Unveiling the Doping- and Temperature-Dependent Properties of Organic Semiconductor Orthorhombic Rubrene from First Principles
Abstract
:1. Introduction
2. Method and Computational Procedure
3. Results and Discussion
3.1. Structural Properties of Orthorhombic Rubrene
3.2. Electronic Properties
3.3. Elastic Properties
3.4. Temperature- and Doping-Dependent Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jung, J.; Ulański, J. Chapter 6. Charge Carrier Transport in Organic Semiconductor Composites—Models and Experimental Techniques; John Wiley and Sons, Ltd.: Hoboken, NJ, USA, 2019; pp. 309–363. [Google Scholar] [CrossRef]
- Ahmad, S. Organic semiconductors for device applications: Current trends and future prospects. J. Polym. Eng. 2014, 34, 279–338. [Google Scholar] [CrossRef]
- Dey, A.; Singh, A.; Das, D.; Iyer, P. Organic Semiconductors: A New Future of Nanodevices and Applications; Springer: Cham, Switzerland, 2015; pp. 97–128. [Google Scholar] [CrossRef]
- Diemer, P.J.; Harper, A.F.; Niazi, M.R.; Petty, A.J., II; Anthony, J.E.; Amassian, A.; Jurchescu, O.D. Laser-printed organic thin-film transistors. Adv. Mater. Technol. 2017, 2, 1700167. [Google Scholar] [CrossRef]
- Kim, J.T.; Lee, J.; Jang, S.; Yu, Z.; Park, J.; Jung, E.; Lee, S.; Song, M.H.; Whang, D.R.; Wu, S.; et al. Solution processable small molecules as efficient electron transport layers in organic optoelectronic devices. J. Mater. Chem. A 2020, 8, 13501–13508. [Google Scholar] [CrossRef]
- Riede, M.; Lüssem, B.; Leo, K. Organic semiconductors. Compr. Semicond. Sci. Technol. 2011, 4, 448–507. [Google Scholar] [CrossRef]
- Schwierz, F. Graphene Transistors: Status, Prospects, and Problems. Proc. IEEE 2013, 101, 1567–1584. [Google Scholar] [CrossRef]
- Marconcini, P.; Macucci, M. Transport Simulation of Graphene Devices with a Generic Potential in the Presence of an Orthogonal Magnetic Field. Nanomaterials 2022, 12, 1087. [Google Scholar] [CrossRef]
- Walker, A.B. Multiscale modeling of charge and energy transport in organic light-emitting diodes and photovoltaics. Proc. IEEE 2009, 97, 1587–1596. [Google Scholar] [CrossRef]
- Chen, F.-C. Organic Semiconductors. Encycl. Mod. Opt. 2018, 5, 220–231. [Google Scholar] [CrossRef]
- El-Saba, M. Carrier Transport in Organic Semiconductors and Insulators; IGI Global: Hershey, PA, USA, 2017. [Google Scholar] [CrossRef]
- Kim, J.; Yasuda, T.; Yang, Y.; Adachi, C. Bifunctional Star-Burst Amorphous Molecular Materials for OLEDs: Achieving Highly Efficient Solid-State Luminescence and Carrier Transport Induced by Spontaneous Molecular Orientation. Adv. Mater. 2013, 25, 2666–2671. [Google Scholar] [CrossRef]
- Choi, M.; Lee, H.-N. Light-emission and electricity-generation properties of photovoltaic organic light-emitting diodes with rubrene/dbp light-emission and electron-donating layers. Int. J. Photoenergy 2014, 2014, 361861. [Google Scholar] [CrossRef]
- Saxena, K.; Mehta, D.; Rai, V.K.; Srivastava, R.; Chauhan, G.; Kamalasanan, M.; Jain, V. Studies on organic light-emitting diodes based on rubrene-doped zinc quinolate. Phys. Status Solidi A 2009, 206, 1660–1663. [Google Scholar] [CrossRef]
- Weinberg-Wolf, J.R.; McNeil, L.E.; Liu, S.; Kloc, C. Evidence of low intermolecular coupling in rubrene single crystals by raman scattering. J. Phys. Condens. Matter 2007, 19, 276204. [Google Scholar] [CrossRef]
- Sai, N.; Tiago, M.L.; Chelikowsky, J.R.; Reboredo, F.A. Optical spectra and exchange-correlation effects in molecular crystals. Phys. Rev. B 2008, 77, 161306. [Google Scholar] [CrossRef]
- Wikipedia Contributors. Rubrene—Wikipedia, The Free Encyclopedia. 2021. Available online: https://en.wikipedia.org/w/index.php?title=Rubrene&oldid=1014340589 (accessed on 11 February 2022).
