The Composite Method: A Novel, Continuum-Based Approach to Estimating Age from the Female Pubic Symphysis with Particular Relevance to Mature Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Instrumentation
2.3. Rendering and Acquisition
3. Technique
- Upper Boundary (UB)
- Lower Boundary (LB)
- Outline (OTL)
- Surface Texture (ST)
- Topography (TOP)
- Density Adjustment
3.1. Application
3.1.1. Regression Approach
- (1)
- Find the pubic symphysis for the individual in question, isolate either the left or the right os pubis, and locate its articular surface, or “face”;
- (2)
- Looking at that face directly, locate the Upper Boundary (Figure 2);
- (3)
- Consult the descriptions and the images under the “Upper Boundary” heading of the TCM guide (Figure 3) and choose the column that most closely fits the individual in question;
- (4)
- Note the number, or the “score,” for that column and reserve it for later;
- (5)
- (6)
- To assign the density adjustment, find the axial image in which the symphysis is at its widest (dorsoventrally), choose the “Density” column (Figure 12) that best matches the individual in question, and retain that number;
- (7)
- Input each number into the following equation:−1.99 + (3.01 × sqrt{Density score}) + (0.92 × Upper Boundary score) + (0.46 × Lower Boundary score) + (1.13 × Outline score) + (1.18 × Surface Texture score) + (1.38 × Topography score) = mean age;
- (8)
- Add and subtract 11.32 (SD = 5.66 × 2, 95% CI) from that mean age;
- (9)
- The range that is produced is the estimated age for the individual in question.
3.1.2. Addition Approach
- (1)
- Find the pubic symphysis for the individual in question, isolate either the left or the right os pubis, and locate its articular surface, or “face”;
- (2)
- Looking at that face directly, locate the Upper Boundary (Figure 2);
- (3)
- Consult the descriptions and the images under the “Upper Boundary” heading (Figure 3) and choose the column that most closely fits the individual in question;
- (4)
- Note the number, or the “score”, below that column and reserve it for later;
- (5)
- (6)
- To assign the density adjustment, find the axial image in which the symphysis is at its widest dorsoventrally, choose the “Density” column (Figure 12) that best matches the axial image of the individual in question, and retain that number;
- (7)
- Once the numbers for all five of the AOIs, plus the density adjustment, have been assigned, add them together and retain the sum. This sum is the mean age;
- (8)
- Add and subtract half of a population appropriate prediction envelope to and from either side of that sum, respectively. In this study, that envelope was 24 years (11.32, or two standard deviations of 5.66, rounded up to the nearest whole number—12);
- (9)
- The range that is produced is the estimated age for the individual in question.
3.2. Statistical Analysis
4. Results
4.1. Observer Subset
4.2. Inter-Observer Error
4.3. Cross Validation
5. Application Example
6. Discussion
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Milner, G.R.; Boldsen, J.L. Skeletal Age Estimation: Where We Are and Where We Should Go. In A Companion to Forensic Anthropology; Dirkmaat, D.C., Ed.; Wiley Blackwell Publishing: West Sussex, UK, 2012; pp. 224–238. [Google Scholar]
- Kemkes-Grottenthaler, A. Aging Through the Ages: Historical Perspectives on Age Indicator Methods. In Paleodemography: Age Distributions from Skeletal Samples; Hoppa, R., Vaupel, J., Eds.; Cambridge University Press: Cambridge, UK, 2002; pp. 48–72. [Google Scholar]
- Kobyliansky, E.; Karasik, D.; Belkin, V.; Livshits, G. Bone Ageing: Genetics Versus Environment. Ann. Hum. Biol. 2000, 27, 433–451. [Google Scholar] [PubMed]
- Mays, S. The Effect of Factors Other Than Age Upon Skeletal Age Indicators in the Adult. Ann. Hum. Biol. 2015, 42, 332–341. [Google Scholar] [CrossRef] [PubMed]
- Langley, N.R.; Jantz, R.L.; Ousley, S.D. The Effect of Novel Environments on Modern American Skeletons. Hum. Biol. 2016, 88, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Truesdell, J.M. Improving Precision in Age Estimation from the Female Pubic Symphysis: A Novel Technique for CT. Ph.D. Thesis, University of Oxford, Oxford, UK, 2017. [Google Scholar]
- Schmitt, A. Variabilité de la sénescence du squelette humain—Réflexions sur les indicateurs de l’âge au décès: À la recherché d’un outil performant. Ph.D. Thesis, University of Bordeaux, Bordeaux, France, 2001. [Google Scholar]
- Buckberry, J. The (Mis)Use of Adult Age Estimates in Osteology. Ann. Hum. Biol. 2015, 42, 323–331. [Google Scholar] [CrossRef] [Green Version]
- Cunha, E.; Baccino, E.; Martrille, L.; Ramsthaler, F.; Prieto, J.; Schuliar, Y.; Lynnerup, N.; Cattaneo, C. The Problem of Aging Human Remains and Living Individuals: A Review. Forensic Sci. Int. 2009, 193, 1–13. [Google Scholar] [CrossRef]
- Cappella, A.; Cummaudo, M.; Arrigoni, E.; Collini, F.; Cattaneo, C. The Issue of Age Estimation in a Modern Skeletal Population: Are Even the More Modern Current Aging Methods Satisfactory for the Elderly? J. Forensic Sci. 2017, 62, 12–17. [Google Scholar] [CrossRef]
