A Comparative Study on the Choice of the Support in the Elaboration of Photocatalysts for the Photooxidation of Benzyl Alcohol under Mild Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of Gold NPs on
2.3. Preparation of the Carbon Nitride Graphite Carrier (g-)
2.4. Preparation of the Gold NPs supported on Carbon Nitride Graphite
2.5. RAMAN Spectroscopy
2.6. X-ray Diffraction (XRD)
2.7. Organic Analyzer: CHNS
2.8. X-ray Fluorescence
2.9. ICP-OES
2.10. UV-Visible Spectroscopy Analyses
2.11. Transmission Electronic Microscopy (TEM)
2.12. Photocatalytic Reactions
2.13. HPLC Analysis
3. Results and Discussion
3.1. Gold NPs on Titanium and Zirconium Oxide
3.2. Carbon Nitride Graphite (g-) Support
3.3. Gold NPs on Graphite Carbon Nitride Carrier
3.4. UV-Visible Spectroscopy Analyses
3.5. Microscopy Analyses of Gold NPs Supported on g- (TEM)
3.6. Photocatalytic Tests
Photocatalytic Mechanism
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NPs | Nanoparticules |
LED | Light-Emitting Diode |
FDA | Food and Drug Administration |
PVA | Polyvinyl Alcohol |
XRF | X-ray Fluorescence |
XRD | X-ray Diffraction |
ICP | Inductively Coupled Plasma |
TEM | Transmission Electronic Microscopy |
References
- Vital Signs-Carbon Dioxide. Available online: https://climate.nasa.gov/vital-signs/carbon-dioxide/?_hsenc=p2ANqtz-8HpRVv9oVuSCF0VZQsQUZzqFhGtkLyw06Pme5RT0S-5vbMKKeT7887JYALC3WjAsIKVkac (accessed on 29 June 2023).
- Cai, C.M.; Zhang, T.; Kumar, R.; Wyman, C.E. Integrated furfural production as a renewable fuel and chemical platform from lignocellulosic biomass. J. Chem. Technol. Biotechnol. 2014, 89, 2–10. [Google Scholar] [CrossRef]
- Wyman, V.; Henríquez, J.; Palma, C.; Carvajal, A. Lignocellulosic waste valorisation strategy through enzyme and biogas production. Bioresour. Technol. 2018, 247, 402–411. [Google Scholar] [CrossRef] [PubMed]
- De Wit, D.; Maat, L.; Kieboom, A.P.G. Carbohydrates as industrial raw materials. Ind. Crop. Prod. 1993, 2, 1–12. [Google Scholar] [CrossRef]
- Satrio, J.A.B.; Doraiswamy, L.K. Production of benzaldehyde: A case study in a possible industrial application of phase-transfer catalysis. Chem. Eng. J. 2001, 82, 43–56. [Google Scholar] [CrossRef]
- Opgrande, J.L.; Dobratz, C.J.; Brown, E.; Liang, J.; Conn, G.S.; Shelton, F.J.; With, J. Benzaldehyde. In Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2000. [Google Scholar]
- Guo, C.-C.; Liu, Q.; Wang, X.-T.; Hu, H.-Y. Selective liquid phase oxidation of toluene with air. Appl. Catal. A 2005, 282, 55–59. [Google Scholar] [CrossRef]
- Mal, D.D.; Khilari, S.; Pradhan, D. Efficient and selective oxidation of toluene to benzaldehyde on manganese tungstate nanobars: A noble metal-free approach. Green Chem. 2018, 20, 2279–2289. [Google Scholar] [CrossRef]
- Shi, G.; Xu, S.; Bao, Y.; Xu, J.; Liang, Y. Selective aerobic oxidation of toluene to benzaldehyde on immobilized CoOx on SiO2 catalyst in the presence of N-hydroxyphthalimide and hexafluoropropan. Catal. Commun. 2019, 123, 73–78. [Google Scholar] [CrossRef]
