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Abstract: The luminous transmittance and the color rendering index of daylight through semitrans-
parent photovoltaic glazing are essential parameters for visual comfort indoors, and they must be
considered for different absorber materials that were traditionally developed for opaque solar cells,
such as those of the chalcopyrite type. With this aim, various chalcopyrite compounds (CuInSe2,
CuInS2 and CuGaS2) were prepared by means of evaporation and then measured to obtain their
optical absorption spectra. These experimental data are used here to calculate the solar absorptance
(αS), luminous transmittance (τL) and color rendering index (Ra) as a function of the chalcopyrite
film thickness. The comparative analysis of the different factors indicates that 70 nm thick CuInSe2

is optimal to guarantee excellent visual comfort (τL = 50% and Ra = 93%) while absorbing as much
solar irradiance (αS = 37%) as 130 nm thick CuInS2 or 900 nm thick CuGaS2. The second option
(130 nm thick CuInS2) is also considered good (τL = 40% and Ra = 80%), but for CuGaS2, the thickness
should be kept below 250 nm in order to obtain a suitable color rendering Ra ≥ 60%.

Keywords: semiconductor films; optical absorption; luminous transmittance; color rendering

1. Introduction

In addition to the opaque solar cells used for conventional installations in photovoltaic
plants or buildings roofs, new semitransparent photovoltaic systems are being developed
for applications in skylights and windows [1,2]. Semitransparent cells are designed to
convert a portion of the solar irradiance into electricity while transmitting the remaining
sunlight into the building. They can also reduce the cooling load in summer by reducing
radiation indoors while maintaining visible comfort [3].

Among the various semiconductor materials that can act as photovoltaic absorbers,
compounds with a chalcopyrite structure such as CuInSe2, CuGaSe2 and CuIn1−xGaxSe2
have demonstrated long-term stability and high conversion efficiencies at low manufac-
turing costs [4,5]. The analogous sulfide chalcopyrites, CuInS2 and CuGaS2, are now of
renewed interest due to their broader bandgap, which make them good candidates for semi-
transparent devices [6–8]. Also, the newly discovered wurtzite (cation-disordered) polytype
of CuInS2 [9], as well as the wurtzite ZnSnN2 [10] and mixed ZnSnN2 (cation-ordered and
-disordered phases) [11], all have similar absorption coefficient values. The chalcopyrite
absorbers are commonly prepared as thin films on glass substrates [4,7], because their high
absorption coefficient (~104 cm−1) allows a low thickness (~1 µm) to be used to absorb
the radiation energy greater than the bandgap [12]. Therefore, semitransparency can be
straightforwardly achieved by growing thinner chalcopyrite layers below the absorption
length in the visible spectral range [13], resulting in less material consumption and re-
duced deposition time as additional advantages [12,13]. Considering that the maximum
photovoltaic conversion efficiency is 23% for chalcopyrite semiconductors with 2.0 µm
thickness [12], high efficiencies of around 8% have also been reported for a thickness of
200 nm [12] and 3% for a thickness of 50 nm [13].
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Solar radiation undergoes various absorptions in the Earth’s atmosphere, and the
average energy falling on the Earth’s surface at air-mass 1.5 (AM1.5) is the standard spec-
trum applied to test the conversion efficiency of photovoltaic cells [4,12], which is used
here to determine the solar absorptance (αS). On the other hand, for transparent and semi-
transparent building elements, European directives define luminous transmittance (τL) [14]
and colorimetric calculations [15] based on the standard illuminant D65, which represents
the typical spectral distribution of daylight in clear conditions at around noon [16]. It
should be noted that luminous transmittance takes into account the eye’s sensitivity to
different wavelengths through standard photopic vision (V) [14], and a value of τL~10%
is considered sufficient to obtain a comfortable soft daylight effect [2,17]. The product of
the conversion efficiency and the luminous transmittance is a single compound parameter
called light utilization efficiency (LUE) [18], which allows the comparison of different
semitransparent solar cells.