- Falys, C.G.; Lewis, M.E. Proposing a Way Forward: A Review of Standardisation in the Use of Age Categories and Ageing Techniques in Osteological Analysis (2004–2009). Int. J. Osteoarchaeol. 2010, 21, 704–716. [Google Scholar] [CrossRef]
- Merritt, C. Testing the Accuracy of Adult Skeletal Age Estimation Methods: Original Methods Versus Revised and Newer Methods. Vis. Exp. Anthr. 2013, 12, 102–119. [Google Scholar]
- Baccino, E.; Schmitt, A. Determination of Adult Age at Death in the Forensic Context. In Forensic Anthropology and Medicine: Complementary Sciences from Recovery to Cause Death; Schmitt, A., Cunha, E., Pinheiro, J., Eds.; Humana Press Inc.: Totowa, NJ, USA, 2006; pp. 259–280. [Google Scholar]
- Falys, C.G.; Prangle, D. Estimating Age of Mature Adults from the Degeneration of the Sternal End of the Clavicle. Am. J. Phys. Anthr. 2015, 156, 203–214. [Google Scholar] [CrossRef] [Green Version]
- Price, M. Age Estimation Using the Sternal End of the Clavicle: A Test of the Falys and Prangle (2014) Archaeological Method for Forensic Application. Master’s Thesis, Boston University, Boston, MA, USA, 2017. [Google Scholar]
- Blom, A.A.; Inskip, S.A.; Baetsen, W.A.; Hoogland, M.L.P. Testing the Sternal Clavicle Aging Method on a Post-Medieval Dutch Skeletal Collection. Archaeometry 2018, 60, 1391–1402. [Google Scholar] [CrossRef]
- Falys, C. Estimating Age of Mature Adults from the Degeneration of the Ischial Tuberosity. In Proceedings of the 55th Annual Society for the Study of Human Biology Symposium, Oxford, UK, 9–11 December 2014. [Google Scholar]
- DiGangi, E.A.; Bethard, J.D.; Kimmerle, E.H.; Konigsberg, L.W. A New Method for Estimating Age-at-Death from the First Rib. Am. J. Phys. Anthr. 2009, 138, 164–176. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, Z. Use of the First Rib in the Age-at-Death Assessment of Adult Female Skeletal Remains. Master’s Thesis, Western Washington University, Bellingham, WA, USA, 2012. [Google Scholar]
- Hartnett, K. Analysis of Age-at-Death Estimation Using Data from a New, Modern Autopsy Sample--Part II: Sternal End of the Fourth Rib. J. Forensic Sci. 2010, 55, 1152–1156. [Google Scholar] [CrossRef] [PubMed]
- Merritt, C. A Test of Hartnett’s Revisions to the Pubic Symphysis and Fourth Rib Methods on a Modern Sample. J. Forensic Sci. 2014, 59, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Buckberry, J.; Chamberlain, A. Age Estimation from the Auricular Surface of the Ilium: A Revised Method. Am. J. Phys. Anthr. 2002, 119, 231–239. [Google Scholar] [CrossRef]
- Falys, C.; Schutkowski, H.; Weston, D.A. Auricular Surface Aging: Worse than Expected? A Test of the Revised Method on a Documented Historic Skeletal Assemblage. Am. J. Phys. Anthr. 2006, 130, 508–513. [Google Scholar] [CrossRef]
- Hens, S.M.; Godde, K. Auricular Surface Aging: Comparing Two Methods that Assess Morphological Change in the Ilium with Bayesian Analyses. J. Forensic Sci. 2015, 61 (Suppl. S1), 30–38. [Google Scholar] [CrossRef]
- Calce, S. A New Method to Estimate Adult Age-at-Death Using the Acetabulum. Am. J. Phys. Anthr. 2012, 148, 11–23. [Google Scholar] [CrossRef]
- San-Millán, M.; Rissech, C.; Turbón, D. New Approach to Age Estimation of Male and Female Adult Skeletons Based on the Morphological Characteristics of the Acetabulum. Int. J. Leg. Med. 2017, 131, 501–525. [Google Scholar] [CrossRef]
- Baccino, E.; Sinfield, L.; Colomb, S.; Baum, T.P.; Martrille, L. Technical note: The Two Step Procedure (TSP) for the Determination of Age at Death of Adult Human Remains in Forensic Cases. Forensic Sci. Int. 2014, 244, 247–251. [Google Scholar] [CrossRef]
- Brennaman, A.L.; Love, K.R.; Bethard, J.D.; Pokines, J.T. A Bayesian Approach to Age-at-Death Estimation from Osteoarthritis of the Shoulder in Modern North Americans. J. Forensic Sci. 2017, 62, 573–584. [Google Scholar] [CrossRef]
- Harth, S.; Obert, M.; Ramsthaler, F.; Reuß, C.; Traupe, H.; Verhoff, M.A. Ossification Degrees of Cranial Sutures Determined with Flat-Panel Computed Tomography: Narrowing the Age Estimate with Extrema. J. Forensic Sci. 2010, 55, 690–694. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, S.; Terazawa, K. Age Estimation from the Degree of Osteophyte Formation of Vertebral Columns in Japanese. Leg. Med. 2006, 8, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Listi, G.A.; Manhein, M.H. The Use of Vertebral Osteoarthritis and Osteophytosis in Age Estimation. J. Forensic Sci. 2012, 57, 1537–1540. [Google Scholar] [CrossRef] [PubMed]
- Beauthier, J.-P.; Lefevre, P.; Meunier, M.; Orban, R.; Polet, C.; Werquin, J.-P.; Quatrehomme, G. Palatine Sutures as Age Indicator: A Controlled Study in the Elderly. J. Forensic Sci. 2010, 55, 153–158. [Google Scholar] [CrossRef] [PubMed]
- United Nations, Department of Economic and Social Affairs. World Population Prospects 2019: Ten Key Findings; Population Division: New York, NY, USA, 2019; pp. 1–2. [Google Scholar]
