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Abstract: Natural burials are interments where a body is buried without embalming fluids or coffins.
These burial grounds are ideal locations for retrospective multispectral analysis of non-conventional
single burials as the age and location of each grave is documented. The detection of disturbed
soil under the influence of human decomposition has been well-studied, but lacks the temporal
component needed for characterising simulated clandestine burials. A critical gap in the literature
is how these burials re-vegetate and to what extent soil profiles re-establish over years or decades.
Multispectral drone data from three natural burial sites in southern U.K. are documented here, with
trends in re-vegetation from bare soil to full recovery in graves as old as 2005. As with many burial
detection techniques, environmental influence is a limiting variable to universal use of this method.
However, we suggest a timeline over which single burial sites in this location reach detection limits
and possible reasons for variations in these limits.

Keywords: remote sensing; forensics; UAV’s; multispectral data; clandestine graves; natural burials;
single burials; NDVI; human decomposition

1. Introduction
1.1. Literature Review

The use of remote sensing to locate clandestine burials (‘burials’ in this paper may not
necessarily refer to a human body, but imply forensic relevance, while ‘graves’ are used to
indicate interment of a body) is a well-documented area within forensic science. As early
as 2002, a retrospective study of a mass grave in Guatemala was detected by the ASTER
satellite using multispectral data at 15 m/pixel resolution [1]. Four years later, Kalacska
and Bell [2] simulated a Guatemalan mass grave using multiple larger-scale cattle burials
(5 m × 5 m), which successfully identified against surrounding vegetation by airborne
hyperspectral data at a resolution of 3–4 m/pixel.

The resolution of satellite data has been a limiting factor in detecting smaller buri-
als. Single burials could only be detected using sensors mounted to aircraft, such as in
Leblanc et al. [3]. As drone (also known as Unmanned Aerial Vehicles or UAV’s) technol-
ogy advanced, sensors previously relegated to satellites or aircraft became accessible at a
much lower altitude, image resolution increased drastically [4,5], and single grave burials
became the next subject of research.

With the availability of commercial-grade drones, initial studies used off-the-shelf
RGB cameras [4] or modified RGB cameras such as those used in Evers and Masters [6].
As drone-mounted multi- and hyperspectral sensors became available, a diverse range of
studies over single and mass burials ensued: Urbanova et al. [7]; Butters et al. [8]; Evers and
Masters [6]; Brabazon et al. [9]; Murray et al. [10]; Dozal et al. [11]; and Silvan-Cardenas [12].
Many of these studies involved simulated graves using pigs or cattle, which were monitored
over months or years, which is common practice in taphonomy [11,12].

The need for a study focussing on the temporal aspect of single human grave detection
over multiple years is the inspiration for this work. Rocke et al. [13] successfully imaged a
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16-year-old simulated neonate burial using an NDVI algorithm derived from a standard
RGB drone, but this only illuminates the gap between the shorter-term simulated grave
studies and older burials. A comprehensive study using multispectral data on many single
burials from a range of ages is needed to determine trends in ground disturbances, from
burial inception (bare soil) to full re-vegetation.

More sophisticated technology such as hyperspectral data is being used for single or
multi-grave detection, most recently by Silván-Cárdenas et al. [12]. While the potential
of hyperspectral data to detect anomalies in soil and vegetation is considerably greater
than multispectral imaging, hyperspectral data often requires complex computation and
algorithms, which is outside the remit of many scientists, humanitarian organisations and
law enforcement [14]. The nature and quantity of such data have become so vast, in the
shadow of this progress, many unexplored tests remain in more accessible hardware, such
as multispectral sensing used here. This study focuses on multispectral data taken at three
anonymised natural burial grounds in the UK with interments ranging from 2005–2021.

In addition, we want to highlight how the full potential of this technology can detect
single graves, namely in combining multispectral data with digital terrain modelling.
This technique extends the application of this work into micro-topography of ground
disturbances, which can outlast anomalies associated with vegetation.

1.2. Site Descriptions

Site 1 is a flat (relief of ~4 m) grassland. The soil characteristics are recorded in Table 1.
At this site, early (2006) burials were at 1.8m depth but were later changed to 1.4 m. In
the grave digging process, turf is scraped off and replaced, soil is compacted after burial,
and early sites were planted with trees around the time of burial. The graves themselves
are not mown, but paths between are. No grass seeding is done—the ground re-vegetates
naturally. Grasses (see Figure 1), reach about 70 cm in height except for mown paths. Grass
varieties and soil type are listed in Table 1.

Table 1. Summary of site chacteristics.