- Li, X.; Chen, Y.; Tao, Y.; Shen, L.; Xu, Z.; Bian, Z.; Li, H. Challenges of photocatalysis and their coping strategies. Chem Catal. 2022, 2, 1315–1345. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Regulacio, M.D.; Han, M.-Y. Multinary I-III-VI2 and I2-II-IV-VI4 semiconductor nanostructures for photocatalytic applications. Accounts Chem. Res. 2016, 49, 511–519. [Google Scholar] [CrossRef]
- Zhang, Z.; Qiu, C.; Xu, Y.; Han, Q.; Tang, J.; Loh, K.P.; Su, C. Semiconductor photocatalysis to engineering deuterated N-alkyl pharmaceuticals enabled by synergistic activation of water and alkanols. Nat. Commun. 2020, 11, 4722. [Google Scholar] [CrossRef]
- Meng, X.; Liu, L.; Ouyang, S.; Xu, H.; Wang, D.; Zhao, N.; Ye, J. Nanometals for solar-to-chemical energy conversion: From semiconductor-based photocatalysis to plasmon-mediated photocatalysis and photo-thermocatalysis. Adv. Mater. 2016, 28, 6781–6803. [Google Scholar] [CrossRef]
- Li, H.; Bian, Z.; Zhu, J.; Zhang, D.; Li, G.; Huo, Y.; Lu, Y. Mesoporous titania spheres with tunable chamber structure and enhanced photocatalytic activity. J. Am. Chem. Soc. 2007, 129, 8406–8407. [Google Scholar] [CrossRef]
- Ebadi, M.; Teymourinia, H.; Amiri, O.; Salavati-Niasari, M. Synthesis of CeO2/Ag/Ho nanostructures in order to improve photo catalytic activity of CeO2 under visible light. J. Mater. Sci. Mater. Electron. 2018, 29, 8817–8821. [Google Scholar] [CrossRef]
- Maity, P.; Mohammed, O.F.; Katsiev, K.; Idriss, H. Study of the bulk charge carrier dynamics in anatase and rutile TiO2 single crystals by femtosecond time-resolved spectrscopy. J. Phys. Chem. C 2018, 122, 8925–8932. [Google Scholar] [CrossRef]
- Teng, Z.; Li, W.; Tang, Y.; Elzatahry, A.; Lu, G.; Zhao, D. Mesoporous organosilica hollow nanoparticles: Synthesis and applications. Adv. Mater. 2019, 31, 1707612. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Xin., B.; Yuan, F.; Wang, B.; Shi, K.; Cai, W.; Fu, H. Deactivation and regeneration of ZnO and TiO2 nanoparticles in the gas phase photocatalytic oxidation of n-C7H16 or SO2. Appl. Catal. A-Gen. 2004, 275, 49–54. [Google Scholar]
- Yang, H.G.; Sun, C.H.; Qiao, S.Z.; Zou, J.; Liu, G.; Smith, S.C.; Lu, G.Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008, 453, 638–641. [Google Scholar] [CrossRef]
- Tachikawa, T.; Wang, N.; Yamashita, S.; Cui, S.C.; Majima, T. Design of highly sensitive fluorescent probe for interfacial electron transfer on a TiO2 surface. Angew. Chem. Int. Ed. 2010, 49, 8593–8597. [Google Scholar] [CrossRef]
- Zhao, Z.; Rakheja, S.; Zhu, W. Nonvolatile reconfigurable 2D Schottky barrier transistors. Nano Lett. 2021, 21, 9318–9324. [Google Scholar] [CrossRef]
- Dreno, B.; Alexis, A.; Chuberre, B.; Marinovich, M. Safety of titanium dioxide nanoparticles in cosmetics. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 34–46. [Google Scholar] [CrossRef] [PubMed]
- Hamad, S.; Catlow, C.R.A.; Woodley, S.M.; Lago, S.; Mejias, J.A. Structure and stability of small TiO2 nanoparticles. J. Phys. Chem. B 2005, 109, 15741–15748. [Google Scholar] [CrossRef] [PubMed]