- Vincent, G.; Velkoff, V. The Next Four Decades: The Older Population in the United States—2010 to 2050; U.S. Census Bureau: WA, USA, 2010; pp. 25–1138. [Google Scholar]
- Garvin, H.M.; Passalacqua, N.V. Current Practices by Forensic Anthropologists in Adult Skeletal Age Estimation. J. Forensic Sci. 2012, 57, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Todd, T.W. Age Changes in the Pubic Bone. I. The Male White Pubis. Am. J. Phys. Anthr. 1920, 3, 285–339. [Google Scholar] [CrossRef]
- Todd, T. Age Changes in the Pubic Bone, II: Pubis of the Male Negro-White Hybrid, III: Pubis of the White Female, IV: Pubis of the Female Negro-White Hybrid. Am. J. Phys. Anthr. 1921, 4, 1–77. [Google Scholar] [CrossRef] [Green Version]
- Brooks, S.T. Skeletal Age at Death: The Reliability of Cranial and Pubic Age Indicators. Am. J. Phys. Anthr. 1955, 13, 567–597. [Google Scholar] [CrossRef]
- McKern, T.W.; Stewart, T.D. Skeletal Age Changes in Young American Males, Analyzed from the Standpoint of Age Identification. In Headquarters Quartermaster Research and Development Command; Natick, MA, USA, 1957. [Google Scholar]
- Gilbert, B.M.; McKern, T.W. A Method for Aging the Female Os Pubis. Am. J. Phys. Anthr. 1973, 38, 31–38. [Google Scholar] [CrossRef]
- Hanihara, K.; Suzuki, T. Estimation of Age from the Pubic Symphysis by Means of Multiple Regression Analysis. Am. J. Phys. Anthr. 1978, 48, 233–240. [Google Scholar] [CrossRef]
- Snow, C.C. Equations for Estimating Age at Death from the Pubic Symphysis: A Modification of the McKern-Stewart Method. J. Forensic Sci. 1983, 28, 864–870. [Google Scholar] [CrossRef]
- Meindl, R.S.; Lovejoy, C.O.; Mensforth, R.P.; Walker, R.A. A Revised Method of Age Determination Using the Os Pubis with a Review and Tests of Accuracy of Other Current Methods of Pubic Symphyseal Aging. Am. J. Phys. Anthr. 1985, 68, 29–45. [Google Scholar] [CrossRef] [PubMed]
- Jackes, M.K. Pubic Symphysis Age Distributions. Am. J. Phys. Anthr. 1985, 68, 281–299. [Google Scholar] [CrossRef] [PubMed]
- Brooks, S.T.; Suchey, J.M. Skeletal Age Determination Based on the Os Pubis: A Comparison of the Ascaadi-Nemeskeri and Suchey-Brooks Methods. J. Hum. Evol. 1990, 5, 227–238. [Google Scholar] [CrossRef]
- Pasquier, E.; de Saint Martin Pernot, L.; Burdin, V.; Mounayer, C.; Le Rest, C.; Colin, D.; Mottier, D.; Roux, C.; Baccino, E. Determination of Age at Death: Assessment of an Algorithm of Age Prediction Using Numerical Three-Dimensional CT Data from Pubic Bones. Am. J. Phys. Anthr. 1999, 108, 261–268. [Google Scholar] [CrossRef]
- Boldsen, J.L.; Milner, G.R.; Konigsberg, L.W.; Wood, J.W. Transition Analysis: A New Method for Estimate Age from Skeletons. In Paleodemography: Age Distributions from Skeletal Samples; Hoppa, R., Vaupel, J.W., Eds.; Cambridge University Press: Cambridge, UK, 2002; pp. 73–107. [Google Scholar]
- Kimmerle, E.H.; Konigsberg, L.W.; Jantz, R.L.; Baraybar, J.P. Analysis of Age-at-Death Estimation through the Use of Pubic Symphyseal Data. J. Forensic Sci. 2008, 53, 558–568. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, Z.; Zhu, G.; Zhu, G.; Tao, L. Determination of Male Age at Death in Chinese Han Population: Using Quantitative Variables Statistical Analysis from Pubic Bones. Forensic Sci. Int. 2008, 175, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, Z.; Zhu, G.; Tao, L. Determination of Female Age at Death in Chinese Han Population: Using Quantitative Variables Statistical Analysis from Pubic Bones. Forensic Sci. Int. 2011, 210, 278.e1–278.e8. [Google Scholar] [CrossRef]
- Fleischman, J.M. A Comparative Assessment of the Chen et al. and Suchey-Brooks Pubic Aging Methods on a North American Sample. J. Forensic Sci. 2013, 58, 311–323. [Google Scholar] [CrossRef]
- Overbury, R.S.; Cabo, L.L.; Dirkmaat, D.C.; Symes, S.A. Asymmetry of the Os Pubis: Implications for the Suchey-Brooks Method. Am. J. Phys. Anthr. 2009, 139, 261–268. [Google Scholar] [CrossRef]
- Lungmus, E.K. An Examination of Error in the Application of Pubic Aging Techniques. Master’s Thesis, University of Montana, Missoula, MT, USA, 2009. [Google Scholar]
- Berg, G.E. Pubic Bone Age Estimation in Adult Women. J. Forensic Sci. 2008, 53, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Hartnett, K.M. Analysis of Age-at-Death Estimation Using Data from a New, Modern Autopsy Sample—Part 1: Pubic Bone. J. Forensic Sci. 2010, 55, 1145–1151. [Google Scholar] [CrossRef] [PubMed]
- Alcaraz, M. Análisis de Imagen Para Determinación de Edad y Sexo en Pubis, en una Muestra de Tomografía Axial Computarizada de Sujetos Adultos Vivos; Universidad de Granada: Granada, Spain, 2012. [Google Scholar]
- Godde, K.; Hens, S.M. Age-at-Death Estimation in an Italian Historical Sample: A Test of the Suchey-Brooks and Transition Analysis Methods. Am. J. Phys. Anthr. 2012, 149, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Lottering, N.; MacGregor, D.M.; Meredith, M.; Alston, C.L.; Gregory, L.S. Evaluation of the Suchey-Brooks Method of Age Estimation in an Australian Subpopulation Using Computed Tomography of the Pubic Symphyseal Surface. Am. J. Phys. Anthr. 2013, 150, 386–399. [Google Scholar] [CrossRef] [Green Version]