Site 1 Site 2 Site 3

Soil Type Luvisol Stagnosol Luvisol
Fertility Moderate to high Moderate Low

Drainage Slightly impeded Impeded Freely draining
Burial Depth 1.8–1.4 m 1.4 m 1.4 m

Site Maintenance Trimmed regularly Mown yearly Mown yearly
Burial Ages 2010–2021 2014–2021 2005–2021
Grass Type Cocks Foot, Yorkshire Fog, False Oat, Creeping Bent

Grass Height 70 cm 1 m 1 m
Relief 4 m 4 m 35 m

Site 2 is a flat (relief of ~4 m) grassland. Soil characteristics and grass types are recorded
in Table 1. At this site, burials are typically 1.4 m depth. Turf is scraped off and replaced
over burials, and soil is compacted after burial and no grass seeding done. Grasses reached
one metre in height across the site except for mown paths.

Site 3 is a grassland with much higher relief than previous sites. At this site, turf is
scraped the most carefully of the three sites, soil is compacted, and turf replaced. No grass
seeing is done. Burial depth here is around 1.4 m depth. Grass varieties and soil types are
listed in Table 1. Grasses reached one metre in height across the site except for mown paths.
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Figure 1. Typical grasses from Site 1, but representative of grasses at all sites. Varieties identified 
are Cocks Foot (Dactylis glomerata), Yorkshire Fog (Holcus lanatus), False Oat (Arrhenatherum elatius), 
and Creeping Bent (Agrostis stolonifera). Grass height here is about 70 cm, but grass at Sites 2 and 3 
was taller (~1 m). 

Site 2 is a flat (relief of ~4 m) grassland. Soil characteristics and grass types are rec-
orded in Table 1. At this site, burials are typically 1.4 m depth. Turf is scraped off and 
replaced over burials, and soil is compacted after burial and no grass seeding done. 
Grasses reached one metre in height across the site except for mown paths.  

Site 3 is a grassland with much higher relief than previous sites. At this site, turf is 
scraped the most carefully of the three sites, soil is compacted, and turf replaced. No grass 
seeing is done. Burial depth here is around 1.4 m depth. Grass varieties and soil types are 
listed in Table 1. Grasses reached one metre in height across the site except for mown 
paths.  

2. Materials and Methods 
2.1. Data Acquisition 

All three study sites were flown with a DJI Inspire 2-mounted Sentera 6x multispec-
tral sensor in June 2021. Acquisition took place near solar noon at around 13:00 when the 
sun reached its azimuth (apex of 62°). All United Kingdom Civil Aviation Authority and 

Figure 1. Typical grasses from Site 1, but representative of grasses at all sites. Varieties identified are
Cocks Foot (Dactylis glomerata), Yorkshire Fog (Holcus lanatus), False Oat (Arrhenatherum elatius), and
Creeping Bent (Agrostis stolonifera). Grass height here is about 70 cm, but grass at Sites 2 and 3 was
taller (~1 m).

2. Materials and Methods
2.1. Data Acquisition

All three study sites were flown with a DJI Inspire 2-mounted Sentera 6x multispectral
sensor in June 2021. Acquisition took place near solar noon at around 13:00 when the
sun reached its azimuth (apex of 62◦). All United Kingdom Civil Aviation Authority and
military flight paths and perimeters were checked using the DJI flight safety software
updates; a full safety check of the drone and surroundings performed, as per the operator’s
pilot license and permission granted by the site owners and managers. In addition, visitors
were notified in advance of the flights and times, with static notices positioned at visible
access points. The Sentera 6x was flown at 90◦ facing directly down as this was the only
possible configuration for the device. Each site was flown in North/South transects at 60 m
altitude with 80% front and side overlap. This is higher than recommended overlap from
either of the common autonomous flight software packages available: Drone Deploy [15]
or Pix4D [16], but the GPS trigger on the Sentera was set to 80% overlap as a default, and
flight patterns reflected this setting. Before each flight, several exposures of the Sentera
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calibration panel were taken. If cloudy weather made take-off and landing light appreciably
different, post-flight exposures were also taken. Fortunately, each site was flown in near
full sun and only once required post-flight calibration.

The Sentera 6x sensor recorded all five bands and RGB simultaneously at each of the
three sites. The sensor has five 3.2MP multispectral bands and one 20MP RGB camera. See
Figure 2 for the wavelengths and widths of each of the five bands.
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Figure 2. Sentera 6x sensor (taken from https://support.sentera.com/ (accessed on 29 October
2020) with five wavelengths and widths. The 5 bands are: (1) Blue: 475 nm × 30 nm; (2) Green:
550 nm × 20 nm; (3) Red: 670 nm × 30 nm; (4) Red Edge: 715 nm × 10 nm; and (5) NIR: 840 nm × 20 nm.
The sixth sensor is an RGB camera.