- Reyes-Martinez, M.A.; Crosby, A.J.; Briseno, A.L. Rubrene crystal field-effect mobility modulation via conducting channel wrinkling. Nat. Commun. 2015, 6, 6948. [Google Scholar] [CrossRef]
- Lin, K.; Wang, Y.; Chen, K.; Ho, C.; Yang, C.; Shen, J.; Chiu, K. Role of molecular conformations in rubrene polycrystalline films growth from vacuum deposition at various substrate temperatures. Sci. Rep. 2017, 7, 40824. [Google Scholar] [CrossRef]
- Majewska, N.; Gazda, M.; Jendrzejewski, R.; Majumdar, S.; Sawczak, M.; Śliwiński, G. Organic semiconductor rubrene thin films deposited by pulsed laser evaporation of solidified solutions. In Proceedings of the SPIE 10453, Third International Conference on Applications of Optics and Photonics, Faro, Portugal, 8–12 May 2017; Volume 104532H. [Google Scholar] [CrossRef]
- Zeng, X.; Zhang, D.; Duan, L.; Wang, L.; Dong, G.; Qiu, Y. Morphology and fluorescence spectra of rubrene single crystals grown by physical vapor transport. Appl. Surf. Sci. 2017, 253, 6047–6051. [Google Scholar] [CrossRef]
- Reyes-Martinez, M.A.; Ramasubramaniam, A.; Briseno, A.L.; Crosby, A.J. The intrinsic mechanical properties of rubrene single crystals. Adv. Mater. 2012, 24, 5548–5552. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Perdew, J.P.; Chevary, J.A.; Vosko, S.H.; Jackson, K.A.; Pederson, M.R.; Singh, D.J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687. [Google Scholar] [CrossRef]
- Perdew, J.P.; Ruzsinszky, A.; Csonka, G.I.; Vydrov, O.A.; Scuseria, G.E.; Constantin, L.A.; Zhou, X.; Burke, K. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 2008, 100, 136406. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, 864–871. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, 1133–1138. [Google Scholar] [CrossRef]
- Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Nardelli, M.B.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M. Advanced capabilities for materials modelling with quantum espresso. J. Phys. Condens. Matter 2017, 29, 465901. [Google Scholar] [CrossRef]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I. Quantum espresso: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 1964, 21, 395502. [Google Scholar] [CrossRef]
- Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895. [Google Scholar] [CrossRef]
- Baroni, S.; De Gironcoli, S.; Dal Corso, A.; Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 2001, 73, 515–562. [Google Scholar] [CrossRef]
- Louail, L.; Maouche, D.; Roumili, A.; Sahraoui, F.A. Calculation of elastic constants of 4d transition metals. Mater. Lett. 2004, 58, 2975–2978. [Google Scholar] [CrossRef]
- Xing, G.; Sun, J.; Li, Y.; Fan, X.; Zheng, W.; Singh, D.J. Electronic fitness function for screening semiconductors as thermoelectric materials. Phys. Rev. Mater. 2017, 1, 065405. [Google Scholar] [CrossRef]
- Jurchescu, O.D.; Meetsma, A.; Palstra, T.T.M. Low-temperature structure of rubrene single crystals grown by vapor transport. Acta Crystallogr. B 2006, 62, 330–334. [Google Scholar] [CrossRef]
