CBD-Containing Liquids for e-Cigarettes: Formation of Psychotropic and Secondary Cannabinoids and Amount of CBD Surviving the Smoking Procedure
Abstract
:1. Introduction
2. Materials and Methods
2.1. GC-MS Conditions and Identification of Degradation Products
2.2. Set of the Electronic Cigarette
- −20 mg∙mL−1, 10 mg∙mL−1, or 2 mg∙mL−1 of CBD in propylene glycol;
- 20 mg∙mL−1, 10 mg∙mL−1, or 2 mg∙mL−1 of CBD in 70:30 propylene glycol:glycerol mixture;
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CBD | Cannabidiol (1) |
Δ8-iso-THC | Δ-8-iso-tetrahydrocannabinol (2) |
Δ7-CBD | Δ-7- cannabidiol (3) |
Δ9-THC | Δ-9-tetrahydrocannabinol (4) |
Δ8-THC | Δ-8- tetrahydrocannabinol (5) |
DHD | 8,9-dihydrocannabidiol (6) |
THD | Tetrahydrocannabidiol (7) |
HHC | Hexahydrocannabinol (8) |
CBG | Cannabigerol (9) |
CBL | Cannabicyclol (10) |
CBT | Cannabicitran (11) |
CBN | Cannabinol (12) |
CBC | Cannabichromene (13) |
α-MeO-CBD | α-methoxy-dihydrocannabidiol (14) |
β-MeO-CBD | β-methoxy-dihydrocannabidiol (15) |
CBE | Cannabielsoin (16) |
References
- Dinakar, C.; O’Connor, G.T. The Health Effects of Electronic Cigarettes. N. Engl. J. Med. 2016, 375, 1372–1381. [Google Scholar] [CrossRef]
- Callahan-Lyon, P. Electronic cigarettes: Human health effects. Tob. Control. 2014, 23, 36–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, Y.; Wu, D.; Ma, Y.; Ma, X.; Wang, S.; Li, F.; Li, M.; Zhang, T. Toxicity of electronic cigarettes: A general review of the origins, health hazards, and toxicity mechanisms. Sci. Total Environ. 2021, 772, 145475. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.J.; Cheng, J.M. Electronic cigarettes: Product characterization and design considerations. Tob. Control. 2014, 23, 4–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leas, E.C.; Nobles, A.L.; Caputi, T.L.; Dredze, M.; Smith, D.M.; Ayers, J.W. Trends in Internet Searches for Cannabidiol (CBD) in the United States. JAMA Netw. Open 2019, 2, e1913853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leas, E.C.; Moy, N.; McMenamin, S.B.; Shi, Y.; Benmarhnia, T.; Stone, M.D.; Trinidad, D.R.; White, M. Availability and promotion of cannabidiol (Cbd) products in online vape shops. Int. J. Environ. Res. Public Health 2021, 18, 6719. [Google Scholar] [CrossRef]
- Brunetti, P.; Lo Faro, A.F.; Pirani, F.; Berretta, P.; Pacifici, R.; Pichini, S.; Busardò, F.P. Pharmacology and legal status of cannabidiol. Ann. Ist. Super. Sanità 2020, 56, 285–291. [Google Scholar] [CrossRef]
- Britch, S.C.; Babalonis, S.; Walsh, S.L. Psychopharmacology. Cannabidiol: Pharmacology and therapeutic targets. Psychopharmacology 2021, 238, 9–28. [Google Scholar] [CrossRef]
- Landmark, C.J.; Brandl, U. Pharmacology and drug interactions of cannabinoids. Epileptic Disord. 2022, 22 (Suppl. 1), S16–S22. [Google Scholar]
- Grafinger, K.E.; Krönert, S.; Broillet, A.; Weinmann, W. Cannabidiol and tetrahydrocannabinol concentrations in commercially available CBD E-liquids in Switzerland. Forensic Sci. Int. 2020, 310, 110261. [Google Scholar] [CrossRef]
- Giroud, C.; De Cesare, M.; Berthet, A.; Varlet, V.; Concha-Lozano, N.; Favrat, B. E-cigarettes: A review of new trends in cannabis use. Int. J. Environ. Res. Public Health 2015, 12, 9988–10008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gammon, D.G.; Gaber, J.; Lee, Y.O. CBD products that resemble tobacco products enter traditional retail outlets. Tob. Control. 2021, 30, 237–238. [Google Scholar] [CrossRef] [PubMed]
- CBD World. Kit Base Neutra CBD. Available online: https://www.cbdworld.it/it/72-kit-base-neutra-cbd/ (accessed on 22 February 2023).
