Enhanced Thermoelectric Performance of Na0.55CoO2 Ceramics Doped by Transition and Heavy Metal Oxides
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prado-Gonjal, J.; López, C.A.; Pinacca, R.M.; Serrano-Sánchez, F.; Nemes, N.M.; Dura, O.J.; Martinez, J.L.; Fernández-Díaz, M.T.; Alonso, J.A. Correlatoin between crystal structure and thermoelectric properties of Sr1–xTi0.9Nb0.1O3–δ ceramics. Crystals 2020, 10, 100. [Google Scholar] [CrossRef]
- Flitcroft, J.M.; Pallikara, I.; Skelton, J. Thermoelectric Properties of Pnma and Rocksalt SnS and SnSe. Solids 2022, 3, 155–176. [Google Scholar] [CrossRef]
- Yu, J.; Chen, K.; Azough, F.; Alvarez-Ruiz, D.T.; Reece, M.I.; Freer, R. Enhancing the thermoelectric performance of calcium cobaltite ceramics by tuning composition and processing. ACS Appl. Mater. Interfaces 2020, 12, 47634–47646. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhu, K.; Liu, J.; Wang, J.; Yan, K.; Liu, P.; Wang, Y. Influence of the phase transformation in NaxCoO2 ceramics on thermoelectric properties. Ceram. Int. 2018, 44, 17251–17257. [Google Scholar] [CrossRef]
- Li, Z.; Xiao, C.; Xie, Y. Layered thermoelectric materials: Structure, bonding, and performance mechanisms. Appl. Phys. Rev. 2020, 9, 011303. [Google Scholar] [CrossRef]
- Chen, W.-H.; Lin, Y.-K.; Luo, D.; Jin, L.; Hoang, A.T.; Saw, L.H.; Nižetič, S. Effects of material doping on the performance of thermoelectric generator with/without equal segments. Appl. Energy 2023, 350, 121709. [Google Scholar] [CrossRef]
- Koumoto, K.; Terasaki, I.; Funahashi, R. Complex oxide materials for potential thermoelectric applications. MRS Bull. 2006, 31, 206–210. [Google Scholar] [CrossRef]
- Han, Y.; Ruan, Y.; Xue, M.; Wu, Y.; Shi, M.; Song, Z.; Zhou, Y.; Teng, J. Effect of annealing time on the cyclic characteristics of ceramic oxide thin film thermocouples. Micromachines 2022, 13, 1970. [Google Scholar] [CrossRef]
- Ozkurt, B.; Madre, M.A.; Sotelo, A.; Portero, M.A.T. Enhanced thermoelectric properties in Bi2Sr2–xBaxCo2Oy by Ba doping. Phys. B Condens. Matter 2022, 643, 414138. [Google Scholar] [CrossRef]
- Klyndyuk, A.; Chizhova, E.; Latypov, R.; Shevchenko, S.; Kononovich, V.M. Effect of the addition of copper particles on the thermoelectric properties of the Ca3Co4O9+δ ceramics produced by two-step sintering. Russ. J. Inorg. Chem. 2022, 67, 237–244. [Google Scholar] [CrossRef]
- Xiao, X.; Arif, S.; Ding, J.; Widenmeyer, M.; Constantinescu, G.; Kovalevsky, A.; Zhang, H.; Xie, W.; Weidenkaff, A. Molten salt synthesized La-substituted CaTiO3 thermoelectric ceramics. Open Ceram. 2023, 17, 100522. [Google Scholar] [CrossRef]
- Rubesova, K.; Jakes, V.; Jankovský, O.; Lojka, M.; Sedmidubský, D. Bismuth calcium cobaltite thermoelectrics: A study of precursor reactivity and its influence on the phase formation. J. Phys. Chem. Solids 2022, 164, 110631. [Google Scholar] [CrossRef]
- Sotelo, A.; Rasekh, S.; Torres, M.A.; Bosque, P.; Madre, M.A.; Diez, J.C. Effect of synthesis methods on the Ca3Co4O9 thermoelectric ceramic performances. J. Solid State Chem. 2015, 221, 247–254. [Google Scholar] [CrossRef]
- Terasaki, I.; Sasago, Y.; Uchinokura, K. Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B 1997, 56, R12685–R12687. [Google Scholar] [CrossRef]
