excitation wavelength modifications are generally easy to obtain
and can be made environmentally-friendly. Moreover, they usually present a strong fluores-
cence effect, and many other useful properties, such as low-toxicity, high biocompatibility,
reasonable chemical inertness and high aqueous solubility, as well as superior resistance to
photo bleaching, making them promising for biomedical applications, illumination and
display techniques [94].

Remarkably, surface chemistry approaches make possible to enhance the PL effect
of 2DQDs. The presence of different radical groups attached to the surface of GQDs,
for instance, can diminish or enlarge non-radiative recombination, and transfer electrons
from the defect state emission to the intrinsic state emission. As such, PL mechanism
and fluorescence can be notably changed through surface chemistry alterations [15,16,47].
Still, much more can be done for understanding the PL in 2DQDs. The PL effect is still
a debatable topic due to the complexity of quantum confinement effects, the influence
of defects, and edges states of 2D materials. Additionally, the impact of environmental
conditions such as temperature, pressure, pH, among others have been demonstrated to
play a fundamental role in the properties of 2DQDs, which directly affect the possibilities for
applications [48]. In this context, the selection of appropriate characterization techniques is
essential to differentiate qualitatively and quantitatively the various synthesized materials,
understand and analyse their different structure and properties, to effectively apply them
into specific fields.

5. Fundamental Characterization Techniques of 2D Quantum Dots

Generally, analytical methods are used for characterization of QDs, including mi-
croscopy, diffraction and spectroscopy techniques. In Table 2, a list of the most commonly
used characterization techniques for 2DQDs and their usage propose is shown below.

Table 2. C Common characterization techniques and their usage propose for 2DQDs. Copyright ©
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim [16].

Technique Acronym Applied for Analyzing:

Transmission
electron microscopy TEM Particle size distribution,

crystalline organization

High-resolution transmission
electron microscopy HRTEM Crystallinity, d-spacing, planes

Energy dispersive
X-ray spectroscopy EDX Detection of elements
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Table 2. Cont.

Technique Acronym Applied for Analyzing:

X-ray photoelectron
spectroscopy XPS Understanding chemical states

and compositions

Atomic force microscopy AFM Morphology and thickness

X-ray diffraction XRD Crystal structure, unit cell
dimensions, crystal spacing.

Raman spectroscopy -
Measuring the rotational, vibrational,
and other low-frequency modes, and

other defect states.

UV-Vis spectroscopy
(or spectrophotometry) UV-Vis

Optical properties (light absorption
and transmission), qualitative

information (size and concentration).

Photoluminescence
spectroscopy PL spectroscopy Electronic transitions, estimation of

quantum yield.

Atomic force microscopy (AFM) is commonly used to image the surface of any type of
material (from polymers to ceramics), as well as to investigate their mechanical properties
and their adhesion strength. It guarantees a meticulous and detailed analysis of morphol-
ogy and structural properties, since the morphology and topography of materials can be
analyzed in three-dimensions using a probe tip (in the range of 1 nm to 200 nm) that images
the surfaces [96]. This technique also allows the measurement of the number of layers of
nanomaterials (graphene—0.34 nm theoretical thickness for a monolayer), by analyzing
the height distribution profile as shown in Figure 7a. Specifically, the red line in Figure 7a
provides the height profile curve of GQDs, and the statistical analysis based on more than
hundreds of samples, showing that more than 90% of GQD are monolayer with thickness
ranging between 0.5 and 1.0 nm [37].
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(b) HR-TEM images of GQD for different shapes and corresponding populations with increasing
their average size. The dashed lines indicate the size dimension of GQDs. Reprinted with permission
from [36] Copyright © 2012, American Chemical Society. (c) TEM image of reduced graphene oxide
quantum dots (rGOQDs). (d) HR-TEM image of the area shown in Figure 7c. (e) TEM image of
rGOQDs with a higher resolution image of an area un the upper right inset. The insets at the lower
right of Figure 7d,e show the sample suspension under visible light. (f) Suspension of rGOQDs under
UV light exposure. Reprinted with permission from [47].

