Thermoelectric Properties of Layered CuCr0.99Ln0.01S2 (Ln = La…Lu) Disulfides: Effects of Lanthanide Doping
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ushakov, A.V.; Kukusta, D.A.; Yaresko, A.N.; Khomskii, D.I. Magnetism of Layered Chromium Sulfides MCrS2 (M=Li, Na, K, Ag, and Au): A First-Principles Study. Phys. Rev. B—Condens. Matter Mater. Phys. 2013, 87, 014418. [Google Scholar] [CrossRef]
- Engelsman, F.M.R.; Wiegers, G.A.; Jellinek, F.; Van Laar, B. Crystal Structures and Magnetic Structures of Some Metal(I) Chromium(III) Sulfides and Selenides. J. Solid State Chem. 1973, 6, 574–582. [Google Scholar] [CrossRef]
- Karmakar, A.; Dey, K.; Chatterjee, S.; Majumdar, S.; Giri, S. Spin Correlated Dielectric Memory and Rejuvenation in Multiferroic CuCrS2. Appl. Phys. Lett. 2014, 104, 052906. [Google Scholar] [CrossRef]
- Hansen, A.-L.; Dankwort, T.; Groß, H.; Etter, M.; König, J.; Duppel, V.; Kienle, L.; Bensch, W. Structural Properties of the Thermoelectric Material CuCrS2 and of Deintercalated CuxCrS2 on Different Length Scales: X-ray Diffraction, Pair Distribution Function and Transmission Electron Microscopy Studies. J. Mater. Chem. C 2017, 5, 9331–9338. [Google Scholar] [CrossRef]
- Lee, H.K.; Ban, Y.J.; Lee, H.J.; Kim, J.H.; Park, S.J. One-Pot Synthesis and Characterization of CuCrS2/ZnS Core/Shell Quantum Dots as New Blue-Emitting Sources. Materials 2023, 16, 762. [Google Scholar] [CrossRef]
- Sanchez Rodriguez, J.J.; Nunez Leon, A.N.; Abbasi, J.; Shinde, P.S.; Fedin, I.; Gupta, A. Colloidal Synthesis, Characterization, and Photoconductivity of Quasi-Layered CuCrS2 Nanosheets. Nanomaterials 2022, 12, 4164. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhong, T.; Zuo, N.; Li, Z.; Li, D.; Pi, L.; Chen, P.; Wu, M.; Zhai, T.; Zhou, X. High-TC Two-Dimensional Ferroelectric CuCrS2 Grown via Chemical Vapor Deposition. ACS Nano 2022, 16, 8141–8149. [Google Scholar] [CrossRef] [PubMed]
- Zhong, T.; Li, X.; Wu, M.; Liu, J.M. Room-Temperature Multiferroicity and Diversified Magnetoelectric Couplings in 2D Materials. Natl. Sci. Rev. 2020, 7, 373–380. [Google Scholar] [CrossRef]
- Al’mukhametov, R.F.; Yakshibaev, R.A.; Gabitov, É.V.; Abdullin, A.R. Investigation of Superionic Phase Transition in the CuCr1−XVxS2 System by X-Ray Diffraction and Magnetic Methods. Phys. Solid State 2000, 42, 1508–1511. [Google Scholar] [CrossRef]
- Vassilieva, I.G.; Kardash, T.Y.; Malakhov, V.V. Phase Transformations of CuCrS2: Structural and Chemical Study. J. Struct. Chem. 2009, 50, 288–295. [Google Scholar] [CrossRef]
- Vasilyeva, I.G. Chemical Aspect of the Structural Disorder in CuCrS2 and CuCr1−XVxS2 Solid Solutions. J. Struct. Chem. 2017, 58, 1009–1017. [Google Scholar] [CrossRef]
- Korotaev, E.V.; Syrokvashin, M.M.; Filatova, I.Y.; Sotnikov, A. V Effect of the Order-Disorder Transition on the Electronic Structure and Physical Properties of Layered CuCrS2. Materials 2021, 14, 2729. [Google Scholar] [CrossRef] [PubMed]