2.2. Data Processing

Multispectral data were loaded into Pix4D Fields, where each of the five bands from
the Sentera 6x was photo-stitched into a multispectral orthomosaic (Figure 3). This software
automatically recognises the Sentera calibration panel and makes the necessary adjustments.
From these orthomosaics, index products can be calculated in the Fields software menu,
in this case, VARI (visible atmospherically resistant index), NDRE (normalised difference
red edge), NDVI (normalised difference vegetation index), and GNDVI (green normalised
difference vegetation index). The calculations for each are shown in Appendix A.

https://support.sentera.com/
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Figure 3. Sites 1 (a), 2 (b) and 3 (c) multispectral orthomosaics. Red, green, blue, red edge, and near-
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corrected visually by either bulk shifts or process of elimination. 
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Figure 3. Sites 1 (a), 2 (b) and 3 (c) multispectral orthomosaics. Red, green, blue, red edge, and
near-infrared orthmosiacs are all combined to create these multispectral images. Grave polygons and
years associated with them are shown at all three sites. Grave markers are imprecise and had to be
corrected visually by either bulk shifts or process of elimination.
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Where visible and corresponding to a GPS grave marker, individual graves were traced
on these maps. Grave polygons weren’t automatically chosen by each marker because
of imprecision of GPS coordinates and the interference of trees, shadow, wildflowers,
animal burrows, etc. Rows of graves were traced as groups when clearly delineated and
uninterrupted by interference. They were outlined as a group because spaces between the
graves became difficult to delineate as graves aged, but an index anomaly was present.
This was the case primarily in graves older than six years at Site 1, four years at Site 2, and
three years at Site 3. Where GPS coordinates showed a grave, but no anomaly was apparent
in the index map, no polygons were made as imprecision in this data made choosing a
precise burial location impossible.

A control site was chosen as a point of comparison for grave polygons at each location
at least 1m away from graves and possible influences from burials. Each control site was as
visually similar (vegetation, slope, aspect) to the grave area as possible (similar vegetation,
slope, etc.), but in undisturbed ground.

Control site and grave polygons were all overlain in QGIS 3.20.2. Red and NIR ortho-
mosaics and data points were extracted from them in .csv format in Eigenvector’s Solo 9.0
software. Because of the sharp change in reflectance from vegetation between red and NIR
bands [17], scatter plots help visualise trends as new burial sites of bare soil vegetate over
time. Each grave year .csv data is a series on the scatter plot, and the average NDVI value
for each series is plotted as a data label.

Single grave polygons, visible in either digital terrain models (Figure 4), or vegetation
indices such as NDVI shown in Figure 5, were tallied to determine the percentage of graves
successfully identified. Burials were counted if grave markers corresponded to an anomaly
with the appropriate geometry and aren’t attributable to other factors such as burrows,
wildflowers, trees, shadow, or grass cutting.
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Figure 5. Site 2 NDVI zoom of the same area shown in Figure 4. Graves to the northeast corner
from 2017 are imaged more clearly in the digital terrain model. The full range of index values is
constrained to highlight localised differences.

3. Results
3.1. Scatter Plots

Scatter plots consist of point clouds of Red and NIR .csv data from single grave
polygons or groups of graves from individual years. Each burial year series is plotted
against soil (representing no vegetative recovery) and a control area representing ‘full
recovery’ (the most mature grassland observed from height and diversity), as compared
to undisturbed ground (Figures 6–8). These plots show a trend in ground disturbance
re-vegetation as new burials age. Grave year series increase in average NDVI steadily from
most recent and trend toward or past the control set average NDVI value (see ‘Discussion’
below for more about NDVI). Even disturbances where turf is scraped off and replaced are
evident in the scatter plot, such as at Site 3 (Figure 8). The recovery trend at each site isn’t
perfectly chronological, particularly at Sites 1 and 3. In the former case (Figure 6), burial
depth and the practice of tree planting have changed, and in the latter (Figure 8) where
grave polygons are challenging to resolve due to meticulous turf scraping and replacement
in grave digging. Site 2 (Figure 7) shows an apparent chronology of recovery, and by 2019
(two years old), many graves have recovered beyond the control site average NDVI value.