The color perception is another parameter to consider, because in most cases the optical
transmittance in the visible wavelength region is not uniform. The correlated color temperature
(CCT) and average color rendering index (Ra) are the two main criteria for evaluating whether
the natural light transmitted through glazing provides aesthetic comfort [19]. CCT is the
temperature of a black-body radiator that has the closest chromaticity to the illuminant (a light
source alone or through a transparent medium), allowing the interior light to be distinguished
in neutral (3000 K ≤ CCT ≤ 5000 K), bluish white (CCT > 5000 K) or yellowish white
(CCT < 3000 K) [20]. Furthermore, Ra describes quantitatively how accurately the test light
reproduces the color of a given object with respect to a perfect reference illuminant [15].
Although, in a strict sense, Ra can only be compared for two illuminants that have the
same CCT, in practice, Ra values are also given with respect to a single reference (usually
the standard D65), because this provides direct information about the indoor illumination
through semitransparent glasses that correspond to different CCTs [19,20]. In any case, an
index of 60% ≤ Ra ≤ 79% is considered good color rendering and Ra ≥ 80% is considered
excellent [18,21].

In the present work, the optical absorption coefficients of various chalcopyrite thin
films (CuInSe2, CuInS2 and CuGaS2 grown by evaporation) were analyzed to test their
suitability to be applied in semitransparent photovoltaic glazing. The solar absorptance,
luminous transmittance and color rendering index were determined and then combined
into a single parameter (a new figure of merit) that was calculated for each chalcopyrite
compound based on the respective thickness. This allows for a better evaluation of visual
comfort and explores the possibility of reducing material consumption by comparing the
optimal absorber thickness for each compound. The correlated color temperature of the
transmitted light is linked to the color rendering index and is therefore implicitly included
in the figure of merit.

2. Materials and Methods

Chalcopyrite CuInSe2, CuInS2 and CuGaS2 thin films were prepared by means of
modulated flux deposition in a custom-designed vacuum chamber [22]. Within the chamber,
a rotating holder span soda-lime glass substrates at 30 rpm for evaporation induced by Cu,
In, and Ga beam sources, heating to 350 ◦C by halogen lamps, and a reaction with vapor
from elemental Se or S sources in every rotation. All of the base materials were pellets
with 99.99% purity. The metals (Cu, In, Ga) were evaporated from shuttered molecular
beam effusion cells, which consisted of a water-refrigerated Mo case with a PBN crucible
liner surrounded by a heating filament. The chalcogens (Se, S) were evaporated from
two-stage Pyrex glass cells with an intermediate valve that separated the evaporating and
cracking stages, which could be set at different temperatures. Flux control of all sources
was achieved using Eurotherm 902 temperature controllers.

The structural, morphological and optical properties of these films were analyzed
in a previous work [23], where the surface morphology was examined via atomic force
microscopy (AFM) with a Park XE-100, and the tetragonal chalcopyrite structure was iden-
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tified by means of X-ray diffraction (XRD) performed in a Philips X’pert instrument with
radiation CuKα (λ = 1.54056 Å) and a Bragg–Brentano θ–2θ configuration. Figure 1a shows
representative AFM images and Figure 1b displays the diffraction patterns corresponding
to 600 nm thick films, where all the peaks are indexed according to the standard powder
diffraction files for chalcopyrite CuInSe2 (card file no. 40-1487), CuInS2 (no. 27-0159), or
CuGaS2 (no. 25-0279), without secondary phases.
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Figure 1. (a) AFM images, (b) XRD patterns, and (c) transmittance and reflectance spectra for
evaporated CuInSe2, CuInS2 and CuGaS2 films with 600 nm thickness [23].

The transmittance (T) and reflectance (R) of these chalcopyrite layers are represented
in Figure 1c, which were measured with a double beam spectrophotometer Perkin-Elmer
Lambda 9, taking the glass substrate as a reference (Tglass = 100% and Rglass = 0%). Then,
the optical absorption coefficient was calculated as follows [24]:

α(λ) = (1/t) ln [1/T(λ)] (1)

including film thickness (t = 600 nm for the samples in Figure 1).
The optical absorption coefficients were obtained for specific thickness and transmittance

values and then extrapolated to obtain the spectra of transmittance and absorptance [12] for
different film thicknesses:

T(λ) = e−α(λ)t (2)

A(λ) = 1 − e−α(λ)t (3)
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This calculated spectra are used in Section 3 to evaluate the solar absorptance, as well
as the luminous transmittance and color rendering properties of chalcopyrite CuInSe2,
CuInS2 and CuGaS2 depending on their respective thickness.