- Chiba, F.; Makino, Y.; Motomura, A.; Inokuchi, G.; Torimitsu, S.; Ishii, N.; Kubo, Y.; Abe, H.; Sakuma, A.; Nagasawa, S.; et al. Age Estimation by Quantitative Features of Pubic Symphysis Using Multi-Detector Computed Tomography. Int. J. Leg. Med. 2014, 128, 667–673. [Google Scholar] [CrossRef]
- Sussman, R. A Comparison of Pubic Symphysis Aging Methods to Analyze Elderly Female Individuals in the Lisbon Skeletal Collection; Boston University: Boston, MA, USA, 2015. [Google Scholar]
- Castillo, A.; Galtés, I.; Crespo, S.; Jordana, X. Technical Note: Preliminary Insight into a New Method for Age-at-Death Estimation from the Pubic Symphysis. Int. J. Leg. Med. 2021, 135, 929–937. [Google Scholar] [CrossRef]
- Corsini, M.-M.; Schmitt, A.; Bruzek, J. Aging Process Variability on the Human Skeleton: Artificial Network as an Appropriate Tool for Age at Death Assessment. Forensic Sci. Int. 2005, 148, 163–167. [Google Scholar] [CrossRef]
- Morante, G.B.; Bookstein, F.L.; Fischer, B.; Schaefer, K.; Aguilera, I.A.; López, M.C.B. Correlation of the Human Pubic Symphysis Surface with Age-at-Death: A Novel Quantitative Method Based on a Bandpass Filter. Int. J. Leg. Med. 2021, 60, 835–843. [Google Scholar] [CrossRef]
- Martins, R.; Oliveira, P.E.; Schmitt, A. Estimation of Age at Death from the Pubic Symphysis and the Auricular Surface of the Ilium Using a Smoothing Procedure. Forensic Sci. Int. 2012, 219, 287.e1–287.e7. [Google Scholar] [CrossRef]
- Dudzik, B.; Langley, N. Estimating Age from the Pubic Symphysis: A New Component-Based System. Forensic Sci. Int. 2015, 257, 98–105. [Google Scholar] [CrossRef]
- Schmitt, A. Une Nouvelle Méthode Pour Discriminer les Individus Décédés avant ou Après 40 Ans à Partir de la Symphyse Pubienne. J. Med. Leg. Droit Med. 2008, 51, 15–24. [Google Scholar]
- Merritt, C. Part II-Adult Skeletal Age Estimation Using CT Scans of Cadavers: Revision of the Pubic Symphysis Methods. J. Forensic Radiol. Imaging 2018, 14, 50–57. [Google Scholar] [CrossRef]
- Buk, Z.; Kordik, P.; Bruzek, J.; Schmitt, A.; Snorek, M. The Age at Death Assessment in a Multi-Ethnic Sample of Pelvic Bones Using Nature-Inspired Data Mining Methods. Forensic Sci. Int. 2012, 220, 294.e1–294.e9. [Google Scholar] [CrossRef] [PubMed]
- Stoyanova, D.K.; Algee-Hewitt, B.F.B.; Kim, J.; Slice, D.E. A Computational Framework for Age-at-Death Estimation from the Skeleton: Surface and Outline Analysis of 3D Laser Scans of the Adult Pubic Symphysis. J. Forensic Sci. 2017, 62, 1434–1444. [Google Scholar] [CrossRef]
- Kotěrová, A.; Velemínská, J.; Cunha, E.; Brůžek, J. A Validation Study of the Stoyanova et al. Method (2017) for Age-at-Death Estimation Quantifying the 3D Pubic Symphyseal Surface of Adult Males of European Populations. Int. J. Leg. Med. 2019, 133, 603–612. [Google Scholar] [CrossRef]
- Joubert, L.C.; Briers, N.; Meyer, A. Evaluation of the Enhanced Computational Methods of Estimating Age-at-Death Using the Pubic Symphyses of a White South African Population. J. Forensic Sci. 2020, 65, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Navega, D.; Costa, E.; Cunha, E. Adult Skeletal Age-at-Death Estimation through Deep Random Neural Networks: A New Method and Its Computational Analysis. Biology 2022, 11, 532. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Liao, Y.; Li, T.; Xu, X.; Wu, W.; Zhou, J.; Huang, W.; Luo, S.; Chen, F. A Machine-Learning Approach using Pubic CT based on Radiomics to Estimate Adult Ages. Eur. J. Radiol. 2022, 156, 110516. [Google Scholar] [CrossRef]
- Washburn, S.L. Sex Differences in the Pubic Bone. Am. J. Phys. Anthr. 1948, 6, 199–207. [Google Scholar] [CrossRef]
- Stewart, T.D. Distortion of the Pubic Symphyseal Surface in Females and its Effect on Age Determination. Am. J. Phys. Anthr. 1957, 15, 9–18. [Google Scholar] [CrossRef]
- Brues, A.M.; Krogman, W.M. The Human Skeleton in Forensic Medicine. J. Crim. Law Criminol. Police Sci. 1963, 54, 391. [Google Scholar] [CrossRef]
- Gilbert, B. Misapplication to Females of the Standard for Aging the Male Os Pubis. Am. J. Phys. Anthr. 1973, 38, 39–40. [Google Scholar] [CrossRef]
- Suchey, J.M. Problems in the Aging of Females Using the Os Pubis. Am. J. Phys. Anthr. 1979, 51, 467–470. [Google Scholar] [CrossRef]
- Angel, J.L.; Suchey, J.; Iscan, M.; Zimmerman, M. Age at Death Estimated from the Skeleton and Viscera. In Dating and Age Determination of Biological Materials; Zimmerman, M., Angel, J.L., Eds.; Croom Helm, Ltd.: Dover, NH, USA, 1986. [Google Scholar]
- Bongiovanni, R. Effects of Parturition on Pelvic Age Indicators. J. Forensic Sci. 2016, 61, 1034–1040. [Google Scholar] [CrossRef]
- RStudio Team. The Most Trusted IDE for Open Source Data Science. RStudio: Integrated Development for R; RStudio PBC: Boston, MA, USA, 2022; Available online: https://www.rstudio.com/products/rstudio/ (accessed on 30 January 2023).
- McHugh, M. Inter-rater Reliability: The Kappa Statistic. Biochem. Med. 2012, 22, 276–282. [Google Scholar] [CrossRef]