- Lindblad, R.; Bi, D.; Park, B.-W.; Oscarsson, J.; Gorgoi, M.; Siegbahn, H.; Odelius, M.; Johansson, E.M.J.; Rensmo, H. Electronic structure of TiO2/CH3NH3PbI3 perovskite solar cell interfaces. J. Phys. Chem. Lett. 2014, 5, 648–653. [Google Scholar] [CrossRef] [PubMed]
- Muqeet, M.; Gadhi, T.A.; Mahar, R.B.; Bonelli, B. Advanced nanomaterials for ultrafiltration membranes application. In Nanomaterials for the Detection and Removal of Wastewater Pollutants; Elsevier: Amsterdam, The Netherlands, 2020; pp. 145–160. [Google Scholar]
- Liebig, J. Uber einige Stickstoff-Verbindungen. Ann. Pharm. 1834, 10, 1–47. [Google Scholar] [CrossRef]
- Zhu, J.; Xiao, P.; Li, H.; Carabineiro, S.A.C. Graphitic carbon nitride: Synthesis, properties, and applications in catalysis. ACS Appl. Mater. Interfaces 2014, 6, 16449–16465. [Google Scholar] [CrossRef] [PubMed]
- Fontelles-Carceller, O.; Muñoz-Batista, M.J.; Fernández-García, M.; Kubacka, A. Interface effects in sunlight-driven Ag/g-C3N4 composite catalysts: Study of the toluene photodegradation quantum efficiency. ACS Appl. Mater. Interfaces 2016, 8, 2617–2627. [Google Scholar] [CrossRef] [PubMed]
- Dette, C.; Pérez-Osorio, M.A.; Kley, C.S.; Punke, P.; Patrick, C.E.; Jacobson, P.; Giustino, F.; Jung, S.J.; Kern, K. TiO2 anatase with a bandgap in the visible region. Nano Lett. 2014, 14, 6533–6538. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Müller, J.-O.; Schlögl, R.; Carlsson, J.M. Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 2008, 18, 4893–4908. [Google Scholar] [CrossRef]
- Cao, S.; Yu, J. g-C3N4-based photocatalysts for hydrogen generation. J. Phys. Chem. Lett. 2014, 5, 2101–2107. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Xu, Z.; Qiu, B.; Xing, M.; Zhang, J. Emerging cocatalysts on g-C3N4 for photocatalytic hydrogen evolution. Small 2021, 17, 2101070. [Google Scholar] [CrossRef]
- Al-Ahmed, A. Photocatalytic properties of graphitic carbon nitrides (g-C3N4) for sustainable green hydrogen production: Recent advancement. Fuel 2022, 316, 123381. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, Y.; An, X.; Hou, L.-A. A critical review of g-C3N4-based photocatalytic membrane for water purification. Chem. Eng. J. 2021, 412, 128663. [Google Scholar] [CrossRef]
- Li, X.; Huang, G.; Chen, X.; Huang, J.; Li, M.; Yin, J.; Liang, Y.; Yao, Y.; Li, Y. A review on graphitic carbon nitride (g-C3N4) based hybrid membranes for water and wastewater treatment. Sci. Total Environ. 2021, 792, 148462. [Google Scholar] [CrossRef]
- Zhang, S.; Gu, P.; Ma, R.; Luo, C.; Wen, T.; Zhao, G.; Cheng, W.; Wang, X. Recent developments in fabrication and structure regulation of visible-light-driven g-C3N4-based photocatalysts towards water purification: A critical review. Catal. Today 2019, 335, 65–77. [Google Scholar] [CrossRef]
- Dong, F.; Zhao, Z.; Xiong, T.; Ni, Z.; Zhang, W.; Sun, Y.; Ho, W.-K. In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis. ACS Appl. Mater. Interfaces 2013, 5, 11392–11401. [Google Scholar] [CrossRef]
- Xiong, T.; Cen, W.; Zhang, Y.; Dong, F. Bridging the g-C3N4 interlayers for enhanced photocatalysis. ACS Catal. 2016, 6, 2462–2472. [Google Scholar] [CrossRef]