- Bresch, S.; Stargardt, P.; Moos, R.; Mieller, B. Co-fired multilayer thermoelectric generators based on textured calcium cobaltite. Adv. Electron. Mater. 2023, 10, 2300366. [Google Scholar] [CrossRef]
- Molenda, J.; Baster, D.; Milewska, A.; Świerczek, K.; Bora, D.K.; Braun, A.; Tobola, J. Electronic origin of difference in discharge curve between LixCoO2 and NaxCoO2 cathodes. Solid State Ion. 2014, 271, 15–27. [Google Scholar] [CrossRef]
- Pohle, B.; Gorbunov, M.; Lu, Q.; Bahrami, A.; Nielsch, K.; Mikhailova, D. Structural and electrochemical properties of layered P2-Na0.8Co0.8Ti0.2O2 cathode in sodium-ion batteries. Energies 2022, 15, 3371. [Google Scholar] [CrossRef]
- Nguyen, L.M.; Nguyen, V.H.; Nguyen, D.M.N.; Le, M.K.; Tran, V.M.; Le, M.L.P. Evaluating electrochemical properties of layered NaxMn0.5Co0.5O2 obtained at different calcined temperatures. Chemengineering 2023, 7, 33. [Google Scholar] [CrossRef]
- Baster, D.; Zając, W.; Kondracki, Ł.; Hartman, F.; Molenda, J. Improvement of electrochemical performance of Na0.7Co1–yMnyO2–cathode material for rechargeable sodium-ion batteries. Solid State Ion. 2016, 288, 213–218. [Google Scholar] [CrossRef]
- Banobre-López, M.; Rivadulla, F.; Caudillo, R.; López-Quintela, M.A.; Rivas, J.; Goodenough, J.B. Role of doping and Dimensionality in the Superconductivity of NaxCoO2. Chem. Mater. 2005, 17, 1965–1968. [Google Scholar] [CrossRef]
- Krasutskaya, N.S.; Klyndyuk, A.I.; Evseeva, L.E.; Tanaeva, S.A. Synthesis and properties of NaxCoO2 (x =0.55, 0.89) oxide thermoelectrics. Inorg. Mater. 2016, 52, 393–399. [Google Scholar] [CrossRef]
- Akram, R.; Khan, J.; Rafique, S.; Hussain, M.; Maqsood, A.; Naz, A.A. Enhanced thermoelectric properties of single phase Na doped NaxCoO2 thermoelectric material. Mater. Lett. 2021, 300, 130180. [Google Scholar] [CrossRef]
- Rowe, D.M. Thermoelectric Handbook. Macro to Nano; CRC Press Taylor and Francis Group: BocaRaton, FL, USA, 2006; 481p. [Google Scholar]
- Kurniawan, I.; Prijamboedi, B. Enthalpy of formation of NaxCoO2 and (Na,Mg)xCoO2 systems: A first principle calculation study. J. Phys. Conf. Ser. 2019, 1204, 012028. [Google Scholar] [CrossRef]
- Yang, X.; Wang, X.; Liu, J.; Hu, Z. Power factor enhancement in NaxCoO2 doped by Bi. J. Alloys Compd. 2014, 582, 59–63. [Google Scholar] [CrossRef]
- Park, K.; Choi, J.W.; Lee, G.W.; Kim, S.-J.; Lim, Y.-S.; Choi, S.-M.; Seo, W.-S.; Lim, S.M. Thermoelectric properties of solution-combustion-processed Na(Co1–xNix)2O4. Met. Mater. Int. 2012, 18, 1061–1065. [Google Scholar] [CrossRef]
- Pršić, S.; Savić, S.M.; Branković, Z.; Vrtnik, S.; Dapčevic, A.; Branković, Z. Mechanochemically assisted solid-state and citric acid complex syntheses of Cu-doped sodium cobaltite ceramics. J. Alloys Compd. 2015, 640, 480–487. [Google Scholar] [CrossRef]
- Zhou, R.; Li, J.; Wei, W.; Li, X.; Luo, M. Atomic substituents effect on boosting desalination performances of Zn-doped NaxCoO2. Desalination 2020, 496, 114695. [Google Scholar] [CrossRef]
- Nojiri, Y.; Ohtaki, M. Site-selective substitution by transition metal cations for NaCo2O4 viaion-exchange. J. Ceram. Soc. Jpn. 2005, 113, 400–404. [Google Scholar] [CrossRef]
- Ito, M.; Furumoto, D. Microstructure and thermoelectric properties of NaxCo2O4/Ag composite synthesized by the polymerized complex method. J. Alloys Compd. 2008, 450, 517–520. [Google Scholar] [CrossRef]