- Altman, D.G. Practical Statistics for Medical Research; Chapman & Hall/CRC Press: New York, NY, USA, 1999. [Google Scholar]
- Kotěrová, A.; Navega, D.; Štepanovský, M.; Buk, Z.; Brůžek, J.; Cunha, E. Age Estimation of Adult Human Remains from Hip Bones Using Advanced Methods. Forensic Sci. Int. 2018, 287, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Baccino, E.; Ubelaker, D.H.; Hayek, L.-A.C.; Zerilli, A. Evaluation of Seven Methods of Estimating Age at Death from Mature Human Skeletal Remains. J. Forensic Sci. 1999, 44, 931–936. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, A.; Murail, P.; Cunha, E.; Rougé, D. Variability of the Pattern of Aging on the Human Skeleton: Evidence from Bone Indicators and Implications on Age at Death Estimation. J. Forensic Sci. 2002, 47, 1203–1209. [Google Scholar] [CrossRef] [PubMed]
- Milner, G.; Boldsen, J. Estimating Age and Sex from the Skeleton, a Paleopathological Perspective. In A Companion to Paleopathology; Grauer, A., Ed.; John Wiley and Sons Ltd.: Maldon, MA, USA, 2012; pp. 268–284. [Google Scholar]
- Márquez-Grant, N. An Overview of Age Estimation in Forensic Anthropology: Perspectives and Practical Considerations. Ann. Hum. Biol. 2015, 42, 308–322. [Google Scholar] [CrossRef] [PubMed]
- Crews, D.; Ice, G. Aging, Senescence, and Human Variation. In Human Biology: An Evolutionary and Bicultural Perspective, 2nd ed.; Stinson, S., Bogin, B., O’Rourke, D., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; pp. 637–692. [Google Scholar]
- Dubourg, O.; Faruch-Bilfeld, M.; Telmon, N.; Maupoint, E.; Saint-Martin, P.; Savall, F. Correlation Between Pubic Bone Mineral Density and Age from a Computed Tomography Sample. Forensic Sci. Int. 2019, 298, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Dubourg, O.; Faruch-Bilfeld, M.; Telmon, N.; Savall, F.; Saint-Martin, P. Technical Note: Age Estimation by Using Pubic Bone Densitometry According to a Twofold Mode of CT Measurement. Int. J. Leg. Med. 2020, 134, 2275–2281. [Google Scholar] [CrossRef] [PubMed]
- Schanandore, J.V.; Ford, J.M.; Decker, S.J. Correlation Between Chronological Age and Computed Tomography Attenuation of Trabecular Bone from the Os Coxae. J. Forensic Radiol. Imaging 2018, 14, 24–31. [Google Scholar] [CrossRef]
- Luo, M.R. (Ed.) Encyclopedia of Color Science and Technology; CIE 1976 L*a*b*; Springer: New York, NY, USA, 2016. [Google Scholar]
- Munsell Color (Firm). Munsell Soil Color Charts with Genuine Munsell Color Chips; Munsell Color: Grand Rapids, MI, USA, 2012. [Google Scholar]
- Telmon, N.; Gaston, A.; Chemla, P.; Blanc, A.; Joffre, F.; Rougé, D. Application of the Suchey-Brooks Method to Three-Dimensional Imaging of the Pubic Symphysis. J. Forensic Sci. 2005, 50, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Villa, C.; Hansen, M.N.; Lynnerup, N.; Buckberry, J.L.; Cattaneo, C. Forensic Age Estimation Based on the Trabecular Bone Changes of the Pelvic Bone using Post-Mortem CT. Forensic Sci. Int. 2013, 233, 393–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villa, C.; Buckberry, J.; Cattaneo, C.; Lynnerup, N. Technical Note: Reliability of Suchey–Brooks and Buckberry–Chamberlain Methods on 3D Visualizations from CT and Laser Scans. Am. J. Phys. Anthr. 2013, 151, 158–163. [Google Scholar] [CrossRef] [Green Version]
- Savall, F.; Hérin, F.; Peyron, P.-A.; Rougé, D.; Baccino, E.; Saint-Martin, P.; Telmon, N. Age Estimation at Death using Pubic Bone Analysis of a Virtual Reference Sample. Int. J. Leg. Med. 2018, 132, 609–615. [Google Scholar] [CrossRef]
- Hall, F.; Forbes, S.; Rowbotham, S.; Blau, S. Using PMCT of Individuals of Known Age to Test the Suchey-Brooks Methods of Aging in Victorial, Australia. J. Forensic Sci. 2019, 64, 1782–1787. [Google Scholar] [CrossRef]
- Alzheimer’s Association. 2021 Alzheimer’s Disease Facts and Figures. Alzheimers Dement 2021, 17, 1–104. [Google Scholar]
- Cherniack, E.P. The Impact of Natural Disasters on the Elderly. Am. J. Disaster Med. 2008, 3, 133–139. [Google Scholar] [CrossRef]
- Benson, W.; Aldrich, N. CDC’s Disaster Planning Goal: Protect Vulnerable Older Adults; CDC Healthy Aging Program: Atlanta, GA, USA, 2007. [Google Scholar]
- Shih, R.A.; Acosta, J.D.; Chen, E.K.; Carbone, E.; Xenakis, L.; Adamson, D.; Chandra, A. Improving Disaster Resilience Among Older Adults: Insights from Public Health Departments and Aging-in-Place Efforts. Rand Health Q 2018, 8, 3. [Google Scholar]
- Villa, C.; Buckberry, J.; Cattaneo, C.; Frohlich, B.; Lynnerup, N. Quantitative Analysis of the Morphological Changes of the Pubic Symphyseal Face and the Auricular Surface and Implications for Age at Death Estimation. J. Forensic Sci. 2015, 60, 556–565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seidel, A.; Stojanowski, C.; Fulginiti, L.; Hartnett-McCann, K. Topographic Analyses and the Estimation of Age from the Pubic Symphysis. In Proceedings of the American Academy of Forensic Sciences 71st Annual Scientific Meeting, Baltimore, MD, USA, 18–23 February 2019. [Google Scholar]