High-resolution TEM (HR-TEM) is used to analyze 2DQDs and allows to classify their
predominant shapes, since it provides images with atomic resolution (atomic arrangement
and interplanar/lattice spacing). It has been demonstrated that circular and elliptical GQDs
in the range of size between 5 nm to 12 nm can be produced with a yield of more than 50%,
as it can be seen in Figure 7b [36]. It was shown that circular GQDs are uncommon whereas
elliptical shapes are more frequent for sizes of 15 nm, with 1/3 of them having irregular
shape. Particularly, most GQDs with sizes between 20 nm to 35 nm have hexagonal or
rectangular shape with irregular rounded sides and vertices. These atomic features are
visualized by HRTEM with clear distinction, providing detailed information about edge
shapes (such as zig-zag and armchair edges), and correlating with their actual shapes.

It was demonstrated that QDs-rGO nanocomposites synthesized by surface chemistry
routes can present distinct sizes, according to specific reactions conditions [47]. Figure 7c–e
show HR-TEM images of the QDs-rGO s in different scales, where the red square in
Figure 7c shown in 100 nm scaled image represents the zoom-in in 5 nm image. It was
demonstrated that QDs do not aggregate after synthesis (see Figure 7e), which is an im-
portant characteristic for practical applications. Apart from that, QDs-rGO present a
quasi-regular 2D array structure with no visible cracks, indicating reasonable interface
adhesion. The fluorescence of QDs-rGO is shown in Figure 7f, in which two liquid suspen-
sions made of two-sized materials were illuminated with UV light. Besides the color, the
density of QDs were switched with a concentration variation in the solution.

The results acquired from XRD are complementary to microscopic and spectroscopy
techniques, such as for phase identification, purity degree, crystallite size, and morphology.
To give an example, the identification of crystalline planes and d-spacing can be obtained
by analyzing the diffraction peak of GQDs. It has been shown that QDs-rGO have large
d-spacing values, indicating the presence of oxygen functional groups. By further inter-
preting the diffraction peak, as for calculating its full width at half maximum (FWHM),
one can extract the average diameter of the crystallite size of synthesized GQDs to be
around 2 nm [97]. XPS has been widely used to investigate the oxidation state of elements
present in 2D materials. The high resolution XPS spectra corresponding to C1s (285 eV)
and O1s (533 eV) have been identified for GQDs with different shape as comparing to
graphite. After deconvolution of C1s peak, four main features are noted: sp2 carbon (CQC,
C-C) at 284.6 eV, sp3 carbon (C-OH) at 285.9 eV, C-O-C at 287.3 eV, and C=O at 289.61 eV,
which is an indication that oxygen functional groups were attached to graphene sheets
during the reaction, and defects were detected in GQDs, as revealed by the resolution of
sp3 carbon peak. The XPS spectrum of O1s is mainly resolved in two peaks, at 532.7 eV
(CQO) and 534.4 eV (C-O), further confirming that GQDs are rich in oxygen functional
groups content [98–100].

The properties and functionalities of nanomaterials are significantly different com-
paring to their macroscopic bulk counterparts for two main aspects: (i) the higher surface
area over volume ratio favors their chemical reactivity, and (ii) the presence of quantum
phenomena dominate the interactions of matter at such smaller dimensions. Understand-
ing the structure and properties of nanomaterials combining qualitative and quantitative
characterization techniques is crucial for designing and engineering materials for a given
application [101,102].



Solids 2022, 3 592

6. Applications of 2D Quantum Dots

The long-term consequences of nanomaterials on human body are of great concern on
governmental agencies and scientists working in the biomedical field. Over the past few
decades, the number of applications based on nanomaterials has increased dramatically,
from consumer products, manufacturing processes, and medical products. Therefore, it is
crucial that workers and end-users have appropriate protection of potential risks involving
such materials, since the exposure to nanomaterials is substantial and increasing, studies
involving the toxicological properties is fundamental [103]. The toxicity of QDs depends on
parameters, such as size dimensions, preparation methods, dosage, administration route,
residual contents, and environmental conditions [4].