- Al’mukhametov, R.F.; Yakshibaev, R.A.; Gabitov, E.V.; Abdullin, A.R. Synthesis and X-Ray Diffraction Study of CuCr1−xVxS2. Inorg. Mater. 2000, 36, 437–440. [Google Scholar] [CrossRef]
- Almukhametov, R.F.; Yakshibayev, R.A.; Gabitov, E.V.; Abdullin, A.R.; Kutusheva, R.M. Structural Properties and Ionic Conductivities of CuCr1−x VxS2 Solid Solutions. Phys. Status Solidi Basic Res. 2003, 236, 29–33. [Google Scholar] [CrossRef]
- Titov, S.V.; Gorbenko, A.P.; Yakshibaev, R.A.; Reznichenko, L.A.; Al’mukhametov, R.F.; Titov, V.V.; Shilkina, L.A. Ion Conductivity, Structural Features, and Multifractal Properties of Grain Boundaries in CuCr1−XVxS2. Bull. Russ. Acad. Sci. Phys. 2007, 71, 719–720. [Google Scholar] [CrossRef]
- Almukhametov, R.F.; Yakshibayev, R.A.; Kutusheva, R.M.; Amineva, A. Structural Properties and Ionic Conductivity of New CuCr1−XVxSe2 Solid Solutions. Solid State Ion. 2003, 158, 409–414. [Google Scholar] [CrossRef]
- Yakshibaev, R.A.; Akmanova, G.R.; Almukhametov, R.F.; Konev, V.N. Ionic Conductivity and Diffusion in CuCrS2—AgCrS2 Mixed Conductors and Their Alloys. Phys. Status Solidi 1991, 124, 417–426. [Google Scholar] [CrossRef]
- Krengel, M.; Hansen, A.L.; Hartmann, F.; van Dinter, J.; Bensch, W. Elucidation of the Sodium—Copper Extrusion Mechanism in CuCrS2: A High Capacity, Long-Life Anode Material for Sodium-Ion Batteries. Batter. Supercaps 2018, 1, 176–183. [Google Scholar] [CrossRef]
- Akmanova, G.R.; Davletshina, A.D. Ionic Conductivity and Diffusion in Superionic Conductors CuCrS2—AgCrS2. Lett. Mater. 2013, 3, 76–78. [Google Scholar] [CrossRef]
- Al’mukhametov, R.F.; Yakshibaev, R.A.; Abdullin, A.R. Preparation and Magnetic Properties of CuCr1−XMnXS2 Solid Solutions. Inorg. Mater. 2002, 38, 447–449. [Google Scholar] [CrossRef]
- Abramova, G.M.; Petrakovskiĭ, G.A.; Vorotynov, A.M.; Velikanov, D.A.; Kiselev, N.I.; Bovina, A.F.; Szymczak, R.; Al’mukhametov, R.F. Phase Transitions and Colossal Magnetoresistance in CuVxCr1−xS2 Layered Disulfides. JETP Lett. 2006, 83, 118–121. [Google Scholar] [CrossRef]
- Abramova, G.M.; Petrakovskiǐ, G.A.; Vtyurin, A.N.; Vorotynov, A.M.; Velikanov, D.A.; Krylov, A.S.; Gerasimova, Y.; Sokolov, V.V.; Bovina, A.F. Magnetic Properties, Magnetoresistance, and Raman Spectra of CuVxCr1−XS2. Phys. Solid State 2009, 51, 532–536. [Google Scholar] [CrossRef]
- Abramova, G.M.; Petrakovskii, G.A. Metal-Insulator Transition, Magnetoresistance, and Magnetic Properties of 3d-Sulfides. Low Temp. Phys. 2006, 32, 725–734. [Google Scholar] [CrossRef]
- Abramova, G.M.; Vorotynov, A.M.; Petrakovskiǐ, G.A.; Kiselev, N.I.; Velikanov, D.A.; Bovina, A.F.; Al’Mukhametov, R.F.; Yakshibaev, R.A.; Gabitov, É.V. Electron Transition in Intercalated Disulfide CuCrS2. Phys. Solid State 2004, 46, 2225–2228. [Google Scholar] [CrossRef]
- Tsujii, N.; Kitazawa, H.; Kido, G. Insulator to Metal Transition Induced by Substitution in the Nearly Two-Dimensional Compound CuCr1−XVxS2. Phys. Status Solidi 2006, 3, 2775–2778. [Google Scholar] [CrossRef]