- Stock, M.; Morse, P.; Villa, C. Quantitative Assessment of Age-Related Topographic Changes in the Pubic Symphysis. In Proceedings of the 86th Annual Meeting of the American Association of Physical Anthropologists, New Orleans, LA, USA, 19–22 April 2017. [Google Scholar]
- Bolton, J.; Beckett, S.; Wessling, R.; Bekvalac, J. Investigation of the Pubic Symphyseal Landscape: Age at Death Estimation for Skeletal Remains Using 3D Topographical Data and Geographical Information Systems. J. Forensic Res. 2014, 5, 104. [Google Scholar]
Age Group | n = | White | Asian—South | Asian—East | Black (African or Caribbean) | Arab | Multiple Ethnicity * | Other Ethnicity † |
---|---|---|---|---|---|---|---|---|
18–19 | 4 | 3 | 1 | |||||
20–29 | 9 | 8 | 1 | |||||
30–39 | 29 | 27 | 1 | 1 | ||||
40–49 | 42 | 40 | 1 | |||||
50–59 | 117 | 109 | 1 | 4 | 1 | 1 | ||
60–69 | 137 | 130 | 1 | 1 | 3 | 2 | ||
70–79 | 149 | 147 | 1 | 1 | ||||
80–89 | 42 | 42 | ||||||
90–99 | 4 | 4 | ||||||
Total: | 533 | 512 | 3 | 0 | 7 | 1 | 7 | 3 |
Entire Sample (n = 1156) | Females Only (n = 533) | |||||||
---|---|---|---|---|---|---|---|---|
t | df | p | t | df | p | |||
Oncology | n = 380 | −1.0313 | 834.47 | 0.3027 | n = 183 | −0.4749 | 357.16 | 0.6352 |
Urology | n = 255 | −0.4685 | 496.13 | 0.6396 | n = 101 | −0.4317 | 199.2 | 0.6664 |
Gastroenterology | n = 111 | −0.3096 | 214.79 | 0.7571 | n = 49 | 0.0954 | 92.555 | 0.9242 |
Pre-Op | n = 104 | −0.4868 | 200.81 | 0.6269 | n = 53 | −0.4847 | 103.28 | 0.6289 |
GP/Private Care | n = 90 | −1.6255 | 173.73 | 0.1059 | n = 38 | −0.6999 | 73.159 | 0.4862 |
Haematology | n = 44 | −0.5710 | 83.942 | 0.5695 | n = 25 | 0.0722 | 46.811 | 0.9428 |
Cardio/Pulmonary | n = 11 | −0.0570 | 19.095 | 0.9551 | n = 7 | 0.0955 | 11.781 | 0.9255 |
Unspecified | n = 127 | −0.3340 | 239.21 | 0.7387 | n = 62 | 0.1316 | 121.52 | 0.8956 |
Miscellaneous | n = 34 | — | — | — | n = 15 | — | — | — |
Left | Right | Averaged | |||||||
---|---|---|---|---|---|---|---|---|---|
Group | n= | Inaccuracy | Bias | n= | Inaccuracy | Bias | n= | Inaccuracy | Bias |
Entire Sample | 1140 | 4.261 | 1.403 | 1140 | 4.427 | 0.396 | 1156 | 4.091 | 0.919 |
Entire Sample (50+) | 964 | 3.474 | 0.195 | 962 | 3.818 | −0.791 | 977 | 3.380 | −0.269 |
Females Only | 525 | 3.996 | 1.124 | 517 | 4.400 | 0.118 | 533 | 3.865 | 0.691 |
Females (50+) | 441 | 3.644 | 0.338 | 436 | 4.105 | −0.771 | 449 | 3.531 | −0.126 |
Actual Age v Regression Estimates | Actual Age v Addition Estimates | Regression v Addition Estimates | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
t | df | p | PCC | t | df | p | PCC | t | df | p | PCC | |
All Females (n = 533) | −0.0607 | 1057.2 | 0.9516 | 0.9245 | −0.6081 | 1051.3 | 0.5433 | 0.9251 | −0.5706 | 1063.0 | 0.5684 | 0.9953 |
n= | Error | 1 σ | 2 σ | Inaccuracy | Bias | Adj R2 | Min/Max Accuracy | MAE | RSME | PCC | |
---|---|---|---|---|---|---|---|---|---|---|---|
Entire Sample | 1156 | −0.01 | 6.20 | 12.40 | 4.09 | 0.92 | 0.81 | 0.93 | 4.34 | 6.19 | 0.87 |
Females Only | 533 | 0.2 | 5.66 | 11.32 | 3.86 | 0.69 | 0.85 | 0.94 | 4.00 | 5.62 | 0.92 |
Age Group | n = | Error | 1 σ | 2 σ | Inaccuracy | Bias | |
---|---|---|---|---|---|---|---|
18–19 | 4 | 13 | −0.2 | 2.9 | 5.8 | 2.04 | 1.04 |
20–29 | 9 | ||||||
30–39 | 29 | 29 | 4.3 | 5.7 | 11.4 | 7.71 | 7.50 |
40–49 | 42 | 42 | 1.7 | 7.2 | 14.4 | 5.35 | 4.63 |
50–59 | 117 | 117 | 0.1 | 6.3 | 12.6 | 3.71 | 2.32 |
60–69 | 137 | 137 | −0.6 | 5.7 | 11.4 | 3.44 | −0.46 |
70–79 | 149 | 149 | −1.5 | 5.1 | 10.2 | 3.12 | −0.84 |
80–89 | 42 | 46 | −4.4 | 5.7 | 11.4 | 4.71 | -3.05 |
90–99 | 4 |
# | Age | Author | Observer 1 | Observer 2 | Observer 3 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SB * | H † | TCM ‡ | SB | H | TCM | SB | H | TCM | SB | H | TCM | |||||||
R § | A (( | R | A | R | A | R | A | |||||||||||
1 | 18 | N ¶ | 19.4 | 19.8 | 17.86 | 19 | 19.4 | 19.8 | 18.91 | 20 | 19.4 | 19.8 | 15.31 | 16 | 19.4 | 19.8 | 14.29 | 15 |
2 | 88 | P ** | 60 | 82.54 | 86.33 | 87.5 | 60 | 82.54 | 84.32 | 85 | 60 | 72.34 | 84.32 | 85 | 60 | 82.54 | 85.13 | 85 |
3 | 47 | P | 38.2 | 43.26 | 41.76 | 45 | 48.1 | 51.47 | 54.02 | 52 | 38.2 | 43.26 | 46.64 | 50 | 38.2 | 43.26 | 53.33 | 51 |
4 | 29 | P | 25 | 23.2 | 29.53 | 31 | 25 | 23.2 | 36.38 | 39 | 30.7 | 43.26 | 38.65 | 41 | 30.7 | 31.44 | 35.69 | 38 |
5 | 77 | N | 60 | 72.34 | 76.47 | 76 | 60 | 82.54 | 70.30 | 69 | 60 | 72.34 | 76.44 | 76 | 60 | 82.54 | 73.97 | 73 |
6 | 93 | P | 60 | 82.54 | 87.24 | 88 | 60 | 82.54 | 88.94 | 90 | 60 | 72.34 | 79.21 | 79 | 60 | 82.54 | — | — |
7 | 35 | N | 30.7 | 31.44 | 31.74 | 34.5 | 25 | 23.2 | 33.35 | 35 | 30.7 | 31.44 | 30 | 32 | 25 | 23.2 | 30.87 | 32 |
8 | 19 | N | 19.4 | 19.8 | 18.67 | 19.5 | 19.4 | 19.8 | 19.49 | 20 | 19.4 | 19.8 | 19.93 | 21 | 19.4 | 19.8 | 18.91 | 20 |
9 | 56 | P | 48.1 | 51.47 | 50.52 | 54 | 48.1 | 51.47 | 46.64 | 50 | 48.1 | 51.47 | 63.70 | 62 | 60 | 72.34 | 66.18 | 65 |
10 | 68 | P | 60 | 72.34 | 57.80 | 61.5 | 60 | 82.54 | 72.15 | 72 | 60 | 72.34 | 50.74 | 54 | 60 | 82.54 | 54.62 | 56 |
11 | 42 | P | 38.2 | 43.26 | 42.83 | 45.5 | 30.7 | 31.44 | 49.98 | 47 | 38.2 | 43.26 | 50.27 | 48 | 48.1 | 51.47 | 59.47 | 58 |