- Wang, D.; Tang, L.; Long, M.; Shuai, Z. First-principles investigation of organic semiconductors for thermoelectric applications. J. Chem. Phys. 2009, 131, 224704. [Google Scholar] [CrossRef] [PubMed]
- Yanagisawa, S.; Morikawa, Y.; Schindlmayr, A. Homo band dispersion of crystalline rubrene: Effects of self-energy corrections within the gw approximation. Phys. Rev. B 2013, 88, 115438. [Google Scholar] [CrossRef]
- Zhang, Y.; Manke, D.R.; Sharifzadeh, S.; Briseno, A.L.; Ramasubramaniam, A.; Koski, K.J. The elastic constants of rubrene determined by brillouin scattering and density functional theory. Appl. Phys. Lett. 2017, 110, 071903. [Google Scholar] [CrossRef]
- Podzorov, V.; Menard, E.; Borissov, A.; Kiryukhin, V.; Rogers, J.A.; Gershenson, M.E. Intrinsic charge transport on the surface of organic semiconductors. Phys. Rev. Lett 2004, 93, 086602. [Google Scholar] [CrossRef]
- Yamagishi, M.; Takeya, J.; Tominari, Y.; Nakazawa, Y.; Kuroda, T.; Ikehata, S.; Uno, M.; Nishikawa, T.; Kawase, T. High-mobility double-gate organic single-crystal transistors with organic crystal gate insulators. Appl. Phys. Lett. 2007, 90, 182117. [Google Scholar] [CrossRef]
- Fumagalli, E.M. Growth and Physical Properties of Crystalline Rubrene. Ph.D. Thesis, Università Degli Studi di Milano-Bicocca, Milan, Italy, 2013. [Google Scholar]
- Musa, A.; Gidado, A.S.; Mohammed, L.; Yunusa, K.; Suleiman, A. Molecular and Electronic Properties of Rubrene and Its Cyanide Derivative Using Density Functional Theory (DFT). IOSR J. Appl. Phys. 2019, 11, 10–18. [Google Scholar]
- Zhang, M.; Hua, Z.; Liu, W.; Liu, H.; He, S.; Zhu, C.; Zhu, Y. A dft study on the photoelectric properties of rubrene and its derivatives. J. Mol. Model. 2020, 26, 32. [Google Scholar] [CrossRef] [PubMed]
- Missaoui, A.; Khabthani, J.J.; Laissardière, G.; Mayou, D. Two-dimensional electronic transport in rubrene: The impact of inter-chain coupling. Entropy 2019, 21, 233. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, T.; Sinha, S.; Mukherjee, M. Electronic structure of twisted and planar rubrene molecules: A density functional study. Phys. Chem. Chem. Phys. 2018, 20, 18623–18629. [Google Scholar] [CrossRef]
- Rang, Z.; Nathan, M.I.; Ruden, P.P.; Podzorov, V.; Gershenson, M.E.; Newman, C.R.; Frisbie, C.D. Hydrostatic pressure dependence of charge carrier transport in single-crystal rubrene devices. Appl. Phys. Lett. 2005, 86, 123501. [Google Scholar] [CrossRef]
- Bisri, S.; Takenobu, T.; Takahashi, T.; Iwasa, Y. Electron transport in rubrene single-crystal transistors. Appl. Phys. Lett. 2010, 96, 183304. [Google Scholar] [CrossRef]
- Fan, Q.; Wei, Q.; Yan, H.; Zhang, M.; Zhang, D.; Zhang, J. A new potential superhard phase of osn 2. Acta Phys. Pol. A 2014, 126, 740–747. [Google Scholar] [CrossRef]
- Hill, R. The Elastic Behaviour of a Crystalline Aggregate. Proc. Phys. Soc. Sect. A 1952, A65, 349. [Google Scholar] [CrossRef]
- Pugh, S.F. XCII. relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1954, 45, 823–843. [Google Scholar] [CrossRef]
- Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics 2011, 19, 1275–1281. [CrossRef]