As it has been previously said, the particular dimensions, chemical structure, and
resulting electrical and optical properties of 2DQDs make these materials tremendously
attractive for nanotechnologies. Over a wide range of possible applications, one can
list photo electronic devices, energy storage and conversion systems, electrochemistry,
capacitors, catalysis, and photodetectors [20,29,36,104]. Special attention has been devoted
for the fabrication of highly selective and sensitive biosensors based on 2DQDs owing to
their unique properties, including excellent biocompatibility, chemical stability, low toxicity,
structural flexibility, electronic properties, and photoluminescence properties [46,105].

The potential biological toxicity of 2DQDs has been evaluated by in vitro and in vivo
imaging due to their chemical composition and nano-size dimensions [106,107]. Obtaining
in vivo systems analysis is a much complex and expensive task than assessing toxicity in
in vitro cell cultures. In vitro cytotoxicity of GQDs has been evaluated with MC3T3 cells
by methylthiazolyldiphenyltetrazolium bromide (MTT) assay, indicating that GQDs and
r-GQDs have extremely low toxicity to MC3T3 cells with relative cell viability variation
due to methylamine groups affecting the cells [15]. In another in vitro cytotoxicology study,
MoS2-QDs prepared by sodium (Na) intercalation reaction were used as fluorescent probes
for long-term tracing of live cells [108].

Zebrafish (Dnaio rerio) has been popularly applied in toxicity studies of various
nanomaterials as an in vivo system due to fastness, reliability, cost affordability, optical
transparency, and high homology to the human genome [109,110]. In a recent study, the
developmental toxicity of zebrafish embryos exposed to GQDs has shown that there is a
concentration-dependence on the potential nanotoxicity of GQDs. After exposure to GQds
(0, 12.5, 25, 50, 100, and 200 µg/mL) for 4 h-96 post fertilization (hpf), it has been demon-
strated that the mortality of zebrafish embryos increased, while their hatchability, heart rate,
and spontaneous movement decreased, with persistent effects due to concentrations higher
than 50 µg/mL [111]. Other studies suggested that MoS2 and WS2 have low cytotoxicity
levels in a series of biocompatibility tests, including live-dead cell assays, reactive oxygen
species generation assays, and direct assessment of cellular morphology of TMD-exposed
human epithelial kidney cells (HEK293F). Also, genotoxicity and genetic mutagenesis
were tested with bacterial strain S. typhimurium TA100. Both materials are deleterious
to cellular viability and do not induce genetic defects, appearing to be biocompatible for
future application in medical devices [112].

Table 3 shows a summary of examples of 2DQDs in the application in biosensing and
imaging. Overall, 2DQDs add a great value to the biosensing and bioimaging technologies,
since they emit in the whole spectrum and show low degradation over time compared
to traditional organic dyes [113]. Here, we focus on their applicability for biosensing,
bioimaging purposes, as well as theranostic applications of 2DQDs.
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Table 3. Applications of 2D quantum dots and examples of toxicity tests performed with the
corresponding outcomes for each study.

2D Quantum Dots Toxicity Test Outcome Applications Ref.

GQDs In vitro

Photoluminescent GQDs
with low toxicity to MC3TW

cells obtained by tuning
surface chemistry routes.

Strong tool in biomedical
field, for

up-conversion imaging.
[15]

GQDs In vivo
Fluorescence agents showing

efficiency for treatment of
cancer cells and tumours

Fluorescence contrast agents
for bioimaging [93,114]

GQDs In vivo
Concentration dependence
on the potential toxicity of

GQDs to zebrafish embryos

Biological and medical, such
as bioimaging, biosensing,

and drug delivery.
[108–110]

GQDs/polyethylene
glycol(PEG)/MoS2- In vivo/in vitro

Fluorescent biosensor for
epithelial cell adhesion

molecule (EpCAM) detection
Drug delivery [115]

MoS2-QDs In vitro
Strongly fluorescent, highly

photo-stable QDs with
low toxicity

Fluorescent probes for
long-term live cell tracing [107]

MoS2-QDs In vitro

Human cervical cancer cells
(HeLa) model showed good

biocompatibility with no
obvious cytotoxicity when
concentration ranges from

15 to 100 µg/mL

up-conversion bioimaging [116]