12 | 24 | N | 25 | 23.2 | 19.32 | 25.5 | 30.7 | 31.44 | 37.47 | 34 | 30.7 | 31.44 | 24.55 | 26 | 30.7 | 31.44 | 27.97 | 30 |
13 | 71 | P | 60 | 72.34 | 71.46 | 70.5 | 60 | 82.54 | 73.39 | 73 | 48.1 | 72.34 | 72.05 | 71 | 60 | 82.54 | 75.20 | 75 |
14 | 58 | P | 48.1 | 51.47 | 54.89 | 59.5 | 60 | 82.54 | 53.58 | 51 | 60 | 72.34 | 56.94 | 55 | 48.1 | 51.47 | 54.89 | 53 |
15 | 51 | N | 48.1 | 51.47 | 50.37 | 54 | 60 | 82.54 | 78.22 | 78 | 48.1 | 72.34 | 71.49 | 71 | 48.1 | 51.47 | 63.07 | 62 |
16 | 83 | N | 60 | 82.54 | 78.78 | 79.5 | 60 | 82.54 | 88.94 | 90 | 60 | 72.34 | 79.60 | 79 | 60 | 82.54 | 82.77 | 83 |
17 | 39 | P | 30.7 | 31.44 | 31.78 | 36.5 | 25 | 23.2 | 20.53 | 21 | 30.7 | 31.44 | 44.54 | 48 | 25 | 23.2 | 27.97 | 30 |
18 | 62 | N | 60 | 72.34 | 58.75 | 61.5 | 48.1 | 51.47 | 71.24 | 70 | 48.1 | 72.34 | 66.71 | 66 | 48.1 | 72.34 | 53.34 | 51 |
19 | 91 | P | 60 | 82.54 | 85.38 | 86 | 60 | 82.54 | 88.94 | 90 | 60 | 82.54 | 83.25 | 84 | 60 | 82.54 | 84.32 | 85 |
20 | 74 | N | 60 | 82.54 | 75.07 | 75 | 48.1 | 51.47 | 74.21 | 74 | 48.1 | 72.34 | 67.91 | 67 | 60 | 82.54 | — | — |
21 | 18 | N | 19.4 | 19.8 | 14.29 | 15 | 19.4 | 19.8 | 14.29 | 15 | 25 | 23.2 | 15.13 | 16 | 19.4 | 19.8 | 14.73 | 16 |
22 | 48 | N | 38.2 | 43.26 | 41.12 | 46 | 30.7 | 31.44 | 44.60 | 42 | 48.1 | 72.34 | 72.42 | 70 | — | — | — | — |
23 | 66 | P | 60 | 72.34 | 62.06 | 66.5 | 60 | 72.34 | 53.59 | 52 | 60 | 72.34 | 55.02 | 52 | 48.1 | 72.34 | 67.80 | 67 |
24 | 26 | N | 25 | 23.2 | 24.06 | 24 | 25 | 23.2 | 22.26 | 24 | 30.7 | 31.44 | 30.34 | 32 | 25 | 23.2 | 24.79 | 26 |
25 | 86 | P | 60 | 82.54 | 82.06 | 82 | 60 | 82.54 | 88.94 | 90 | 60 | 72.34 | 84.32 | 85 | 60 | 82.54 | 87.88 | 89 |
26 | 38 | N | 38.2 | 43.26 | 46.01 | 41.5 | 48.1 | 51.47 | 56.97 | 54 | 48.1 | 72.34 | 71.25 | 73 | 25 | 23.2 | 62.06 | 62 |
27 | 91 | P | 60 | 82.54 | 81.66 | 84 | 60 | 82.54 | 73.98 | 73 | 48.1 | 72.34 | 62.71 | 60 | 60 | 82.54 | 88.94 | 90 |
28 | 53 | P | 48.1 | 51.47 | 48.99 | 53 | 38.2 | 43.26 | 56.44 | 54 | 48.1 | 72.34 | 65.39 | 64 | 38.2 | 43.26 | 54.89 | 53 |
29 | 79 | P | 60 | 72.34 | 76.24 | 75.5 | 60 | 82.54 | 80.24 | 80 | 60 | 72.34 | 86.02 | 87 | 60 | 82.54 | 87.87 | 89 |
30 | 34 | N | 30.7 | 31.44 | 36.78 | 38 | 38.2 | 43.26 | 32.54 | 35 | 38.2 | 43.26 | 44.33 | 47 | 25 | 23.2 | 42.02 | 45 |
31 | 60 | P | 48.1 | 51.47 | 53.11 | 57.5 | 60 | 72.34 | 66.23 | 65 | 60 | 72.34 | 79.69 | 80 | 48.1 | 51.47 | 52.78 | 56 |
32 | 18 | N | 19.4 | 19.8 | 18.47 | 19 | 25 | 23.2 | 19.93 | 21 | 19.4 | 19.8 | 19.49 | 20 | 19.4 | 19.8 | 18.47 | 19 |
33 | 45 | P | 38.2 | 43.26 | 44.76 | 48.5 | 30.7 | 31.44 | 50.24 | 48 | 48.1 | 72.34 | 69.79 | 69 | 38.2 | 43.26 | 58.64 | 57 |
34 | 81 | N | 60 | 82.54 | 71.85 | 78 | 48.1 | 51.47 | 75.63 | 75 | 60 | 72.34 | 80.49 | 81 | 60 | 82.54 | 77.73 | 78 |
35 | 25 | N | 25 | 23.2 | 23.31 | 24 | 30.7 | 31.44 | 29.72 | 32 | 48.1 | 51.47 | 25.30 | 28 | 25 | 23.2 | 23.53 | 25 |
36 | 32 | P | 30.7 | 31.44 | 33.25 | 36 | 48.1 | 51.47 | 40.77 | 44 | 48.1 | 51.47 | 60.13 | 58 | 38.2 | 43.26 | 44.56 | 48 |
37 | 78 | P | 60 | 82.54 | 82.84 | 83 | 60 | 82.54 | 82.86 | 84 | 60 | 82.54 | 79.68 | 80 | 60 | 82.54 | — | — |
38 | 52 | N | 48.1 | 51.47 | 50.87 | 54.5 | 30.7 | 31.44 | 74.05 | 74 | 48.1 | 72.34 | 64.39 | 64 | 48.1 | 72.34 | 59.70 | 58 |
39 | 87 | P | 60 | 82.54 | 84.32 | 85 | 60 | 82.54 | 85.38 | 86 | 60 | 82.54 | 81.30 | 81 | 60 | 82.54 | 88.94 | 90 |
40 | 20 | N | 19.4 | 19.8 | 19.20 | 20 | 19.4 | 19.8 | 19.97 | 21 | 25 | 23.2 | 18.95 | 20 | 25 | 23.2 | 20.99 | 22 |
41 | 63 | P | 48.1 | 51.47 | 55.75 | 59.5 | 48.1 | 51.47 | 55.58 | 52 | 38.2 | 43.26 | 60.01 | 58 | 48.1 | 51.47 | 54.50 | 53 |
42 | 40 | P | 38.2 | 43.26 | 37.77 | 40.5 | 38.2 | 43.26 | 34.90 | 37 | 48.1 | 51.47 | 46.64 | 50 | 30.7 | 31.44 | 39.76 | 43 |
43 | 89 | N | 60 | 82.54 | 82.23 | 82.5 | 60 | 82.54 | 84.82 | 85 | 60 | 82.54 | 82.28 | 82 | 60 | 82.54 | 89.45 | 90 |
44 | 45 | N | 48.1 | 43.26 | 42.33 | 45.5 | 48.1 | 51.47 | 50.67 | 49 | 48.1 | 72.34 | 62.68 | 60 | 38.2 | 43.26 | 54.64 | 52 |
45 | 69 | P | 60 | 72.34 | 68.53 | 68 | 60 | 82.54 | 53.37 | 51 | 60 | 72.34 | 69.23 | 68 | 60 | 72.34 | 66.18 | 65 |
46 | 54 | N | 38.2 | 43.26 | 55.12 | 53 | 30.7 | 31.44 | 47.17 | 50 | 38.2 | 43.26 | 56.68 | 54 | 38.2 | 43.26 | 38.08 | 41 |
47 | 70 | P | 60 | 72.34 | 75.47 | 75 | 60 | 82.54 | 78.72 | 79 | 60 | 72.34 | 79.50 | 80 | 48.1 | 51.47 | 67.82 | 66 |
48 | 77 | N | 60 | 72.34 | 75.43 | 75 | 60 | 72.34 | 74.13 | 74 | 60 | 72.34 | 84.32 | 85 | 60 | 82.54 | 81.12 | 81 |
49 | 67 | P | 60 | 72.34 | 68.95 | 68.5 | 60 | 82.54 | 70.09 | 70 | 60 | 72.34 | 70.51 | 70 | 48.1 | 72.34 | 77.79 | 78 |
50 | 84 | N | 60 | 72.34 | 76.75 | 76 | 60 | 72.34 | 76.22 | 76 | 60 | 72.34 | 76.00 | 75 | — | — | — | — |
Suchey-Brooks | Hartnett | Composite Method (TCM) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
✓? | <5 years | <10 years | >10 years | ✓? | <5 years | <10 years | >10 years | ✓? | <5 years | <10 years | >10 years | |
A | 50/50 (100%) | 20/50 (40%) | 10/50 (20%) | 20/50 (40%) | 48/50 (96%) | 35/50 (70%) | 12/50 (24%) | 3/50 (6%) | 50/50 (100%) | 46/50 (92%) | 4/50 (8%) | 0/50 (0%) |