- Seetawan, T.; Amornkitbamrung, V.; Burinprakhon, T.; Maensiri, S.; Kurosaki, K.; Muta, H.; Uno, M.; Yamanaka, S. Thermoelectric power and electrical resistivity of Ag-doped Na1.5Co2O4. J. Alloys Compd. 2006, 407, 314–317. [Google Scholar] [CrossRef]
- Nakhowong, R. Effect of reduced grapheme oxide on the enhancement of thermoelectric power factor of γ-NaxCo2O4. Mater. Sci. Eng. B 2020, 261, 114679. [Google Scholar] [CrossRef]
- Tsuruta, A.; Tanaka, M.; Mikami, M.; Kinemuchi, Y.; Masuda, Y.; Shin, W.; Terasaki, I. Development of Na0.5CoO2 thick film prepared by screen-printing process. Materials 2020, 13, 2805. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, I.; Zhou, Y.; Takeuchi, T.; Funahashi, R.; Shikano, M.; Murayama, N.; Shin, W.; Izu, N. Thermoelectric properties of spark-plasma-sintered Na1+xCo2O4 ceramics. J. Ceram. Soc. Jpn. 2003, 111, 238–241. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, T.; Donelson, R.; Chu, D.; Tan, T.T.; Li, S. Thermoelectric properties of Na0.8Co1–xFexO2 ceramic prepared by spark plasma sintering. Ceram. Mater. Energy Appl. 2015, 35, 35–41. [Google Scholar] [CrossRef]
- Klyndyuk, A.I.; Krasutskaya, N.S.; Chizhova, E.A.; Evseeva, L.E.; Tanaeva, S.A. Synthesis and properties of Na0.55Co0.9M0.1O2 (M = Sc, Ti, Cr–Zn, Mo, W, Pb, Bi) solid solutions. Glass Phys. Chem. 2016, 42, 100–107. [Google Scholar] [CrossRef]
- Krasutskaya, N.; Klyndyuk, A. Effect of cobalt substitution on the microstructure and properties of Na0.9CoO2. J. Thermoelectr. 2012, 4, 39–44. [Google Scholar]
- Klyndyuk, A.I.; Krasutskaya, N.S.; Dyatlova, E.M. Influence of sintering temperature on the properties of NaxCoO2 ceramics. Proc. BSTU. 2010, XVIII, 99–102. (In Russian) [Google Scholar]
- Viciu, L.; Huang, Q.; Cava, R.J. Stoichiometric oxygen content in NaxCoO2. Phys. Rev. B 2006, 73, 212107. [Google Scholar] [CrossRef]
- Joo, W.; Yoo, H.-I. Point defect structure of γ-NaxCoO2. Solid State Ion. 2018, 314, 74–80. [Google Scholar] [CrossRef]
- Paytnitsky, I.V. Analitical Chemistry of Cobalt; Science: Moscow, Russia, 1965; 292p. (In Russian) [Google Scholar]
- Seema; Kumar, N.; Chand, S. Structural, morphological, optical and dielectric properties of Ti1–xFexO2 nanoparticles synthesized using sol-gel method. J. Sol-Gel Sci. Technol. 2022, 105, 163–175. [Google Scholar] [CrossRef]
- Jalil, M.T.; Harbbi, K.H. Using the size strain plot method to specity lattice parameters. Haitham J. Pure Appl. Sci. 2023, 36, 123–129. [Google Scholar] [CrossRef]
- Lotgering, F.K. Topotactical Reactions with Ferrimagnetic Oxides Having Hexagonal Crystal structures I. J. Inorg. Nucl. Chem. 1959, 9, 113–123. [Google Scholar] [CrossRef]
- Zorkovská, A.; Feher, A.; Sébek, J.; Šantavá, E.; Bradaric, I. Non-Fermi-liquid behavior in the layered NaxCoO2. Low Temp. Phys. 2007, 33, 944–947. [Google Scholar] [CrossRef]
- Delmas, C.; Braconnier, J.-J.; Fouassier, C.; Hagenmuller, P. Electrochemical intercalation of sodium in NaxCoO2 bronzes. Solid State Ion. 1981, 3–4, 165–169. [Google Scholar] [CrossRef]
- Zhou, R.; Guo, X.; Li, X.; Kang, Y.; Luo, M. An insight into the promotion effect of Na+/vacancy ordering on desalination performance of NaxCoO2. Desalination 2020, 478, 114301. [Google Scholar] [CrossRef]
