Computational Study on the Conformational Preferences of Neutral, Protonated and Deprotonated Glycine Dimers
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Conformational Analysis
3.1.1. Neutral Dimers in the Gas Phase
- The most stable ZZ structures in the gas phase are stacked. The most favored one, ZZ-G1, (Figure 1) is different from those obtained in previous work [22]. The second and third most stables structures we obtain in this group, ZZ-G2 and ZZ-G3, (Figure 2) which are only 1.7 and 6.1 kJ·mol−1 higher in energy than ZZ-G1, are closer in geometry to those reported previously as the most stable ones [22]. This sequence of conformational energies is found with B3LYP and MP2 levels.
- The geometry of the NZ dimer obtained as the most stable at the MP2 level, NZ-G1, differs significantly from the stacked geometry reported previously, NZ-GS, at the same computational level [22], which basically coincides with one of the B3LYP-optimized structures found here (Figure 3). Moreover, we notice that all our trials to perform MP2 optimizations for NZ stacked structures in the gas phase yielded NN ones. Nevertheless, at the B3LYP level NZ stacked structures were optimized, the most stable of them is only 10.7 kJ·mol−1 higher.
3.1.2. Neutral Dimers in the Gas Phase
- The energy sequence changes to: ZZ < NZ < NN (Table 1).
- Overall, ZZ aqueous solution preferred structures to be more opened than their gas phase counterparts. We notice they keep two N–H···O IHBs but lose one C–H···O and the imHB because of more favorable intermolecular interactions with water molecules.
- Preferred geometries keep more electron density on the most electronegative atoms.
3.1.3. Anionic Dimers in the Gas Phase
3.1.4. Anionic Dimers in an Aqueous Solution
3.1.5. Cationic Dimers in the Gas Phase
3.1.6. Cationic Dimers in an Aqueous Solution
3.2. Energy Trends
3.2.1. Zwitterionic versus Non Ionic Monomers
3.2.2. Solvation Energies
3.2.3. Protonation and Deprotonation Abilities
3.3. Electron Density Analysis
3.3.1. Bond Properties
3.3.2. Electron Density Transference between Monomers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Saenger, W. Principles of Nucleic Acid Structure; Springer: New York, NY, USA, 1984. [Google Scholar]
- Schulz, G.E.; Chirmer, R.H. Principles of Protein Structure; Springer: New York, NY, USA, 1979. [Google Scholar]
- Rodríguez-Santiago, L.; Noguera, M.; Bertran, J.; Sodupe, M. Hydrogen Bonding and Proton Transfer in Ionized DNA Base Pairs, Amino Acids and Peptides. In Quantum Biochemistry; Matta, C.F., Ed.; Wiley-VCH: Weinheim, Germany, 2010; Volume 1, pp. 219–243. [Google Scholar]
- Pichierri, F.; Aida, M.; Gromiha, M.M.; Sarai, A. Free-energy maps of base-amino acid interactions for DNA-Protein Recognition. J. Am. Chem. Soc. 1999, 121, 6152–6157. [Google Scholar] [CrossRef]
- Desfrançois, C.; Carles, S.; Schermann, J.P. Weakly Bound Clusters of Biological Interest. Chem. Rev. 2000, 100, 3943–3962. [Google Scholar] [CrossRef] [PubMed]
- Ni, W.; Mosquera, R.A.; Pérez-Juste, J.; Liz-Marzán, L.M. Evidence for Hydrogen-bond-directed Assembly of Gold Nanorods in Aqueous Solution. J. Phys. Chem. Lett. 2010, 1, 1181–1185. [Google Scholar] [CrossRef]
- Ramaekers, R.; Pajak, J.; Lambie, B.; Maes, G. Neutral and Zwitterionic Glycine·H2O Complexes: A Theoretical and Matrix Isolation Fourier Transform Infrared Study. J. Chem. Phys. 2004, 120, 4182–4193. [Google Scholar] [CrossRef] [PubMed]
- Jensen, J.H.; Gordon, M.S. On the Number of Water Molecules Necessary to Stabilize the Glycine Zwitterion. J. Am. Chem. Soc. 1995, 117, 8159–8170. [Google Scholar] [CrossRef] [Green Version]