- Yalazan, H.; Akkol, C.; Saka, E.T.; Kantekin, H. Investigation of photocatalytic properties of cobalt phthalocyanines on benzyl alcohol photoxidation. Appl. Organomet. Chem. 2023, 37, e6975. [Google Scholar] [CrossRef]
- Magdziarz, A.; Colmenares, J.C.; Chernyayeva, O.; Lisovytskiy, D.; Grzonka, J.; Kurzydłowski, K.; Freindl, K.; Korecki, J. Insight into the synthesis procedure of Fe3+/TiO2-based photocatalyst applied in the selective photo-oxidation of benzyl alcohol under sun-imitating lamp. Ultrason. Sonochem. 2017, 38, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, X.; Chooi, K.S.; Jaenicke, S.; Chuah, G.-K. TiO2 encapsulated Au nanostars as catalysts for aerobic photo-oxidation of benzyl alcohol under visible light. Catal. Today 2021, 375, 558–564. [Google Scholar] [CrossRef]
- Li, S.; Cai, J.; Wu, X.; Zheng, F. Sandwich-like TiO2@ ZnO-based noble metal (Ag, Au, Pt, or Pd) for better photo-oxidation performance: Synergistic effect between noble metal and metal oxide phases. Appl. Surf. Sci. 2018, 443, 603–612. [Google Scholar] [CrossRef]
- Li, S.; Cai, J.; Wu, X.; Liu, B.; Chen, Q.; Li, Y.; Zheng, F. TiO2@ Pt@CeO2 nanocomposite as a bifunctional catalyst for enhancing photo-reduction of Cr (VI) and photo-oxidation of benzyl alcohol. J. Hazard. Mater. 2018, 346, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Tamiolakis, I.; Lykakis, I.N.; Armatas, G.S. Mesoporous CdS-sensitized TiO2 nanoparticle assemblies with enhanced photocatalytic properties: Selective aerobic oxidation of benzyl alcohols. Catal. Today 2015, 250, 180–186. [Google Scholar] [CrossRef]
- Klaassen, C.D.; Liu, J.; Diwan, B.A. Metallothionein protection of cadmium toxicity. Toxicol. Appl. Pharmacol. 2009, 238, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Xu, X.; Liang, X.; Lei, C.; Cui, Y.; Wu, W.; Yang, Y.; Zhang, Z.; Lei, Z. Construction of heterostructured MIL-125/Ag/g-C3N4 nanocomposite as an efficient bifunctional visible light photocatalyst for the organic oxidation and reduction reactions. Appl. Catal. B 2017, 205, 42–54. [Google Scholar] [CrossRef]
- Akhtar, B.; Ghafuri, H.; Rashidizadeh, A. Synergistic effect of iodine doped TiO2 nanoparticle/g-C3N4 nanosheets with upgraded visible-light-sensitive performance toward highly efficient and selective photocatalytic oxidation of aromatic alcohols under blue LED irradiation. Mol. Catal. 2021, 506, 111527. [Google Scholar] [CrossRef]
- Ferraz, C.P.; Zieliński, M.; Pietrowski, M.; Heyte, S.; Dumeignil, F.; Rossi, L.M.; Wojcieszak, R. Influence of Support Basic Sites in Green Oxidation of Biobased Substrates Using Au-Promoted Catalysts. ACS Sustain. Chem. Eng. 2018, 6, 16332–16340. [Google Scholar] [CrossRef]
- Al Rawas, H.K.; Ferraz, C.P.; Thuriot-Roukos, J.; Heyte, S.; Paul, S.; Wojcieszak, R. Influence of Pd and Pt Promotion in Gold Based Bimetallic Catalysts on Selectivity Modulation in Furfural Base-Free Oxidation. Catalysts 2021, 11, 1226. [Google Scholar] [CrossRef]