- Nahar, L.; Guo, M.; Sarker, S.D. Gas chromatographic analysis of naturally occurring cannabinoids: A review of literature published during the past decade. Phytochem. Anal. 2020, 31, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Cheng, T. Chemical evaluation of electronic cigarettes. Tob. Control. 2014, 23, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Peace, M.R.; Butler, K.E.; Wolf, C.E.; Poklis, J.L.; Poklis, A. Evaluation of two commercially available cannabidiol formulations for use in electronic cigarettes. Front. Pharmacol. 2016, 7, 279. [Google Scholar] [CrossRef] [Green Version]
- Franco, C.; Protti, S.; Porta, A.; Pollastro, F.; Profumo, A.; Mannucci, B.; Merli, D. Stability of cannabidiol (CBD) in solvents and formulations: A GC–MS approach. Results Chem. 2022, 4, 100465. [Google Scholar] [CrossRef]
- European Monitoring Centre for Drugs and Drug Addiction. Cannabis Policy: Status and Recent Development. Available online: https://www.emcdda.europa.eu/publications/topic-overviews/cannabis-policy/html_en/ (accessed on 22 February 2023).
- Il CBD si Converte in THC Nelle Sigarette Elettroniche? Available online: https://cannabiscienza.it/pubblicazioni/modalita-di-assunzione/il-cbd-si-converte-in-thc-nelle-sigarette-elettroniche/ (accessed on 22 February 2023).
- Il Caso Kanavape alla Corte Europea: Un Passo in Avanti per il Mercato dei Prodotti a Base di CBD. Available online: https://www.centrostudi-italiacanada.it/articles/caso-kanavape-corte-europea-mercato-cbd (accessed on 22 February 2023).
- Czégény, Z.; Nagy, G.; Babinszki, B.; Bajtel, Á.; Sebestyén, Z.; Kiss, T.; Csupor-Löffler, B.; Tóth, B.; Csupo, D. CBD, a precursor of THC in e-cigarettes. Sci. Rep. 2021, 11, 8951. [Google Scholar] [CrossRef]
- Seccamani, P.; Franco, C.; Protti, S.; Porta, A.; Profumo, A.; Caprioglio, D.; Salamone, S.; Mannucci, B.; Merli, D. Photochemistry of Cannabidiol (CBD) Revised. A Combined Preparative and Spectrometric Investigation. J. Nat. Prod. 2021, 84, 2858–2865. [Google Scholar] [CrossRef]
- Nalli, Y.; Dar, M.S.; Bano, N.; Rasool, J.U.; Sarkar, A.R.; Banday, J.; Bhat, A.Q.; Rafia, B.; Vishwakarma, R.A.; Dar, M.; et al. Analyzing the role of cannabinoids as modulators of Wnt/β-catenin signaling pathway for their use in the management of neuropathic pain. Bioorg. Med. Chem. Lett. 2019, 29, 1043–1046. [Google Scholar] [CrossRef]
- Macherone, A. A Brief Review of Derivatization Chemistries for the Analysis of Cannabinoids Using GC–MS September 24, 2020. Cannabis Sci. Technol. 2020, 3, 42–48. [Google Scholar]
- Ciolino, L.A.; Ranieri, T.L.; Taylor, A.M. Commercial cannabis consumer products part 1: GC–MS qualitative analysis of cannabis cannabinoids. For. Sci. Intern. 2018, 289, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Available online: http://www.mpl.loesungsfabrik.de/en/english-blog/method-validation/calibration-line-procedure (accessed on 22 February 2023).
- Available online: https://scioninstruments.com/us/cannabis-potency-analysis-by-gc-ms/ (accessed on 22 February 2023).
- CBD World. Classic CBD Vaping. Available online: https://www.cbdworld.it/it/62-classic-cbd-vaping/ (accessed on 22 February 2023).
