Detection of Single Burials Using Multispectral Drone Data: Three Case Studies
Abstract
:1. Introduction
1.1. Literature Review
1.2. Site Descriptions
2. Materials and Methods
2.1. Data Acquisition
2.2. Data Processing
3. Results
3.1. Scatter Plots
3.2. Digital Terrain Models
3.3. Success of Imaging
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- FAFG. Available online: https://fafg.org/ (accessed on 9 December 2021).
- Kalacska, M.; Bell, L.S. Remote Sensing as a Tool for the Detection of Clandestine Mass Graves. Can. Soc. Forensic Sci. J. 2006, 39, 1–13. [Google Scholar] [CrossRef]
- Leblanc, G.; Kalacska, M.; Soffer, R. Detection of Single Graves by Airborne Hyperspectral Imaging. Forensic Sci. Int. 2014, 245, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Parrott, E.; Panter, H.; Morrissey, J.; Bezombes, F. A Low Cost Approach to Disturbed Soil Detection Using Low Altitude Digital Imagery from an Unmanned Aerial Vehicle. Drones 2019, 3, 50. [Google Scholar] [CrossRef] [Green Version]
- Isaacks, M.E.R. The Use of Near-Infrared Remote Sensing in the Detection of Clandestine Human Remains (Unpublished Thesis). Master Thesis, Texas State University, San Marcos, Texas, USA, 2015. [Google Scholar]
- Evers, R.; Masters, P. The Application of Low-Altitude near-Infrared Aerial Photography for Detecting Clandestine Burials Using a UAV and Low-Cost Unmodified Digital Camera. Forensic Sci. Int. 2018, 289, 408–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urbanová, P.; Jurda, M.; Vojtíšek, T.; Krajsa, J. Using Drone-Mounted Cameras for on-Site Body Documentation: 3D Mapping and Active Survey. Forensic Sci. Int. 2017, 281, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Butters, O.; Krosch, M.N.; Roberts, M.; MacGregor, D. Application of Forward-Looking Infrared (FLIR) Imaging from an Unmanned Aerial Platform in the Search for Decomposing Remains. J. Forensic Sci. 2021, 66, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Brabazon, H.; DeBruyn, J.M.; Lenaghan, S.C.; Li, F.; Mundorff, A.Z.; Steadman, D.W.; Stewart, C.N. Plants to Remotely Detect Human Decomposition? Trends Plant Sci. 2020, 25, 947–949. [Google Scholar] [CrossRef]
- Murray, B.; Anderson, D.T.; Wescott, D.J.; Moorhead, R.; Anderson, M.F. Survey and Insights into Unmanned Aerial-Vehicle-Based Detection and Documentation of Clandestine Graves and Human Remains. Hum. Biol. 2018, 90, 45–61. [Google Scholar] [CrossRef]
- Dozal, L.; Silván-Cárdenas, J.L.; Moctezuma, D.; Siordia, O.S.; Naredo, E. Evolutionary Approach for Detection of Buried Remains Using Hyperspectral Images. Photogramm. Eng. Remote Sens. 2018, 84, 435–450. [Google Scholar] [CrossRef]
- Silván-Cárdenas, J.L.; Caccavari-Garza, A.; Quinto-Sánchez, M.E.; Coronado-Juárez, E.; Quiroz-Suarez, D. Assessing Optical Remote Sensing for Grave Detection. Forensic Sci. Int. 2021, 329, 111064. [Google Scholar] [CrossRef] [PubMed]
- Rocke, B.; Ruffell, A.; Donnelly, L. Drone Aerial Imagery for the Simulation of a Neonate Burial Based on the Geoforensic Search Strategy (GSS). J. Forensic Sci. 2021, 66, 1506–1519. [Google Scholar] [CrossRef] [PubMed]
- Bioucas-Dias, J.M.; Plaza, A.; Camps-Valls, G.; Scheunders, P.; Nasrabadi, N.; Chanussot, J. Hyperspectral Remote Sensing Data Analysis and Future Challenges. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–36. [Google Scholar] [CrossRef] [Green Version]
- Making Successful Maps—DroneDeploy. Available online: https://help.dronedeploy.com/hc/en-us/articles/1500004964282-Making-Successful-Maps (accessed on 10 December 2021).
- Image Acquisition. Available online: https://support.pix4d.com/hc/en-us/articles/115002471546-Image-acquisition (accessed on 10 December 2021).
- Jones, H.G.; Vaughan, R.A. Remote Sensing of Vegetation: Principles, Techniques, and Applications; OUP: Oxford, UK, 2010; ISBN 978-0-19-920779-4. [Google Scholar]
- Costa, L.; Nunes, L.; Ampatzidis, Y. A New Visible Band Index (VNDVI) for Estimating NDVI Values on RGB Images Utilizing Genetic Algorithms. Comput. Electron. Agric. 2020, 172, 105334. [Google Scholar] [CrossRef]
- Park, W.; Pak, S.; Shim, H.; Le, H.A.N.; Im, M.; Chang, S.; Yu, J. Photometric Transformation from RGB Bayer Filter System to Johnson–Cousins BVR Filter System. Adv. Space Res. 2016, 57, 509–518. [Google Scholar] [CrossRef] [Green Version]
- García Cárdenas, D.A.; Ramón Valencia, J.A.; Alzate Velásquez, D.F.; Palacios Gonzalez, J.R. Dynamics of the Indices NDVI and GNDVI in a Rice Growing in Its Reproduction Phase from Multi-Spectral Aerial Images Taken by Drones | SpringerLink. Available online: https://link.springer.com/chapter/10.1007/978-3-030-04447-3_7 (accessed on 9 December 2021).