- Kapota, C.; Lemaire, J.; Maitre, P.; Ohanessian, G. Vibrational Signature of Charge Solvation vs. Salt Bridge Isomers of Sodiated Amino Acids in the Gas Phase. J. Am. Chem. Soc. 2004, 126, 1836–1842. [Google Scholar] [CrossRef]
- HongWei, K.; Li, R.; Xin, X.; YiJing, Y. Density functional theory study of 1:1 glycine–water complexes in the gas phase and in solution. Sci. Chin. Ser. B. 2010, 53, 383–395. [Google Scholar]
- Xu, S.; Nilles, J.M.; Bowen, K.H., Jr. Zwitterion Formation in Hydrated Amino Acid, Dipole Bound Anions: How Many Water Molecules Are Required? J. Chem. Phys. 2003, 119, 10698–10701. [Google Scholar] [CrossRef] [Green Version]
- Price, W.D.; Schnier, P.D.; Williams, E.R. Binding Energies of the Proton-Bound Amino Acid Dimers Gly·Gly, Ala·Ala, Gly·Ala, and Lys·Lys Measured by Blackbody Infrared Radiative Dissociation. J. Phys. Chem. B. 1997, 101, 664–673. [Google Scholar] [CrossRef]
- Raspopov, S.A.; McMahon, T.B. A High-pressure Mass Spectrometric and Density Functional Theory Investigation of the Thermochemical Properties and Structure of Protonated Dimers and Trimers of Glycine. J. Mass. Spectrom. 2005, 40, 1536–1545. [Google Scholar] [CrossRef]
- Wu, R.; McMahon, T.B. Infrared Multiple Photon Dissociation Spectra of Proline and Glycine Proton-Bound Homodimers. Evidence for Zwitterionic Structure. J. Am. Chem. Soc. 2007, 129, 4864–4865. [Google Scholar] [CrossRef]
- Atkins, C.G.; Rajabi, K.; Gillis, E.A.L.; Fridgen, T.D. Infrared Multiple Photon Dissociation Spectra of Proton- and Sodium Ion-Bound Glycine Dimers in the N−H and O−H Stretching Region. J. Phys. Chem. A 2008, 11, 10220–10225. [Google Scholar] [CrossRef]
- Armentrout, P.B.; Heaton, A.L.; Ye, S.J. Thermodynamics and Mechanisms for Decomposition of Protonated Glycine and Its Protonated Dimer. J. Phys. Chem. A 2011, 115, 11144–11155. [Google Scholar] [CrossRef]
- Chocholoušová, J.; Vacek, J.; Huisken, F.; Werhahn, O.; Hobza, P. Stacked Structure of the Glycine Dimer Is More Stable than the Cyclic Planar Geometry with Two O−H···O Hydrogen Bonds: Concerted Action of Empirical, High-Level Nonempirical ab Initio, and Experimental Studies. J. Phys. Chem. A 2002, 106, 11540–11549. [Google Scholar] [CrossRef]
- De Carvalho, M.F.; Mosquera, R.A.; Rivelino, R. A Density Functional Theory Study of the Hydrogen Bond Interactions in Glycine Dimers. Chem. Phys. Lett. 2007, 445, 117–124. [Google Scholar] [CrossRef]
- Huang, J.; Stringfellow, T.C.; Yu, L. Glycine Exists Mainly as Monomers, Not Dimers, in Supersaturated Aqueous Solutions: Implications for Understanding Its Crystallization and Polymorphism. J. Am. Chem. Soc. 2008, 130, 13973–13980. [Google Scholar] [CrossRef]
- Hamad, S.; Richard, C.; Catlow, A. Are Glycine Cyclic Dimers Stable in Aqueous Solution? CrystEngComm 2011, 13, 4391–4399. [Google Scholar] [CrossRef]
- Campo, M.G. Molecular dynamics simulation of glycine zwitterion in aqueous solution. J. Chem. Phys. 2006, 125, 114511. [Google Scholar] [CrossRef]
- Friant-Michel, P.; Ruiz-López, M.F. Glycine Dimers: Structure, Stability, and Medium Effects. Chem. Phys. Chem. 2010, 11, 3499–3504. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in Molecules. A Quantum Theory; Oxford University Press: New York, NY, USA, 1990. [Google Scholar]
- Frisch, J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09. Revision E.01; Gaussian Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Frisch, M.J.; Pople, J.; Del Bene, J.E. Molecular Orbiral Study of the Dimers (AHn)2 Formed from Ammonia, Water, Hydrogen Fluoride, Phosphine, Hydrogen Sulfide, and Hydrogen Chloride. J. Phys. Chem. 1985, 89, 3664–3669. [Google Scholar] [CrossRef]