- Li, Y.; Burns, A.E.; Tran, L.N.; Abellar, K.A.; Poindexter, M.; Li, X.; Madl, A.K.; Pinkerton, K.E.; Nguyen, T.B. Impact of e-Liquid Composition, Coil Temperature, and Puff Topography on the Aerosol Chemistry of Electronic Cigarettes. Chem. Res. Toxicol. 2021, 34, 1640–1654. [Google Scholar] [CrossRef] [PubMed]
- Duell, A.K.; Pankow, J.F.; Gillette, S.M.; Peyton, D.H. Boiling points of the propylene glycol + glycerol system at 1 atmosphere pressure: 188.6–292 °C without and with added water or nicotine. Chem. Eng. Commun. 2018, 205, 1691–1700. [Google Scholar] [CrossRef]
- Millar, S.A.; Stone, N.L.; Yates, A.S.; O’Sullivan, S.E. A Systematic Review on the Pharmacokinetics of Cannabidiol in Humans. Front. Pharmacol. Sec. Drug Metab. Transp. 2018, 9, 1365. [Google Scholar] [CrossRef] [Green Version]
- Dobrowsky, A. The Adsorption of Tobacco Smoke: How Far Is a Cigarette Its Own Filter? Tob. Sci. 1960, 4, 126–129. [Google Scholar]
- Farsalinos, K.E.; Spyrou, A.; Tsimopoulou, K.; Stefopoulos, C.; Romagna, G.; Voudris, V. Nicotine absorption from electronic cigarette use: Comparison between first and new-generation devices. Sci. Rep. 2014, 4, 4133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yingst, J.M.; Foulds, J.; Veldheer, S.; Hrabovsky, S.; Trushin, N.; Eissenberg, T.T. Nicotine absorption during electronic cigarette use among regular users. PLoS ONE 2019, 14, e0220300. [Google Scholar] [CrossRef]
- Nicotinell. How Much Nicotine Is in a Cigarette. Available online: https://www.nicotinell.co.uk/faqs/how-much-nicotine-is-in-a-cigarette.html/ (accessed on 22 February 2023).
- Healthline. How Much Nicotine Is in a Cigarette and Other Tobacco Products. Available online: https://www.healthline.com/health/how-much-nicotine-is-in-a-cigarette#other-substances/ (accessed on 22 February 2023).
- Leardi, G.; Melzi, R.; Polotti, C. CAT, Chemometric Agile Tool. 2019. Available online: http://gruppochemiometria.it/index.php/software (accessed on 1 April 2023).
- Bhaskar, A.; Bell, A.; Boivin, M.; Briques, W.; Brown, M.; Clarke, H.; Cyr, C.; Eisenberg, E.; Ferreira de Oliveira Silva, R.; Frohlich, E.; et al. Consensus recommendations on dosing and administration of medical cannabis to treat chronic pain: Results of a modified Delphi process. J. Cannabis Res. 2021, 3, 22. [Google Scholar] [CrossRef]
- Galstyan, E.; Galimov, A.; Meza, L.; Huh, J.; Berg, C.J.; Unger, J.B.; Baezconde-Garbanati, L.; Sussman, S. An Assessment of Vape Shop Products in California before and after Implementation of FDA and State Regulations. Int. J. Environ. Res. Public Health 2022, 19, 15827. [Google Scholar] [CrossRef]
- Larsen, C.; Shahinas, J. Dosage, Efficacy and Safety of Cannabidiol Administration in Adults: A Systematic Review of Human Trials. J. Clin. Med. Res. 2020, 12, 129–141. [Google Scholar] [CrossRef]
- Perucca, E.; Bialer, M. Critical Aspects Affecting Cannabidiol Oral Bioavailability and Metabolic Elimination, and Related Clinical Implications. CNS Drugs 2020, 34, 795–800. [Google Scholar] [CrossRef] [PubMed]
- Kintz, P. Vaping Pure Cannabidiol e-Cigarettes Does Not Produce Detectable Amount of ∆9-THC in Human Blood. J. Anal. Toxicol. 2020, 44, e1–e2. [Google Scholar] [CrossRef] [PubMed]
Composition of | Atomizer Power a | Number of Replicates | Transfer Efficiency to the Aerosol (between Parentheses the Amount of CBD Surviving the Vaping Procedure, mg c) | Residual Concentration of CBD in the e-Liquid in Contact with the Atomizer, mg∙mL−1 |