MoS2/WS2 QDs In vitro

Low cytotoxicity levels in
biocompatibility tests, being

deleterious to cellular
viability and not inducing

genetic defects

Medical devices [111]

BN-QDs and
BCNO-QDs In vitro

Fluorescence detected under
405 nm excitation for
labelling HeLa cells

Bioimaging probes [117]

PEGylated-BPQDs In vitro

Low toxicity when
integrated into single

component platform with
fluorescence approach to

image cancer cells

Bioimaging probes [118]

6.1. Biosensing

A biosensor is any device that assures detection, transduction and generation of signals
from materials through a bioactivity-based receptor. The first biosensors invented were
simplistic devices for monitoring blood gas levels of surgical patients [105]. The recent
advances in technology enabled the fabrication of highly sensitive, selective and cost-
effective biosensors introduced into biomedical field to enhance quality of life of patients
and users. Examples of their utilization include but are not limited to detection of diseases,
drugs, glucose, home pregnancy tests, and food safety monitoring. Many efforts have been
directed to design biosensors with reproducible analysis in real time, with higher sensitivity
and selectivity [38,119,120].

Carbon nanomaterials, such as carbon nanotubes (CNT), graphene and its derivatives,
carbon dots (CD) and GQDs, have been applied in fluorescence biosensing. Since these
materials present reasonable sensitivity of biological and chemical properties, efficient
biosensors with superior performance can be developed. In particular, GQDs have high
electron mobility, chemical stability, apart from excellent properties of luminescence, which
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can be activated by proper interaction with chemical groups, cations or anions [93]. Some
examples of GQDs as platforms for biosensing activities are the development of DNA
detection sensors [121], and the synthesis of highly blue-luminescent nitrogen doped GQD
used as fluorescent probe to detect glutathione (GSH), an abundant thiol with antioxidative
properties that protects animal cells against damages [122]. A fluorescent probe based on a
silver nanoparticle graphene QD nanocomposite (AgNP-DNA@GQD) was used to detect
glucose and H2O2 (see Figure 8a) [115]. In particular, the usage of such biosensor could be
extended to detect glucose in human urine with an ultra-sensitive quantitative analysis.
Since GQDs biosensors have the ability to bind to several biomolecules, they have been
fabricated on the limit of detection, sensitivity, selectivity, repeatability, and biocompati-
bility [38]. A fluorescent biosensor based on GQDs/polyethylene glycol (PEG)/MoS2 for
epithelial cell adhesion molecule (EpCAM) detection was developed [123]. Such designed
sensor can be used for drug delivery applications, as it can be seen in Figure 8b [32,38].
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Figure 8. (a) Schematic representation of a fluorescent biosensor based on silver nanoparticles
graphene QDs nanocomposite for detection of glucose and H2O2. Reprinted with permission from [37].
(b) Fluorescence resonance energy transfer (FRET) biosensor based on GQDs-PEG/MoS2. Reprinted
with permission from [115] Copyright © 2016 Elsevier B.V. All rights reserved. (c) Schematic representa-
tion of SARS-CoV-2 detection using an electrochemical biosensor based on BN-QDs/FGNs/SPCE.
(i) synthesis of nanostructure based on BN-QDs, (ii) capture probe immobilization and electrode
fabrication, and (iii) procedure for electrochemical detection Copyright © 2022 Elsevier B.V. All rights
reserved [49].

The early detection and diagnosis of cancer are essential to provide appropriate treat-
ment and guarantee higher chances of curability. Using a biomarker indicator, such as
MUC1 (a transmembrane glycoprotein), can be extremely useful to detect breast cancer in
early stages. Biosensors based on MoS2-QDs are of great interest owing to the ability of
transition metal ions generated by MoS2 undergo fluorescence quenching when in contact
with organic dye molecules. In a particular study, a FAM fluoreophore-labeled ssDNA fluo-
rescent probe (P0-FAM) stacked on the surface of MoS2 quantum dots with high sensitivity
to MUC1 was constructed to locate breast cancer cells [124]. Recently, a biosensor based
on BN-QDs, flower-like gold nanostructures, and screen-printed carbon electrode (BN-
QDs/FGNs/SPCE) functionalized with antisense DNA olionucleotide has been shown as
an alternative solution for clinical diagnosis of SARS-CoV-2 [49]. Overall, these biosensors
are highly efficient for the identification of ions, and organic/inorganic molecules. Apart
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from that, in vitro and in vivo bioimaging has been connected to biosensing toward the
identification of specific biological components for diagnostic purpose [116].