2.1. Determination of the Solar Absorptance and Luminous Transmittance

For each compound and thickness value, the solar radiation that can be collected is given
by the product of the standard AM1.5 irradiance (S) and the chalcopyrite absorptance (A) at
each wavelength [18]. The photovoltaic performance is thus related to the solar absorptance
(αS), defined as the percentage of the total solar irradiance that is absorbed in the film:

αS =
∑2500 nm

λ=250 nm A(λ)S(λ)∆λ

∑2500 nm
λ=250 nm S(λ)∆λ

(4)

On the other hand, the luminous transmittance (τL) denotes the fraction of the incident
light coming from the D65 illuminant that is transmitted by the glazing and is viewed by a
standard photopic observer V [14]:

τL =
∑780 nm

λ=380 nm T(λ)D65(λ)V(λ)∆λ

∑780 nm
λ=380 nm D65(λ)V(λ)∆λ

(5)

where T(λ) is the chalcopyrite transmittance.

2.2. Determination of the Correlated Color Temperature

According to the International Commission of Illumination (CIE) [15], the tristimulus
values XYZ (in the 1931 CIE color system) indicate how much red, blue and green an illu-
mination source contains. In this work, these contents were calculated for the transmitted
light from the standard D65 illuminant, with the color matching functions (R, G and B)
shown in Figure 2a, as follows:

Xt =
780 nm

∑
λ=380 nm

T(λ)D65(λ)R(λ)∆λ (6a)

Yt =
780 nm

∑
λ=380 nm

T(λ)D65(λ)G(λ)∆λ (6b)

Zt =
780 nm

∑
λ=380 nm

T(λ)D65(λ)B(λ)∆λ (6c)
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Next, the dimensionless chromaticity coordinates x and y (1931 CIE) for the transmitted
light were calculated:

xt =
Xt

Xt + Yt + Zt
(7a)

yt =
Yt

Xt + Yt + Zt
(7b)

n =
xt − 0.3320
0.1858 − yt

(8)

and the correlated color temperature given by [19]:

CCT(K) = 449n3 + 3525n2 + 6823.3n + 5520.33 (9)

Likewise, the reference values are:

Xr =
780 nm

∑
λ=380 nm

D65(λ)R(λ)∆λ (10a)

Yr =
780 nm

∑
λ=380 nm

D65(λ)G(λ)∆λ (10b)

Zr =
780 nm

∑
λ=380 nm

D65(λ)B(λ)∆λ (10c)

This resulted in Xr = 95.047, Yr = 100, Zr = 108.883, which give xr = 0.3127, yr = 0.3290
and CCT = 6504 K for the standard D65 reference.

2.3. Determination of the Color Rendering Index

For color rendering evaluation according to CIE directives [15], we needed to calculate
the tristimulus values of the light transmitted by the chalcopyrite film for each of the eight
test colors (TCi, with i = 1 to 8), as shown in Figure 2b:

Xt,i =
780 nm

∑
λ=380 nm

TCi(λ)T(λ)D65(λ)R(λ)∆λ (11a)

Yt,i =
780 nm

∑
λ=380 nm

TCi(λ)T(λ)D65(λ)G(λ)∆λ (11b)

Zt,i =
780 nm

∑
λ=380 nm

TCi(λ)T(λ)D65(λ)B(λ)∆λ (11c)

Next, the uniform color space coordinates u and v (1960 CIE) for the transmitted light
were calculated:

ut,i =
4Xt,i

Xt,i + 15Yt,i + 3Zt,i
(12a)

vt,i =
6Xt,i

Xt,i + 15Yt,i + 3Zt,i
(12b)

Likewise, ur,i and vt,i were calculated from the reference coordinates:

Xr,i =
780 nm

∑
λ=380 nm

TCi(λ)D65(λ)R(λ)∆λ (13a)

Yr,i =
780 nm

∑
λ=380 nm

TCi(λ)D65(λ)G(λ)∆λ (13b)
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Zr,i =
780 nm

∑
λ=380 nm

TCi(λ)D65(λ)B(λ)∆λ (13c)

Furthermore, Equation (6a–c) produce (ut, vt) values that depend on the chalcopyrite
transmittance and Equation (10a–c) provide ur = 0.1978 and vr = 0.2967 for the standard
D65 illuminant.