- Rojas, S.D.; Espinoza-Villalobos, N.; Salazar, R.; Escalona, N.; Contreras, D.; Melin, V.; Laguna-Bercero, M.A.; Sánchez-Arenillas, M.; Vergara, E.; Caceres-Jensen, L. Selective photocatalytic conversion of guaiacol using g-C3N4 metal free nanosheets photocatalyst to add-value products. J. Photochem. Photobiol. A 2021, 421, 113513. [Google Scholar] [CrossRef]
- Saravanakumar, K.; Velmurugan Shanmuga, P.; Vellaichamy, B.; Seenivasan Lakshmi, P.; Velluchamy, M. Noble metal nanoparticles (Mx = Ag, Au, Pd) decorated graphitic carbon nitride nanosheets for ultrafast catalytic reduction of anthropogenic pollutant, 4-nitrophenol. Environ. Res. 2022, 212, 113185. [Google Scholar] [CrossRef]
- Monti, E.; Ventimiglia, A.; Soto, C.A.G.; Martelli, F.; Rodríguez-Aguado, E.; Cecilia, J.A.; Maireles-Torres, P.; Ospitali, F.; Tabanelli, T.; Albonetti, S.; et al. Oxidative condensation/esterification of furfural with ethanol using preformed Au colloidal nanoparticles. Impact of stabilizer and heat treatment protocols on catalytic activity and stability. Mol. Catal. 2022, 528, 112438. [Google Scholar] [CrossRef]
- Lima, M.J.; Tavares, P.B.; Silva, A.M.T.; Silva, C.G.; Faria, J.L. Selective photocatalytic oxidation of benzyl alcohol to benzaldehyde by using metal-loaded g-C3N4 photocatalysts. Catal. Today 2017, 287, 70–77. [Google Scholar] [CrossRef]
- Dercz, A.; Prusik, K.; Pająk, K. X-ray and SEM studies on zirconia powders. J. Achiev. Mater. Manuf. Eng. 2008, 31, 408–414. [Google Scholar]
- Krusberski, N. Exploring potential errors in XRF analysis. J. S. Afr. Inst. Min. Metall. 2006, 1–8. [Google Scholar]
- Wen, J.; Xie, J.; Chen, X.; Li, X. A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 2017, 391, 72–123. [Google Scholar] [CrossRef]
- Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Xia, P.; Ho, W.; Yu, J. Isoelectric point and adsorption activity of porous g-C3N4. Appl. Surf. Sci. 2015, 344, 188–195. [Google Scholar] [CrossRef]
- Linh, P.H.; Do Chung, P.; Van Khien, N.; Bach, T.N.; Hang, L.T.; Hung, N.M.; Van Thanh, D. A simple and green photoreduction approach for synthesis of Au/g-C3N4 hybrid nanocomposites with high solar light photocatalytic activity. Semicond. Sci. Technol. 2022, 37, 035002. [Google Scholar] [CrossRef]
- Colmenares, J.C.; Ouyang, W.; Ojeda, M.; Kuna, E.; Chernyayeva, O.; Lisovytskiy, D.; De, S.; Luque, R.; Balu, A.M. Mild ultrasound-assisted synthesis of TiO2 supported on magnetic nanocomposites for selective photo-oxidation of benzyl alcohol. Appl. Catal. B 2016, 183, 107–112. [Google Scholar] [CrossRef]
- Taghavi, S.; Amoozadeh, A.; Nemati, F. The first report of deep eutectic solvent (DES) nano-photocatalyst (n-TiO2-P25@ TDI@ DES (urea: ZnCl2)) and its application on selective oxidation of benzyl alcohols to benzaldehydes. J. Chem. Technol. Biotechnol. 2021, 96, 384–393. [Google Scholar] [CrossRef]
- Dai, Y.; Tüysüz, H. Rapid acidic media growth of Cs3Bi2Br9 halide perovskite platelets for photocatalytic toluene oxidation. Sol. RRL 2021, 5, 2100265. [Google Scholar] [CrossRef]