6.2. Bioimaging

Bioimaging is a diagnostic tool used to assist and monitor biological activity of com-
ponents. Biomedical studies are generally based on a visual detection of components,
being carried out in two conditions: in vitro or in vivo environments. Techniques such
as optical spectroscopy, fluorescence spectroscopy, photoacoustic imaging (PAI), positron
emitting tomography (PET), and non-linear spectroscopy are commonly used for designing
the imaging probes [116]. In contrast, several functional nanoparticles, such as semicon-
ductor quantum dots, gold nanoparticles, magnetic nanoparticles, carbon nanotubes, and
graphene nanosheets, have been used in diagnostics, imaging, and therapy [16].

Despite dyes and semiconductor QDs have been widely used for bioimaging of living
cells, these materials present a photo-bleaching effect and high toxicity from heavy metals.
Consequently, alternative and non-toxic materials are of extreme interest for bioimaging
purposes. It is known that carbon nanomaterials present high aqueous solubility, bio-
compatibility, low toxicity and resistance to photo bleaching, so that they are promising
candidates to replace traditional QDs [93]. Specifically, the PL effect, low toxicity and good
biocompatibility of 2DQDs make them promising candidates for both in vitro (tumour cells
imaging, targeted cellular imaging, etc.) and in vivo (GQD acting as fluorescence contrast
in mice) bioimaging applications [94]. These analyses are further discussed below.

6.2.1. In Vitro Imaging

In vitro analysis are performed in tubes or glass vessels in a controlled environment
rather than in living organisms. Since GQDs can infiltrate cells effortlessly, in vitro analysis
of species using GQD-based biomarkers have been extensively deployed for imaging tumor
cells. In a recent study, it has been demonstrated that GQDs can be used for imaging
Hela cells (Figure 9a,b). Also, in vitro tests of MoS2-QDs prepared by intercalating bulk
MoS2 using tetrabutylammonium (TBA) using human cervical cancer cells (HeLa) model
have shown good biocompatibility with no obvious cytotoxicity when the concentration of
MoS2-QDs ranges from 15 to 100 µg/mL, demonstrating great promising for up-conversion
bioimaging [117]. Beyond graphene and MoS2-QDs, BN and boron carbon oxynitride
(BCNO) quantum dots (BN-QDs and BCNO-QDs) have also been shown as promising
bio imaging probes through labelling HeLa cell with fluorescence detected under 405 nm
excitation [118]. In another study, water soluble PEGylated black phosphorous (BP) QDs
have shown little toxicity when integrated into a single component platform and imaged
cancer cells using an in vitro fluorescence approach [114]. Similarly, green luminescent
GQD have been incubated with human breast cancer cell lines T747D with their nucleus
stained with DAPI (4-6-diamidino-2-phenylindole di-hydrochloride) (see Figure 9c,d) [94].