- Tahashi, M.; Ogawa, K.; Takahashi, M.; Goto, H. Effect of compositional ratio of cobalt to calcium on crystal phase and thermoelectric properties of oxide thermoelectric material composed of sintered Ca3Co4O9/Ca3Co2O6 mixture. J. Ceram. Soc. Jpn. 2013, 121, 444–447. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Lan, J.; Shen, Z.; Liu Yu Nan, C.-W.; Li, J.-F. High-temperature electrical transport behaviors in textured Ca3Co4O9-based polycrystalline ceramics. Appl. Phys. Lett. 2009, 94, 072107. [Google Scholar] [CrossRef]
- Klyndyuk, A.I.; Krasutskaya, N.S.; Chizhova, E.A. Synthesis and thermoelectric properties of ceramics based on Bi2Ca2Co1.7Oy oxide. Glass Phys. Chem. 2018, 44, 100–107. [Google Scholar] [CrossRef]
- Koshibae, W.; Tsutsui, K.; Maekawa, S. Thermopower in cobalt oxides. Phys. Rev. B 2000, 62, 6869–6872. [Google Scholar] [CrossRef]
- Klyndyuk, A.I.; Matsukevich, I.V. Synthesis, structure, and properties of Ca3Co3.85M0.15O9+δ (M = Ti–Zn, Mo, W, Pb, Bi) layered thermoelectrics. Inorg. Mater. 2015, 51, 944–950. [Google Scholar] [CrossRef]
M | xNa | z | a, Å | c, Å | c/a | V, Å3 | f | Ds, nm | DSS, nm | ε × 104 | dXRD, g/cm3 |
---|---|---|---|---|---|---|---|---|---|---|---|
Cr | 0.552 | 3.50 | 2.840 | 10.91 | 3.841 | 76.21 | 0.82 | 73 | 61 | 3.285 | 4.48 |
Co | 0.545 | 3.45 | 2.824 | 10.99 | 3.892 | 75.87 | 0.35 | 48 | 46 | 3.521 | 4.54 |
Ni | 0.559 | 3.61 | 2.824 | 10.95 | 3.879 | 75.66 | 0.60 | 62 | 53 | 1.257 | 4.55 |
Zn | 0.548 | 3.61 | 2.849 | 10.91 | 3.830 | 76.70 | 0.64 | 71 | 61 | 0.680 | 4.51 |
W | 0.551 | 3.17 | 2.837 | 10.89 | 3.839 | 75.91 | 0.89 | 78 | 64 | 3.448 | 5.08 |
Bi | 0.553 | 3.28 | 2.839 | 10.61 | 3.842 | 76.13 | 0.87 | 65 | 56 | 2.833 | 5.17 |
M | dEXP, g/cm3 | Πt, % | Πo, % | 104 × ρ1073, Ω × m | S1073, μV/K | P1073, mW/(m × K2) | ZT1073 |
---|---|---|---|---|---|---|---|
Cr | 3.48 | 17 | 22 | 3.44 | 540 | 0.846 | 0.565 |
Co | 3.65 | 18 | 18 | 4.82 | 285 | 0.169 | 0.233 |
Ni | 3.43 | 22 | 23 | 5.13 | 608 | 0.721 | 0.622 |
Zn | 3.59 | 21 | 17 | 3.03 | 421 | 0.584 | 0.523 |
W | 3.92 | 17 | 17 | 5.20 | 620 | 0.740 | 0.643 |
Bi | 3.72 | 21 | 17 | 4.28 | 666 | 1.038 | 0.702 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krasutskaya, N.S.; Klyndyuk, A.I.; Evseeva, L.E.; Gundilovich, N.N.; Chizhova, E.A.; Paspelau, A.V. Enhanced Thermoelectric Performance of Na0.55CoO2 Ceramics Doped by Transition and Heavy Metal Oxides. Solids 2024, 5, 267-277. https://doi.org/10.3390/solids5020017
Krasutskaya NS, Klyndyuk AI, Evseeva LE, Gundilovich NN, Chizhova EA, Paspelau AV. Enhanced Thermoelectric Performance of Na0.55CoO2 Ceramics Doped by Transition and Heavy Metal Oxides. Solids. 2024; 5(2):267-277. https://doi.org/10.3390/solids5020017
Chicago/Turabian StyleKrasutskaya, Natalie S., Andrei I. Klyndyuk, Lyudmila E. Evseeva, Nikolai N. Gundilovich, Ekaterina A. Chizhova, and Andrei V. Paspelau. 2024. "Enhanced Thermoelectric Performance of Na0.55CoO2 Ceramics Doped by Transition and Heavy Metal Oxides" Solids 5, no. 2: 267-277. https://doi.org/10.3390/solids5020017
APA StyleKrasutskaya, N. S., Klyndyuk, A. I., Evseeva, L. E., Gundilovich, N. N., Chizhova, E. A., & Paspelau, A. V. (2024). Enhanced Thermoelectric Performance of Na0.55CoO2 Ceramics Doped by Transition and Heavy Metal Oxides. Solids, 5(2), 267-277. https://doi.org/10.3390/solids5020017