- Candiago, S.; Remondino, F.; De Giglio, M.; Dubbini, M.; Gattelli, M. Evaluating Multispectral Images and Vegetation Indices for Precision Farming Applications from UAV Images. Remote Sens. 2015, 7, 4026–4047. [Google Scholar] [CrossRef] [Green Version]
- Mann, R.W.; Bass, W.M.; Meadows, L. Time since Death and Decomposition of the Human Body: Variables and Observations in Case and Experimental Field Studies. J. Forensic Sci. 1990, 35, 103–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Statheropoulos, M.; Spiliopoulou, C.; Agapiou, A. A Study of Volatile Organic Compounds Evolved from the Decaying Human Body. Forensic Sci. Int. 2005, 153, 147–155. [Google Scholar] [CrossRef]
- Tumer, A.R.; Karacaoglu, E.; Namli, A.; Keten, A.; Farasat, S.; Akcan, R.; Sert, O.; Odabaşi, A.B. Effects of Different Types of Soil on Decomposition: An Experimental Study. Leg. Med. 2013, 15, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Pawlett, M.; Rickson, J.; Niziolomski, J.; Churchill, S.; Kešner, M. Human Cadaver Burial Depth Affects Soil Microbial and Nutrient Status. Archaeol. Environ. Forensic Sci. 2018, 1, 119–125. [Google Scholar] [CrossRef]
- Gojda, M.; Hejcman, M. Cropmarks in Main Field Crops Enable the Identification of a Wide Spectrum of Buried Features on Archaeological Sites in Central Europe. J. Archaeol. Sci. 2012, 39, 1655–1664. [Google Scholar] [CrossRef]
- Carter, D.O.; Yellowlees, D.; Tibbett, M. Moisture Can Be the Dominant Environmental Parameter Governing Cadaver Decomposition in Soil. Forensic Sci. Int. 2010, 200, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Vass, A.A. The Elusive Universal Post-Mortem Interval Formula. Forensic Sci. Int. 2011, 204, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Soils Guide—Soilscapes. Available online: http://www.landis.org.uk/services/soilsguide/soilscapes.cfm?ssid=6 (accessed on 10 December 2021).
- Deadly Secrets—The Science of Decomposition—Curious. Available online: https://www.science.org.au/curious/decomposition (accessed on 10 December 2021).
- Pringle, J.K.; Jervis, J.; Cassella, J.P.; Cassidy, N.J. Time-Lapse Geophysical Investigations over a Simulated Urban Clandestine Grave. J. Forensic Sci. 2008, 53, 1405–1416. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, L.; Harrison, M.; Pirrie, D.; Ruffell, A.; Dawson, L. (Eds.) A Guide to Forensic Geology; Geological Society: London, UK, 2021. [Google Scholar]
Site 1 | Site 2 | Site 3 | |
---|---|---|---|
Soil Type | Luvisol | Stagnosol | Luvisol |
Fertility | Moderate to high | Moderate | Low |
Drainage | Slightly impeded | Impeded | Freely draining |
Burial Depth | 1.8–1.4 m | 1.4 m | 1.4 m |
Site Maintenance | Trimmed regularly | Mown yearly | Mown yearly |
Burial Ages | 2010–2021 | 2014–2021 | 2005–2021 |
Grass Type | Cocks Foot, Yorkshire Fog, False Oat, Creeping Bent | ||
Grass Height | 70 cm | 1 m | 1 m |
Relief | 4 m | 4 m | 35 m |
2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | |
---|---|---|---|---|---|---|---|
Site 1 | 86% | 62% | 61% | 49% | 48% | 23% | - |
Site 2 | 65% | 53% | 60% | 71% | 13% | 33% | 20% |
Site 3 | 50% | 30% | 26% | 9% | 3% | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocke, B.; Ruffell, A. Detection of Single Burials Using Multispectral Drone Data: Three Case Studies. Forensic Sci. 2022, 2, 72-87. https://doi.org/10.3390/forensicsci2010006
Rocke B, Ruffell A. Detection of Single Burials Using Multispectral Drone Data: Three Case Studies. Forensic Sciences. 2022; 2(1):72-87. https://doi.org/10.3390/forensicsci2010006
Chicago/Turabian StyleRocke, Benjamin, and Alastair Ruffell. 2022. "Detection of Single Burials Using Multispectral Drone Data: Three Case Studies" Forensic Sciences 2, no. 1: 72-87. https://doi.org/10.3390/forensicsci2010006
APA StyleRocke, B., & Ruffell, A. (2022). Detection of Single Burials Using Multispectral Drone Data: Three Case Studies. Forensic Sciences, 2(1), 72-87. https://doi.org/10.3390/forensicsci2010006