- Romanenko, A.I.; Chebanova, G.E.; Katamanin, I.N.; Drozhzhin, M.V.; Artemkina, S.B.; Han, M.-K.; Kim, S.-J.; Wang, H. Enhanced Thermoelectric Properties of Polycrystalline CuCrS2−xSeX (x = 0, 0.5, 1.0, 1.5, 2) Samples by Replacing Chalcogens and Sintering. J. Phys. D. Appl. Phys. 2021, 55, 135302. [Google Scholar] [CrossRef]
- Srivastava, D.; Tewari, G.C.; Karppinen, M.; Nieminen, R.M. First-Principles Study of Layered Antiferromagnetic CuCrX2 (X = S, Se and Te). J. Phys. Condens. Matter 2013, 25, 105504. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Huang, S.; Feng, D.; Li, B.; Chen, Y.; Zhang, J.; He, J. Revisiting AgCrSe2 as a Promising Thermoelectric Material. Phys. Chem. Chem. Phys. 2016, 18, 23872–23878. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Basu, R.; Bhatt, R.; Pitale, S.; Singh, A.; Aswal, D.K.; Gupta, S.K.; Navaneethan, M.; Hayakawa, Y. CuCrSe2: A High Performance Phonon Glass and Electron Crystal Thermoelectric Material. J. Mater. Chem. A 2013, 1, 11289–11294. [Google Scholar] [CrossRef]
- Tewari, G.C.; Tripathi, T.S.; Kumar, P.; Rastogi, A.K.; Pasha, S.K.; Gupta, G. Increase in the Thermoelectric Efficiency of the Disordered Phase of Layered Antiferromagnetic CuCrS2. J. Electron. Mater. 2011, 40, 2368–2373. [Google Scholar] [CrossRef]
- Tewari, G.C.; Tripathi, T.S.; Rastogi, A.K. Thermoelectric Properties of Layer-Antiferromagnet CuCrS2. J. Electron. Mater. 2010, 39, 1133–1139. [Google Scholar] [CrossRef]
- Korotaev, E.V.; Syrokvashin, M.M.; Filatova, I.Y.; Pelmenev, K.G.; Zvereva, V.V.; Peregudova, N.N. Seebeck Coefficient of Cation-Substituted Disulfides CuCr1−xFexS2 and Cu1−xFexCrS2. J. Electron. Mater. 2018, 47, 3392–3397. [Google Scholar] [CrossRef]
- Korotaev, E.V.; Syrokvashin, M.M.; Filatova, I.Y. Thermoelectric and Magnetic Properties and Electronic Structure of Solid Solutions CuCr1−XLaxS2. J. Compos. Sci. 2023, 7, 436. [Google Scholar] [CrossRef]
- Korotaev, E.V.; Syrokvashin, M.M.; Filatova, I.Y.; Sotnikov, A.V.; Kalinkin, A.V. The Charge Distribution, Seebeck Coefficient, and Carrier Concentration of CuCr0.99Ln0.01S2 (Ln = Dy–Lu). Materials 2023, 16, 2431. [Google Scholar] [CrossRef] [PubMed]
- Korotaev, E.V.; Syrokvashin, M.M.; Filatova, I.Y.; Sotnikov, A.V.; Kalinkin, A.V. Charge Distribution in Layered Lanthanide-Doped CuCr0.99Ln0.01S2 (Ln = Pr–Tb) Thermoelectric Materials. Materials 2022, 15, 8747. [Google Scholar] [CrossRef] [PubMed]
- Korotaev, E.V.; Syrokvashin, M.M.; Filatova, I.Y.; Trubina, S.V.; Nikolenko, A.D.; Ivlyushkin, D.V.; Zavertkin, P.S.; Sotnikov, A.V.; Kriventsov, V.V. XANES Investigation of Novel Lanthanide-Doped CuCr0.99Ln0.01S2 (Ln = La, Ce) Solid Solutions. Appl. Phys. A Mater. Sci. Process. 2020, 126, 537. [Google Scholar] [CrossRef]
- Dmitriev, A.V.; Zvyagin, I.P. Current Trends in the Physics of Thermoelectric Materials. Uspekhi Fiz. Nauk. 2010, 180, 821. [Google Scholar] [CrossRef]