6.2.2. In Vivo Imaging

In vivo analysis are biological experiments done with living organism environment,
such as animals or human cells. It has been shown that it is possible to use 2DQDs
as fluorescence contrast agents in mice for in vivo imaging. GQDs can be prepared by
pyrolysis of L-glutamic acid for imaging. After subcutaneous injection into the back and
intramuscularly into the leg of mice, bioimaging analysis showed that the fluorescence
response can be measured. The resultant fluorescence images under several excitation and
emission filters can be viewed in Figure 9e. In particular, this study showed that longer
wavelengths are efficient for in vivo imaging analysis [94,125], suggesting that GQDs are
efficient to help in the treatment of cancer cells and tumors. In a different approach, plant-
leaf derived GQDs from neem (Azadirachta indica) were used to expose zebrafish embryos
to evaluate the biosafety of GQ using an in vivo labelling approach for cell imaging studies.
Such GQDs were demonstrated to be highly compatible to human cell imaging of cancer
cells (MCF-7), normal human mammary epithelial cells (MCF-10A), and HeLa cells [44].
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Renal carcinoma tumor cells (SW480) in kumming mice and BALB/c mice (4–5 weeks old)
have also been successfully identified using fluorescence imaging and further investigated
by a systematic study of the biocompatibility, biodistribution and metabolism route of
MoS2-QDs [43].
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Figure 9. In vitro imaging (a) Confocal fluorescence microscopy images of Hela cells with boron-
doped GQDs (B-GQD) coated with liposomes at the excitation wavelength of 405 nm, and (b) the
corresponding image under bright field. Reprinted with permission from [125]. (c) Fluorescent
images of agglomerated green GQDs surrounding nucleus of human breast cancer cell (T47D) after
incubation for 4 h. (d) Overlapped blue DAPI and GQDs (green) stained high contrast image of
nucleolus. Reprinted with permission and adapted. Reprinted with permission from [126]. In vivo
fluorescence (e) images of mice after subcutaneous injection of GQDs (spot a) and intramuscularly
injection (spot b) taken at various excitation and emission wavelengths. Reprinted with permission
from [94].

6.3. Theranostic Applications of 2DQDs

By definition, theranostic approaches involve the combination of both diagnostic as
well as therapeutic procedures, that is when a disease is first diagnosed, and later properly
mediated and treated. Using 2DQDs for theranostic purposes is extremely advantageous
since they allow easy identification of diseases, by monitoring health conditions and
targeting cells. When applied as imaging probes and delivery vehicles, 2DQDs enable the
detection of selected cells or tumours, with subsequent release of drugs on demand upon
particular stimulations, such as pH, temperature, enzyme presence, etc. [4].

Phototherapy

It is a non-intrusive, affordable, with short-term solution procedure remotely activated
for the treatment of diseases. Overall, it is classified into two subcategories, namely photo-
dynamic therapy (PDT) [32,127] and photothermal therapy (PTT) [47,128]. In phototherapy
procedures, a phototherapeutic agent is addressed to a specific site that requires treatment
for irradiation of light at a particular wavelength. In a PDT approach, photosensitizers (PS)
promote non-reversible harms of cells while creating reactive oxygen species by light. As for
PTT methods, photothermal (PT) agents absorb light in the near infrared (NIR) spectrum,
heat the material, and provoke ablation of cells. 2DQDs have key features as PT agents,
including fluorescence properties, photostability, chemical stability, and biocompatibility.
Examples of 2DQDs candidates for phototherapy as MoS2-QDs [117,129], WS2-QDs [42],
nitrogen-doped GQDs functionalized with amino groups [130], as fabricated GQDs [131]
as well as sulphur-doped GQDs [132], BPQDs and PEGylated BPQDs [133].
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7. Conclusions

The studies and outcomes observed in the field of 2D materials over the last decade
has established this field as one of the fastest growing topics in material science. It is known
that there are thousands of stable crystalline 2D materials [134–136], so that although much
has already been done in this area, there are still opportunities for researchers to produce
impactful research in this area. 2D quantum dots (2DQDs) is one of the most important
sub-fields of 2D materials’ research because of their unique characteristics and potential
technological applications.

In this review, we focused on the methods of production (top-down and bottom-up
approaches), functionalization routes, and the PL properties of 2DQDs. We have shown
that there is a large number of strategies for synthesis and options of characterization
techniques suitable for these materials. We showed that because 2DQDs have electronic
flexibility, which is determined by geometry and composition, they are excellent platforms
for biosensing and bioimaging, and they have been explored for using in such challenging
problems, such as in theranostic applications for cancer treatment.

The progress in this area is tremendous and every year more discoveries are made.
Hence, 2DQD is an exciting field to work on in its many different aspects from synthesis and
characterization to basic science and industrial applications. Additionally, recent discoveries
of superconductivity and magnetism in 2D materials broaden the horizon of study of 2DQDs
showing that the future in this area is in fact greatly promising.
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