The adaptive color shift was then applied to compensate for the color appearance
deviation of each test color sample illuminated under test and reference illuminants, defined
as follows:

ct,i =
1

vt,i
(4 − ut,i − 10vt,i) (14a)

dt,i =
1

vt,i
(1.708vt,i + 0.404 − 1.481ut,i) (14b)

and the coordinates:

u′
t,i =

10.872 + 0.404cr
ct,i
ct

− 4dr
dt,i
dt

16.518 + 1.481cr
ct,i
ct

− dr
dt,i
dt

(15a)

v′
t,i =

5.520

16.518 + 1.481cr
ct,i
ct

− dr
dt,i
dt

(15b)

For the standard D65: cr = 2.8150, dr = 2.0823, u′
t = u′

r = 0.1978, v′
t = v′

r = 0.2967.
After considering the adaptive color shift, the colorimetric data were transformed

according to the 1964 CIE system as follows:

W*
t,i = 25(Yt,i)

1/3 − 17 (16a)

U*
t,i = 13W*

t,i
(
u′

t,i − 0.1978
)

(16b)

V*
t,i = 13W*

t,i
(
v′

t,i − 0.2967
)

(16c)

The difference in rendering of a test color sample illuminated directly by the reference
illuminant and by the same illuminant transmitted through the chalcopyrite film was
quantified as follows:

∆Ei =

√(
U*

t,i − U*
r,i

)2
+

(
V*

t,i − V*
r,i

)2
+

(
W*

t,i − W*
r,i

)2
(17)

Ri = 100 − 4.6∆Ei (18)

Finally, the average color rendering index for the eight test colors was

Ra =
1
8

8

∑
i=1

Ri (19)

3. Results and Discussion

All the evaporated chalcopyrite films have high absorption coefficients within the visible
spectral range, especially at wavelengths λ < 600 nm or energies E > 2.07 eV, as represented
in Figure 3. Compared to CuGaS2, the absorption extends towards the near infrared region
for CuInS2 and further for CuInSe2 due to the difference in bandgap energy (Eg) for each
material [25]. Although the representation of α vs. E is the most used, Figure 3 shows the
dependence of α vs. λ (being E = hc/λ) to better illustrate the subsequent calculations that are
made in terms of wavelengths. In the high absorption region (α > 104 cm−1), the experimental
data show a good fit to the expression that corresponds to direct transitions for polycrystalline
semiconductors [26]:

α1 ∝ [(λg − λ)/λ]1/2 (20)
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giving the gap wavelength λg = 560 nm for CuGaS2, λg = 870 nm for CuInS2 and λg = 1220 nm
for CuInSe2, in good agreement with the literature, which establishes direct transitions for
chalcopyrite compounds [25,27,28]. The presence of some absorption at λ > λg (or E < Eg) is
due to tail states that are also typical of chalcopyrite materials [29]. In this other region, the
absorption coefficient can be fitted to the form

α2 ∝ exp{−(λ − λt)2/2λ2σ2} (21)

where λt is a characteristic transition wavelength and σ represents the width of the tail [30,31].
When plotted in wavelengths, the tail width appears larger for CuInSe2 than for CuInS2
and CuGaS2, but when expressed in energy, the width is similar for all three compounds,
σ~60 meV, in the same order reported for analogous photovoltaic absorbers [32]. The tail
wavelength is found at λt = 610 nm for CuGaS2, λt = 960 nm for CuInS2 and λt = 1350 nm for
CuInSe2, slightly above the respective gap wavelength.
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Figure 3. Optical absorption coefficient (α) as a function of radiation wavelength (λ), calculated for
the CuInSe2, CuInS2 and CuGaS2 thin films presented in Figure 1. For each sample, the fits used to
obtain the wavelength corresponding to the band gap (λg) and the band tail (λt) are depicted by solid
and dashed lines, respectively.