- Anastas, P.; Eghbali, N. Green chemistry: Principles and practice. Chem. Soc. Rev. 2009, 39, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Fu, Y.; Hu, M.; Wang, C.; Shan, G.; Zhu, L. Photodegradation of bisphenol A by highly stable palladium-doped mesoporous graphite carbon nitride (Pd/mpg-C3N4) under simulated solar light irradiation. Appl. Catal. B 2013, 142, 553–560. [Google Scholar] [CrossRef]
- Yan, S.C.; Li, Z.S.; Zou, Z.G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 2009, 25, 10397–10401. [Google Scholar] [CrossRef] [PubMed]
- Sarina, S.; Waclawik, E.R.; Zhu, H. Photocatalysis on supported gold and silver nanoparticles under ultraviolet and visible light irradiation. Green Chem. 2013, 7, 1814–1833. [Google Scholar] [CrossRef]
- Amendola, V.; Pilot, R.; Frasconi, M.; Maragò, O.M.; Iatì, M.A. Surface plasmon resonance in gold nanoparticles: A review. J. Phys. Condens. Matter 2017, 29, 203002. [Google Scholar] [CrossRef]
- Leong, K.H. Development of Modified Titania Nano Photocatalysts to Synergise Visible Light Utilisation for Enhanced Photocatalysis. Ph.D. Thesis, University of Malaya, Kuala Lumpur, Malaysia, 2015. [Google Scholar]
- Low, J.; Jiang, C.; Cheng, B.; Wageh, S.; Al-Ghamdi, A.A.; Yu, J. A review of direct Z-scheme photocatalysts. Small Methods 2017, 1, 1700080. [Google Scholar] [CrossRef]
Replicas | Au Content on [wt.%] | Au Content on [wt.%] |
---|---|---|
Replica 1 | 2.30 | 1.88 |
Replica 2 | 2.29 | 1.88 |
Replica 3 | 2.24 | 1.69 |
Average | 2.27 | 1.89 |
Std. Dev. | 0.02 | 0.09 |
Rel. Std. Dev. [%] | 1.08 | 4.74 |
Supports | C (wt.%) | N (wt.%) | H (wt.%) | C:N |
---|---|---|---|---|
g- | 35.15 | 60.62 | 1.72 | 0.5798 |
g- | 34.89 | 60.19 | 1.68 | 0.5796 |
g- | 33.08 | 56.84 | 1.77 | 0.5820 |
Supports | Energy Gap (eV) | Catalysts | Energy Gap (eV) |
---|---|---|---|
3.34 | Au@ | 3.15 | |
5.10 | Au@ | 4.94 | |
g- | 2.73 | Au@g- | 2.69 |
g- | 2.62 | Au@g- | 2.56 |
g- | 2.78 | Au@g- | 2.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hervé, L.; Heyte, S.; Marinova, M.; Paul, S.; Wojcieszak, R.; Thuriot-Roukos, J. A Comparative Study on the Choice of the Support in the Elaboration of Photocatalysts for the Photooxidation of Benzyl Alcohol under Mild Conditions. Solids 2024, 5, 172-192. https://doi.org/10.3390/solids5020012
Hervé L, Heyte S, Marinova M, Paul S, Wojcieszak R, Thuriot-Roukos J. A Comparative Study on the Choice of the Support in the Elaboration of Photocatalysts for the Photooxidation of Benzyl Alcohol under Mild Conditions. Solids. 2024; 5(2):172-192. https://doi.org/10.3390/solids5020012
Chicago/Turabian StyleHervé, Lénaïck, Svetlana Heyte, Maya Marinova, Sébastien Paul, Robert Wojcieszak, and Joëlle Thuriot-Roukos. 2024. "A Comparative Study on the Choice of the Support in the Elaboration of Photocatalysts for the Photooxidation of Benzyl Alcohol under Mild Conditions" Solids 5, no. 2: 172-192. https://doi.org/10.3390/solids5020012
APA StyleHervé, L., Heyte, S., Marinova, M., Paul, S., Wojcieszak, R., & Thuriot-Roukos, J. (2024). A Comparative Study on the Choice of the Support in the Elaboration of Photocatalysts for the Photooxidation of Benzyl Alcohol under Mild Conditions. Solids, 5(2), 172-192. https://doi.org/10.3390/solids5020012