- Shevelkov, A.V.; IIIeвeлькoв, A.B. Chemical Aspects of the Design of Thermoelectric Materials. Russ. Chem. Rev. 2008, 77, 1–19. [Google Scholar] [CrossRef]
- Korotaev, E.V.; Syrokvashin, M.M.; Filatova, I.Y.; Kalinkin, A.V.; Sotnikov, A.V. Valence Band Structure and Charge Distribution in the Layered Lanthanide-Doped CuCr0.99Ln0.01S2 (Ln = La, Ce) Solid Solutions. Sci. Rep. 2021, 11, 18934. [Google Scholar] [CrossRef]
- Korotaev, E.V.; Syrokvashin, M.M.; Filatova, I.Y.; Trubina, S.V.; Nikolenko, A.D.; Ivlyushkin, D.V.; Zavertkin, P.S.; Kriventsov, V.V. The Conduction Band of the Lanthanide Doped Chromium Disulfides CuCr0.99Ln0.01S2 (Ln=La, Ce, Gd): XANES Investigations. In AIP Conference Proceedings, Proceedings of the Synchrotron and Free Electron Laser Radiation: Generation and Application (SFR-2020), Novosibirsk, Russia, 13–16 July 2020; AIP Publishing: New York, NY, USA, 2020; Volume 2299, p. 080004. [Google Scholar]
- Korotaev, E.V.; Syrokvashin, M.M.; Filatova, I.Y.; Zvereva, V.V. Magnetic Properties of Novel Layered Disulfides CuCr0.99Ln0.01S2 (Ln = La…Lu). Materials 2021, 14, 5101. [Google Scholar] [CrossRef]
- Terasaki, I. Thermal Conductivity and Thermoelectric Power of Semiconductors. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–40. ISBN 9780128035818. [Google Scholar]
- Aswal, D.K.; Basu, R.; Singh, A. Key Issues in Development of Thermoelectric Power Generators: High Figure-of-Merit Materials and Their Highly Conducting Interfaces with Metallic Interconnects. Energy Convers. Manag. 2016, 114, 50–67. [Google Scholar] [CrossRef]
- Kaltzoglou, A.; Vaqueiro, P.; Barbier, T.; Guilmeau, E.; Powell, A.V. Ordered-Defect Sulfides as Thermoelectric Materials. J. Electron. Mater. 2014, 43, 2029–2034. [Google Scholar] [CrossRef]
- Chen, Y.-X.; Zhang, B.-P.; Ge, Z.-H.; Shang, P.-P. Preparation and Thermoelectric Properties of Ternary Superionic Conductor CuCrS2. J. Solid State Chem. 2012, 186, 109–115. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korotaev, E.V.; Syrokvashin, M.M. Thermoelectric Properties of Layered CuCr0.99Ln0.01S2 (Ln = La…Lu) Disulfides: Effects of Lanthanide Doping. Solids 2024, 5, 256-266. https://doi.org/10.3390/solids5020016
Korotaev EV, Syrokvashin MM. Thermoelectric Properties of Layered CuCr0.99Ln0.01S2 (Ln = La…Lu) Disulfides: Effects of Lanthanide Doping. Solids. 2024; 5(2):256-266. https://doi.org/10.3390/solids5020016
Chicago/Turabian StyleKorotaev, Evgeniy V., and Mikhail M. Syrokvashin. 2024. "Thermoelectric Properties of Layered CuCr0.99Ln0.01S2 (Ln = La…Lu) Disulfides: Effects of Lanthanide Doping" Solids 5, no. 2: 256-266. https://doi.org/10.3390/solids5020016
APA StyleKorotaev, E. V., & Syrokvashin, M. M. (2024). Thermoelectric Properties of Layered CuCr0.99Ln0.01S2 (Ln = La…Lu) Disulfides: Effects of Lanthanide Doping. Solids, 5(2), 256-266. https://doi.org/10.3390/solids5020016