The incident solar irradiance is illustrated in Figure 4a for the standard AM1.5, which
has an integrated value ∑2500 nm

λ=250 nm S(λ)∆λ =993 W/m2, being 4% in the ultraviolet region
(λ = 250–380 nm), 53% in the visible region (λ = 380–780 nm), and 43% in the near infrared
region (λ = 780–2500 nm) [33]. Figure 4a also includes the absorptance spectra correspond-
ing to 450 nm thick chalcopyrite films in order to compare the optical characteristics of the
different compounds with the solar irradiance. Moving on to a quantitative evaluation,
Figure 4b represents the percentage of total solar irradiance that is absorbed by each chal-
copyrite compound, calculated from Equation (4) depending on the film thickness. The
solar absorptance increases quickly with the thickness up to t~450 nm, at which point a
value of αS = 26% is obtained for CuGaS2, αS = 62% for CuInS2 and αS = 82% for CuInSe2.
However, the increment for each compound is only about 6% from t = 450 nm to t = 900 nm.
On the other hand, a value of αS = 26% is obtained for 80 nm thick CuInS2 and 45 nm thick
CuInSe2. The comparative analysis indicates that 70 nm thick CuInSe2 absorbs as much
solar irradiance (αS = 37%) as 130 nm thick CuInS2 and 900 nm thick CuGaSe2.
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Figure 4. (a) Comparison of the standard AM1.5 solar irradiance (S) with the spectral absorptance of
450 nm thick chalcopyrite films, and (b) solar absorptance (αS) for each chalcopyrite compound as a
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The spectral distribution of the standard illuminant D65 and standard photopic vision V
are represented in Figure 5a, along with the transmittance spectra corresponding to several
chalcopyrite thin films for comparison. All of these spectra are used to calculate the luminous
transmittance according to Equation (5) for the different chalcopyrite compounds, which
is plotted in Figure 5b as a function of the respective film thickness. While reference D65
covers the entire visible region, photopic vision is restricted to the small range where the
human eye has sensitivity [34], with a maximum centered at λV = 550 nm. Therefore, τL is
actually given by the transmittance values in a very narrow region around λV, although the
average transmittance over the whole visible range may be different. For CuInSe2 and CuInS2,
the luminous transmittance decreases quickly with the film thickness, being τL < 10% for
t ≥ 300 nm and τL < 1% for t ≥ 600 nm, with τL= 40% for 90 nm thick CuInSe2 and 130 nm
thick CuInS2. Meanwhile, for CuGaS2, the luminous transmittance remains high, even
with thicker layers (τL = 29% for t = 900 nm). The same value of τL = 50% is obtained for
450 nm thick CuGaS2, 100 nm thick CuInS2 and 70 nm thick CuInSe2, but they have different
transmittance distributions (shown in Figure 5a), which is taken into account by the color
rendering index.
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Figure 6a depicts the evolution of the average color rendering index, Ra, calculated us-
ing Equation (19), and the correlated color temperature, CCT, calculated using Equation (9),
depending on the chalcopyrite film thickness. An analogous behavior is observed for these
parameters, both decreasing as the film thickness increases, and similar values are observed
for the three chalcopyrite compounds, despite their different luminous transmittances.
In fact, for a given thickness, Ra and CCT are found to be slightly higher for CuInSe2
and CuInS2 than for CuGaS2, contrary to their respective τL values shown in Figure 5b.
This is because not only a higher transmittance but also smoother variations in the visible
range provide better color rendering [35]. According to the criteria for semitransparent
glazing [19], a good index Ra ≥ 60% is obtained for the various chalcopyrite compounds
with thickness t ≤ 250 nm, and an excellent Ra ≥ 80% is obtained for t ≤ 130 nm. Regarding
the color temperature of the transmitted light, the values CCT > 3000 K for t ≤ 400 nm are
considered suitable for visual comfort [36]. The correlation of CCT and Ra is illustrated in
Figure 6b, where the data obtained for the different chalcopyrite films follow a parabolic
relationship: Ra = −3.3 · 10−6CCT2 + 0.05CCT − 85. Some authors report a linear fit
Ra = 0.017CCT for dye sensitized solar cells, although only in the range of 3500 K < CCT
< 5500 K. Figure 6b shows that the linear relationship also applies to the chalcopyrite data
in a short CCT region, but Ra decreases quickly for CCT < 3500 K, as observed for other
semitransparent devices [37].
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In order to better evaluate these chalcopyrite materials for application in semitrans-
parent solar cells, a figure of merit can be defined as the product of the solar absorptance
and luminous transmittance:

ϕL = αSτL (22)

which is analogous to the light utilization efficiency used for photovoltaic devices [18,35],
but replacing the conversion efficiency with αS to consider only the absorber material.
Furthermore, to take into account the color rendering, it is interesting to define another
figure of merit in the form:

ϕLa = αSτLRa (23)

which includes the two optical parameters (τL and Ra) that describe the visual comfort.
Figure 7 presents both ϕL and ϕLa for the various chalcopyrite compounds as a function of
the film thickness. The best results are obtained for CuInSe2 (with maximum ϕL = 18% and
ϕLa = 17% for t = 70 ± 20 nm), followed by CuInS2 (maximum ϕL = 15% and ϕLa = 14% for
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t = 90 ± 30 nm) and CuGaS2 (with maximum ϕL = 13% for t = 350 ± 100 nm and maximum
ϕLa = 8% for t = 180 ± 50 nm). The difference between ϕL and ϕLa is larger for CuGaS2 due
to its relatively lower Ra index. In addition, it should be noted that all three compounds
give the same value ϕLa = 8% for t~180 nm, but CuInSe2 and CuInS2 can achieve higher
ϕLa with a lower thickness, requiring less material consumption and reduced deposition
time as additional advantages. For semitransparent solar cells, an absorber layer as thin as
30 nm has been reported [13].
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4. Conclusions

The evaporated chalcopyrite thin films have shown high optical absorption coeffi-
cients below the respective gap wavelength (α > 104 cm−1 at λ < λg), which increases from
λg = 560 nm for CuGaS2 to λg = 870 nm for CuInS2 and λg = 1220 nm for CuInSe2, with
some additional absorption slightly above λg due to band tails. The experimental coeffi-
cients obtained for each chalcopyrite compound provide absorptance and transmittance
spectra that depend on the film thickness and allow a comparative analysis of the solar
absorptance, luminous transmittance and color rendering index. Regarding the correlated
color temperature of the transmitted light, also considered as a factor for visual comfort, it
is directly related to the color rendering index through a parabolic relationship.

According to the criteria for semitransparent glazing, a good index Ra ≥ 60% (CCT≥ 4000 K)
is obtained for the three chalcopyrite compounds with thickness t ≤ 250 nm, and an excellent
Ra ≥ 80% (CCT ≥ 4800 K) is obtained for t ≤ 130 nm. For a given thickness, Ra is slightly
higher for CuInSe2 and CuInS2 than for CuGaS2, contrary to their respective τL values, due to the
smoother variation of CuInSe2 and CuInS2 transmittances in the visible region. Otherwise, the
absorbed solar irradiance increases with the film thickness faster for CuInSe2 and CuInS2 than
for CuGaS2.

The product of the solar absorptance, luminous transmittance and color rendering
index is considered here as a new figure of merit, ϕLa = αSτLRa, to evaluate these absorber
materials for their incorporation into semitransparent solar cells. Applying this quantifica-
tion, the best result corresponds to CuInSe2 (with maximum ϕLa = 17% for t = 70 ± 20 nm),
followed by CuInS2 (maximum ϕLa = 14% for t = 90 ± 30 nm) and CuGaS2 (maximum
ϕLa = 8% for t = 180 ± 50 nm). These data provide guidelines for the design of semitrans-
parent photovoltaic devices based on chalcopyrite absorbers.
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