- Machida, S.; Nakayama, Y.; Duhm, S.; Xin, Q.; Funakoshi, A.; Ogawa, N.; Ishii, H. Highest-occupied-molecular-orbital band dispersion of rubrene single crystals as observed by angle-resolved ultraviolet photoelectron spectroscopy. Phys. Rev. Lett. 2010, 104, 156401. [Google Scholar] [CrossRef]
Reference | Lattice Constants | Method/Theory | ||
---|---|---|---|---|
a (Å) | b (Å) | c (Å) | ||
Present work | 26.7903 | 7.1700 | 14.2112 | GGA |
Ref. [36] | 26.86 | 7.19 | 14.43 | GGA |
Ref. [38] | 26.660 | 7.142 | 14.025 | vdw-DFT |
Ref. [38] | 26.965 | 7.206 | 14.442 | Experiment at 294 K |
Ref. [35] | 26.789 | 7.170 | 14.211 | Experiment at 100 K |
Ref. [22] | 26.79 | 7.17 | 14.24 | Experiment |
Ref. [37] | 26.7450 | 7.1455 | 14.1289 | GGA |
Reference | Bandgap | Theory | |
---|---|---|---|
Nature | Energy (ev) | ||
Present work | Direct | 1.26 | PBE |
Ref. [37] | Direct | 1.13 | PBE |
Ref. [42] | Direct | 1.357 | B3LYP 6-311G |
Ref. [43] | Direct | 2.50 | B3LYP/6-311G(d,p) |
Reference | This Work | Ref. [22] | Ref. [38] | Ref. [38] |
---|---|---|---|---|
Method | PBE | AIREBO | vdw-DFT | Experiment |
C11 (GPa) | 18.8 | 15.54 | 25.31 | 18.48 |
C12 (GPa) | −8.7 | 1.08 | 6.94 | 2.63 |
C13 (GPa) | 1.6 | 2.08 | 6.78 | 7.68 |
C22 (GPa) | 13.6 | 17.85 | 16.99 | 13.39 |
C23 (GPa) | 9.4 | 10.82 | 10.53 | 7.77 |
C33 (GPa) | 14.6 | 13.29 | 13.94 | 14.32 |
C44 (GPa) | 7.2 | 2.03 | 6.66 | 6.46 |
C55 (GPa) | 13.2 | 1.97 | 4.41 | 2.8 |
C66 (GPa) | 6.5 | 3.36 | 3.67 | 6.8 |
Method | PBE |
---|---|
Bulk Modulus (GPa) | 4.163 |
Shear Modulus (GPa) | 11.519 |
Young Modulus (GPa) | 5.576 |
Poisson Ratio | 0.03292 |
Pugh Ratio (B/G) | 0.74667 |
Vickers Hardness (GPa) | 1.08 |
Average Debye sound velocity (m/s) | 2384.484 |
Debye temperature (K) | 331.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olowookere, I.O.; Adebambo, P.O.; Agbaoye, R.O.; Raji, A.T.; Idowu, M.A.; Kenmoe, S.; Adebayo, G.A. Unveiling the Doping- and Temperature-Dependent Properties of Organic Semiconductor Orthorhombic Rubrene from First Principles. Solids 2024, 5, 278-291. https://doi.org/10.3390/solids5020018
Olowookere IO, Adebambo PO, Agbaoye RO, Raji AT, Idowu MA, Kenmoe S, Adebayo GA. Unveiling the Doping- and Temperature-Dependent Properties of Organic Semiconductor Orthorhombic Rubrene from First Principles. Solids. 2024; 5(2):278-291. https://doi.org/10.3390/solids5020018
Chicago/Turabian StyleOlowookere, Israel Oluwatobi, Paul Olufunso Adebambo, Ridwan Olamide Agbaoye, Abdulrafiu Tunde Raji, Mopelola Abidemi Idowu, Stephane Kenmoe, and Gboyega Augustine Adebayo. 2024. "Unveiling the Doping- and Temperature-Dependent Properties of Organic Semiconductor Orthorhombic Rubrene from First Principles" Solids 5, no. 2: 278-291. https://doi.org/10.3390/solids5020018
APA StyleOlowookere, I. O., Adebambo, P. O., Agbaoye, R. O., Raji, A. T., Idowu, M. A., Kenmoe, S., & Adebayo, G. A. (2024). Unveiling the Doping- and Temperature-Dependent Properties of Organic Semiconductor Orthorhombic Rubrene from First Principles. Solids, 5(2), 278-291. https://doi.org/10.3390/solids5020018