---|---|---|---|---|
e-Liquid | (between Parentheses the Amount of CBD Vaped, mg b) | |||
20 mg∙mL−1 CBD | medium | 1 (17.5) | 33% (5.8) | 7.48 |
In propylene glycol | 2 (12.3) | 48% (5.9) | 9.75 | |
3 (10.6) | 59% (6.2) | 5.68 | ||
4 (13.4) | 59% (7.9) | 11.83 | ||
mean | 50 ± 12% | 9 ± 3 | ||
high | 1 (17.5) | 54% (9.5) | 13.43 | |
2 (15.7) | 66% (10.4) | 7.37 | ||
3(15.2) | 58% (8.8) | 12.1 | ||
mean | 59 ± 6% | 10 ± 4 | ||
20 mg∙mL−1 CBD | medium | 1 (14.2) | 46% (6.5) | 4.85 |
in propylene glycol:glycerol 70:30 | 2 (16.7) | 31% (5.2) | 2.34 | |
3 (18.8) | 37% (6.9) | 3.15 | ||
4 (20.7) | 43% (8.9) | 1.91 | ||
mean | 39 ± 7% | 3 ± 1 | ||
high | 1 (21.9) | 37% (8.1) | 1.98 | |
2 (22.5) | 44% (9.9) | 2.1 | ||
3 (22.0) | 41% (9.0) | 2.32 | ||
mean | 41 ± 4% | 2.1 ± 0.2 | ||
10 mg∙mL−1 CBD | medium | 1 (10.2) | 60% (6.1) | 9.43 |
in propylene glycol | 2 (13.2) | 55% (7.3) | 9.3 | |
3 (9.5) | 62% (5.9) | 8.86 | ||
mean | 59 ± 4% | 9.2 ± 0.3 | ||
high | 1 (12.8) | 70% (9.0) | 5.36 | |
2 (12.1) | 73% (8.8) | 7.25 | ||
3 (12.0) | 77% (9.2) | 9.29 | ||
mean | 73 ± 4% | 7 ± 2 | ||
10 mg∙mL−1 CBD | medium | 1 (11.6) | 35% (4.1) | 3.2 |
in propylene glycol: glycerol 70:30 | 2 (15.5) | 36% (5.6) | 3.16 | |
3 (11.9) | 44% (5.2) | 3.68 | ||
mean | 38 ± 5% | 3.4 ± 0.3 | ||
high | 1 (10.0) | 69% (6.9) | 0.62 | |
2 (10.3) | 56% (5.8) | 0.83 | ||
3 (10.5) | 62% (6.5) | 0.85 | ||
mean | 62 ± 6% | 0.8 ± 0.1 | ||
2 mg∙mL−1 CBD | medium | 1 (3.4) | 69% (2.3) | 0.89 |
in propylene glycol | 2 (3.2) | 58% (1.9) | 0.63 | |
3 (3.6) | 72% (2.6) | 0.87 | ||
mean | 66 ± 7% | 0.8 ± 0.1 | ||
high | 1 (3.1) | 70% (2.2) | 0.44 | |
2 (3.0) | 88% (2.6) | 1.11 | ||
3 (3.0) | 82% (2.5) | 0.77 | ||
mean | 80 ± 9% | 0.8 ± 0.3 | ||
2 mg∙mL−1 CBD | medium | 1(3.5) | 64% (2.2) | 0.66 |
in propylene glycol: glycerol 70:30 | 2 (3.3) | 48% (1.6) | 0.54 | |
3 (2.8) | 47% (1.3) | 0.34 | ||
mean | 52 ± 8% | 0.5 ± 0.2 | ||
high | 1 (2.1) | 75% (1.6) | 0.32 | |
2 (3.6) | 62% (2.2) | 0.22 | ||
3 (3.3) | 70% (2.3) | 0.31 | ||
mean | 69 ± 7% | 0.28 ± 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capucciati, A.; Bini, A.; Mannucci, B.; Porta, A.; Profumo, A.; Merli, D. CBD-Containing Liquids for e-Cigarettes: Formation of Psychotropic and Secondary Cannabinoids and Amount of CBD Surviving the Smoking Procedure. Forensic Sci. 2023, 3, 258-272. https://doi.org/10.3390/forensicsci3020019
Capucciati A, Bini A, Mannucci B, Porta A, Profumo A, Merli D. CBD-Containing Liquids for e-Cigarettes: Formation of Psychotropic and Secondary Cannabinoids and Amount of CBD Surviving the Smoking Procedure. Forensic Sciences. 2023; 3(2):258-272. https://doi.org/10.3390/forensicsci3020019
Chicago/Turabian StyleCapucciati, Andrea, Arianna Bini, Barbara Mannucci, Alessio Porta, Antonella Profumo, and Daniele Merli. 2023. "CBD-Containing Liquids for e-Cigarettes: Formation of Psychotropic and Secondary Cannabinoids and Amount of CBD Surviving the Smoking Procedure" Forensic Sciences 3, no. 2: 258-272. https://doi.org/10.3390/forensicsci3020019
APA StyleCapucciati, A., Bini, A., Mannucci, B., Porta, A., Profumo, A., & Merli, D. (2023). CBD-Containing Liquids for e-Cigarettes: Formation of Psychotropic and Secondary Cannabinoids and Amount of CBD Surviving the Smoking Procedure. Forensic Sciences, 3(2), 258-272. https://doi.org/10.3390/forensicsci3020019