3.2. Digital Terrain Models

In addition to assessing slope of a study site, digital terrain models (DTM’s) are robust
ancillary datasets for multispectral imaging, and in some instances, can resolve subtleties in
elevation that show grave locations where vegetative indices do not (Figures 4 and 5). Site
2 vegetative anomalies are detailed enough to delineate single graves from 2016. Even with
a drone not equipped with RTK (real-time kinematics) or PPK (post-processing kinematics),
and Z error at Site 2 of ±73 cm, these five-year-old burials are evident. The addition of
LiDar would improve such an additional proxy dataset.
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NDVI value of the control set, indicating possible incomplete vegetation recovery. 

Figure 6. Site 1 Red vs. NIR scatterplot with average NDVI data labels for each series. NDVI increases
from bottom right to top left. The oldest grave series, (2016), doesn’t reach the same average NDVI
value of the control set, indicating possible incomplete vegetation recovery.
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Figure 7. Site 2 Red vs. NIR scatterplot with average NDVI data labels for each series. NDVI increases
from bottom right to top left. By 2019, average NDVI exceed that of the control set NDVI, indicating
enhancement in vegetation from natural burials at this site.
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Figure 8. Site 3 Red vs. NIR scatterplot with average NDVI data labels for each series. NDVI increases
from bottom right to top left. 2017 grave values reach the NDVI of the control set but show a slightly
positive effect on vegetation from natural burials.

3.3. Success of Imaging

Using both vegetative indices and digital terrain modelling, 86% of 2021 single burials
were successfully resolved at Site 1, while only 50% of burials were resolved at Site 3 from
the same year (Table 2). NDVI and GNDVI show burials most clearly of the indices used
in this study and show burials where orthomosaics (Figure 3) do not. See Figure 9 for
NDVI, GNDVI, VARI, and NDRE comparisons at Site 1, and NDVI of each site in Figure 10.
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At each location, single burials were seen at Site 1 as far back as 2016; Site 2—2016, and
Site 3—2017.

Table 2. Percent of detected graves by vegetation index or digital terrain model.

2021 2020 2019 2018 2017 2016 2015

Site 1 86% 62% 61% 49% 48% 23% -
Site 2 65% 53% 60% 71% 13% 33% 20%
Site 3 50% 30% 26% 9% 3% - -
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Figure 9. Site 1 Vegetative Index maps include VARI (a), NDRE (b), NDVI (c), and GNDVI (d). The 
full range of index values is constrained to highlight localised differences. NDVI shows single 
graves most clearly, with younger graves to the left (2021) and older graves to the right (2016). 
NDRE has the poorest single grave resolution. 

Figure 9. Site 1 Vegetative Index maps include VARI (A), NDRE (B), NDVI (C), and GNDVI (D).
The full range of index values is constrained to highlight localised differences. NDVI shows single
graves most clearly, with younger graves to the left (2021) and older graves to the right (2016). NDRE
has the poorest single grave resolution.
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Figure 10. NDVI map of Sites 1 (A), 2 (B) and 3 (C) from top to bottom. The full range of index values
is constrained to highlight localised differences.
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4. Discussion

GNDVI and NDVI maps showed burials more clearly than NDRE or VARI at each of
the three sites (see Figure 9 for a comparison of vegetative indices at Site 1). GNDVI, NDVI,
and NDRE use bands beyond visible light (in this case, RE and NIR). The sharp change
in reflectance from vegetation between red and NIR bands is critical in determining plant
health [17]. On the other hand, VARI uses low reflectance values and responds to more
significant variations such as soil vs. vegetation [18]. In contrast, both NDVI and GNDVI
focus more on green vs. dry biomass [18]. In both cases, multispectral cameras are required
because of the need for red edge and near-infrared bands, which are typically filtered out
by a Bayer Filter in consumer-grade cameras [19].

GNDVI is calculated similarly to NDVI but uses the green band instead of the red (see
Appendix A) [11,18]. It indicates levels of photosynthetically absorbed radiation, making it
more sensitive to chlorophyll than NDVI [20,21]. Figure 10 shows NDVI maps at each of
the four sites, where all three sites appear to respond differently to human burials.

Site 1 shows a net loss in recovery per NDVI. The area of limited recovery in the
southeast corner is also topographically-elevated, and lack of rain combined with multiple
days over 20 degrees Celsius could be the reason for the drier biomass indicated by lower
NDVI values relative to the control set at the oldest discernible graves (2016). Early burials
were at a depth of 1.8 m and later changed to 1.4m. According to Mann et al. [22] (see
also Statheropolous et al. [23]), burial depth can play a significant role in the rate of
decomposition. Burials at up to 0.6m may skeletonise in a few months to a year, while
deeper burials even at 1.2 m take years [22], each dependant on soil and sub-soil type.