Obs 1 | 49/50 (98%) | 12/50 (24%) | 12/50 (24%) | 26/50 (52%) | 34/50 (68%) | 16/50 (32%) | 13/50 (26%) | 21/50 (42%) | 44/50 (88%) | 28/50 (56%) | 13/50 (26%) | 9/50 (18%) |
Obs 2 | 50/50 (100%) | 17/50 (34%) | 11/50 (22%) | 22/50 (44%) | 33/50 (66%) | 20/50 (40%) | 8/50 (16%) | 22/50 (44%) | 36/50 (72%) | 24/50 (48%) | 12/50 (24%) | 14/50 (28%) |
Obs 3 | 48/48 (100%) | 11/48 (23%) | 11/48 (23%) | 26/48 (54%) | 38/48 (79%) | 21/48 (44%) | 15/48 (31%) | 12/48 (25%) | 41/45 (91%) | 25/45 (56%) | 11/45 (24%) | 9/45 (20%) |
Actual Age versus Estimated (Mean) Age Using the Suchey-Brooks Method | |||||||
t | df | p | PCC | % Error | Inaccuracy | Bias | |
Author | 2.294 | 75.619 | 0.025 | 0.953 | −17.501 | 9.98 | −9.49 |
Observer 1 | 2.219 | 76.140 | 0.029 | 0.863 | −16.993 | 12.34 | −9.22 |
Observer 2 | 1.906 | 70.163 | 0.061 | 0.848 | −14.052 | 12.05 | −7.60 |
Observer 3 | 2.626 | 74.679 | 0.011 | 0.933 | −19.914 | 12.42 | −9.78 |
Actual Age versus Estimated (Mean) Age Using the Hartnett Method | |||||||
t | df | p | PCC | % Error | Inaccuracy | Bias | |
Author | 0.353 | 87.906 | 0.725 | 0.979 | −3.139 | 4.07 | −1.70 |
Observer 1 | −0.097 | 87.679 | 0.923 | 0.868 | 0.903 | 9.88 | 0.49 |
Observer 2 | −0.813 | 86.081 | 0.418 | 0.833 | 6.859 | 10.54 | 3.76 |
Observer 3 | 0.131 | 87.805 | 0.896 | 0.932 | −1.214 | 7.23 | −0.61 |
Actual Age versus Estimated (Mean) Age Using The Composite Method | |||||||
t | df | p | PCC | % Error | Inaccuracy | Bias | |
Author | 0.075 | 87.447 | 0.964 | 0.989 | −0.389 | 2.66 | −0.19 |
Observer 1 | −0.208 | 87.888 | 0.836 | 0.919 | 1.843 | 5.98 | 1.00 |
Observer 2 | −0.793 | 87.349 | 0.429 | 0.876 | 6.882 | 8.26 | 3.73 |
Observer 3 | −0.247 | 87.971 | 0.806 | 0.941 | 2.212 | 6.04 | 1.17 |
Actual Age v Regression Estimates | Actual Age v Addition Estimates | Regression v Addition Estimates | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n= | t | df | p | PCC | t | df | p | PCC | t | df | p | PCC | |
All Females | 533 | −0.0607 | 1057.2 | 0.9516 | 0.9245 | −0.6081 | 1051.3 | 0.5433 | 0.9251 | −0.5706 | 1063.0 | 0.5684 | 0.9953 |
Author | 50 | 0.4918 | 87.825 | 0.6241 | 0.98783 | 0.1263 | 87.685 | 0.8998 | 0.9934 | −0.3778 | 87.979 | 0.7065 | 0.9950 |
Observer 1 | 50 | −0.2316 | 87.983 | 0.8174 | 0.9179 | −0.2214 | 87.922 | 0.8253 | 0.9179 | 0.0121 | 87.978 | 0.9904 | 0.9968 |
Observer 2 | 50 | −0.7591 | 87.761 | 0.4498 | 0.8776 | −0.8066 | 87.479 | 0.4221 | 0.8731 | −0.0396 | 87.945 | 0.9685 | 0.9969 |
Observer 3 | 45 | −0.2984 | 88 | 0.7661 | 0.9399 | −0.3359 | 87.944 | 0.7377 | 0.9399 | −0.0338 | 87.944 | 0.9731 | 0.9969 |
Suchey-Brooks | Hartnett | TCM | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
t | df | p | PCC | X2 (p) | t | df | p | PCC | X2 (p) | t | df | p | PCC | X2 (p) | |
Author v Obs 1 | −0.086 | 87.988 | 0.932 | 0.903 | 0.000 | −0.439 | 87.246 | 0.661 | 0.878 | 0.035 | −0.262 | 87.830 | 0.794 | 0.932 | 0.487 |
Author v Obs 2 | −0.622 | 86.644 | 0.536 | 0.896 | 0.000 | −1.207 | 86.807 | 0.231 | 0.857 | 0.392 | −0.874 | 87.996 | 0.385 | 0.892 | 0.454 |
Author v Obs 3 | 0.414 | 87.960 | 0.679 | 0.929 | 0.005 | −0.211 | 87.446 | 0.833 | 0.942 | 0.229 | −0.302 | 87.669 | 0.764 | 0.949 | 0.644 |
Obs 1 v Obs 2 | −0.526 | 86.384 | 0.600 | 0.894 | 0.000 | −0.681 | 84.352 | 0.498 | 0.831 | 0.912 | −0.592 | 87.774 | 0.555 | 0.907 | 0.197 |
Obs 1 v Obs 3 | 0.498 | 87.903 | 0.619 | 0.854 | 0.000 | 0.222 | 87.984 | 0.825 | 0.822 | 0.925 | −0.042 | 87.973 | 0.967 | 0.924 | 0.017 |
Obs 2 v Obs 3 | 1.069 | 87.058 | 0.288 | 0.837 | 0.015 | 0.931 | 84.775 | 0.355 | 0.799 | 0.261 | 0.544 | 87.593 | 0.588 | 0.906 | 0.053 |
Suchey-Brooks | Hartnett | TCM | ||
Including Author | 0.75 (95% CI), p = 0 | 0.12 (95% CI), p = 0.0562 | 0.16 (95% CI), p = 0.00698 | |
Moderate Agreement | No Agreement | No Agreement | ||
Excluding Author | 0.68 (95% CI), p = 2.44 × 1015 | 0.16 (95% CI), p = 0.067 | 0.30 (95% CI), p = 0.000551 | |
Moderate Agreement | No Agreement | Minimal Agreement |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Truesdell, J. The Composite Method: A Novel, Continuum-Based Approach to Estimating Age from the Female Pubic Symphysis with Particular Relevance to Mature Adults. Forensic Sci. 2023, 3, 94-119. https://doi.org/10.3390/forensicsci3010009
Truesdell J. The Composite Method: A Novel, Continuum-Based Approach to Estimating Age from the Female Pubic Symphysis with Particular Relevance to Mature Adults. Forensic Sciences. 2023; 3(1):94-119. https://doi.org/10.3390/forensicsci3010009
Chicago/Turabian StyleTruesdell, Janamarie. 2023. "The Composite Method: A Novel, Continuum-Based Approach to Estimating Age from the Female Pubic Symphysis with Particular Relevance to Mature Adults" Forensic Sciences 3, no. 1: 94-119. https://doi.org/10.3390/forensicsci3010009
APA StyleTruesdell, J. (2023). The Composite Method: A Novel, Continuum-Based Approach to Estimating Age from the Female Pubic Symphysis with Particular Relevance to Mature Adults. Forensic Sciences, 3(1), 94-119. https://doi.org/10.3390/forensicsci3010009