Site 2 appears to show human burials are a net gain for vegetative health at this site
as the oldest discernible burials (2015) exceed the average NDVI value of the control set.
Site 2 has a prominent impermeable clay layer at around one metre of depth. This site was
flown a day after Site 1, thus also in dry conditions. Tumer et al. [24] show decomposition
slows in clayey soils compared to loamy or organic soils, but clayey soils also have more
microbial activity according to Pawlett et al. [25].

Site 3 appears to show a neutral or slightly positive gain in vegetative health from
human burials. It was flown after several days of steady rain and cooler temperatures.
Older discernible burials here (2017) are very close to the NDVI values of the control set.
However, topography at this site is radically different from Sites 1 and 2 and slopes down to
the south by 35 metres. This could impact drainage and thus moisture content and possible
movement of decomposition by-products.

The difference in grave digging at all three sites impacts how these sites recover.
Where graves are more compacted, decreased gas diffusion and anaerobic conditions
slow decomposition [25]. Despite this, site vegetation may be invigorated by mechanical
disturbance of the soil independent of human decomposition, such as decreased mechanical
resistance to rooting [26].

Temperature is also a driving factor in decomposition. Mann et al. [22] say this is
the most significant variable in human decomposition, but typically in unburied cadavers.
However, Carter et al. [27] show moisture to be a more significant factor in decomposition.
Variations in temperature combined with even slight changes in burial depth and moisture
could create substantial differences in decomposition rates, which is in line with Vass
et al. [28], who identity four variables of significance: temperature, moisture, pH, and
the partial pressure of oxygen. Some of these variables are unknown at the study sites
presented here, but from available generic soil descriptions from the British Geological
Survey Soil Observatory, only Site 3 is listed as having acidic soil [29].

Speed of decomposition is given emphasis here because the three study sites vary
according to Vass et al.’s four significant variables [28]. Decomposition rate impacts veg-
etation health and can help explain why some sites over or under-recover. As a body
decomposes, it initially kills off plant life because of the surge in nitrogen and phosphates
released into the soil, according to Forbes et al. [30]. Following this die-off, the same
nutrients can enhance vegetation growth. Pawlett et al. [25] advocate for shallow burial of
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less than 0.3m to allow microbial activity to break down a corpse, promoting the recycling
of nutrients in the soil. Deeper burials and soil with higher clay content reduce microbial
activity and thus slow or prevent the release of nutrients. Pawlett’s findings corroborate
Forbes’s supposition that at least in shallow graves, a surge of nutrients is released into
the soil, but says this increase can enhance plant growth (Forbes and Pawlett’s experi-
ments varied considerably as their study sites were in Australia and the UK, respectively).
In deeper burials, Pawlett demonstrates that the nutrient release is much slower at a 1 m
burial depth [25].

Even minor differences between sites can change how bodies in natural burials de-
compose. The corpse/soil ecosystem can vary considerably in a similar climate and over
small distances. Because of this, it is not unexpected to see differences in recovery at all
three sites.

5. Conclusions

Observing long-term recovery trends and detection limits in multispectral imaging of
a single human burial is yet to be published, and this work begins to fill that critical gap.
Understanding the uses and limitations of this technology before a forensic search informs
decision making for instances where multispectral remote sensing would be useful, and if
so, how to acquire it.

These case studies only demonstrate recovery trends in one climate type (maritime,
temperate) at one time of year. Further work is needed in different climates, soils, seasons,
and burial depths, as these are all critical variables in how human decomposition interacts
with soil and influences vegetation growth. In this way, multispectral drone imagery is
akin to geophysical assessments of burials, especially over time [31]: there is no simple
answer or single technique—all are constrained by the environment. But as limited as this
study may be, the technology reaches into the remit of archaeology, ecology, forensics, and
agriculture, to name a few. More specifically, the use of drone-aquired multispectral data
may be added to the conjunctive use of other technologies (botany, pedology, geophysics,
search dogs) advocated in the search for buried human remains [32].
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Appendix A

Formulas below are used to calculate index products shown in Figures 5, 9 and 10,
and NDVI values in scatterplots in Figures 6–8.

VARI =
Green − Red

Green + Red − Blue
(A1)

NDRE =
Red Edge − Red
Red Edge + Red

(A2)

NDVI =
NIR − Red
NIR + Red

(A3)

GNDVI =
NIR − Green
NIR + Green

(A4)
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