- Del Bene, J.E.; Jordan, M.J.T. What a Difference a Decade Makes: Progress in Ab Initio Studies of the Hydrogen Bond. J. Mol. Struct. Theochem. 2001, 573, 11. [Google Scholar] [CrossRef]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Solvation Continuum Models. Chem. Rev. 2005, 105, 2999–3094. [Google Scholar] [CrossRef]
- Rezabal, E.; Mercero, J.M.; Lopez, X.; Ugalde, J.M. A Theoretical Study of the Principles Regulating the Specificity for Al(III) Against Mg(II) in Protein Cavities. J. Inorg. Biochem. 2007, 101, 1192–1200. [Google Scholar] [CrossRef]
- Biegler-Konig, F.; Schonbohm, J.; Derdau, R.; Bayles, D.; Bader, R.F.W. AIM 2000. Version 1; Büro für Innovative Software: Bielefeld, Germany, 2000. [Google Scholar]
- Graña, A.M.; Mosquera, R.A. The Transferability of the Carbonyl Group in Aldehydes and Ketones. J. Chem. Phys. 1999, 110, 6606–6616. [Google Scholar] [CrossRef]
- Aicken, F.; Popelier, P.L.A. Atomic Properties of Selected Biomolecules. Part 1. The Interpretation of Atomic Integration Errors. Can. J. Chem. 2000, 78, 415–426. [Google Scholar] [CrossRef]
- Cornell, W.D.; Cieplak, P.; Bayly, C.I.; Gould, I.R.; Merz, K.M., Jr.; Ferguson, D.M.; Spellmeyer, D.C.; Fox, T.; Caldwell, J.W.; Kollman, P.A. A Second Generation Force Field for the Simulation of Proteins, Nucleis Acids and Organic Molecules. J. Am. Chem. Soc. 1995, 117, 5179–5197. [Google Scholar] [CrossRef] [Green Version]
- Bockris, J.O.M.; Conway, B.E.; White, R.E. Modern Aspects of Electrochemistry; Plenum Press: New York, NY, USA, 1996. [Google Scholar]
- Stutchbury, N.C.J.; Cooper, D.L. Charge Partitioning by Zero-Flux Surfaces: The Acidities and Basicities of Simple Aliphatic Alcohols and Amines. J. Chem. Phys. 1983, 79, 4967–4972. [Google Scholar] [CrossRef]
- González Moa, M.J.; Mandado, M.; Mosquera, R.A. Explaining the Sequence of Protonation Affinities of Cytosine with QTAIM. Chem. Phys. Lett. 2006, 428, 255–261. [Google Scholar] [CrossRef]
- Otero, N.; Estévez, L.; Mandado, M.; Mosquera, R.A. An Electron-Density-Based Study on the Ionic Reactivity of 1,3-Azoles. Eur. J. Org. Chem. 2012, 12, 2403–2413. [Google Scholar] [CrossRef]
- Estévez, L.; Mosquera, R.A. Molecular Structure and Antioxidant Properties of Delphinidin. J. Phys. Chem. A 2008, 112, 10614–10623. [Google Scholar] [CrossRef] [PubMed]
Method | Gas | Aqueous Solution | ||||
---|---|---|---|---|---|---|
Cation | Neutral | Anion | Cation | Neutral | Anion | |
B3LYP | 10.4 | 60.6 a (47.2) b | 7.8 | 1.7 | −34.2 a (−20.7) b | −15.7 |
MP2 | 13.8 | 47.5 a (55.2) b | 12.7 | −7.6 | −34.1 a (−19.6) b | −23.6 |
M06 | - | 68.6 a(61.8) b,c | - | −1.7 | −29.8 a (1.0) b,d | - |
MP3 | - | 85.3 a (73.6) b | - | - | - | - |
CCSD | - | 9.9 e | - | - | - | - |
Dimers | B3LYP | MP2 | M06 |
---|---|---|---|
NC | 295.3 | 288.9 | |
ZC | 304.5 | 311.6 | |
NN | 55.4 | 59.4 | 13.2 |
NZ | 134.5 | 134.7 | 81.7 |
ZZ | 159.9 | 142.0 | 110.1 |
NA | 251.3 | 241.1 | |
ZA | 271.9 | 279.3 |
Dimers | Deformation | Polarization | Non Electrostatic a |
---|---|---|---|
NC | 65.2 | −354.1 | 30.3 |
ZC | 75.0 | −386.6 | 31.1 |
NN | 57.8 | −117.2 | 34.3 |
NZ | 117.2 | −251.8 | 33.8 |
ZZ | 100.3 | −242.2 | 32.9 |
NA | 57.5 | −301.8 | 38.3 |
ZA | 147.0 | −426.3 | 33.3 |
Process | MP2 | B3LYP | MP2 | B3LYP |
---|---|---|---|---|
Protonation | Gas | Gas | Aq.sol. | Aq.sol. |
NZ→CZ=ZC | 991.7 | 987.8 | 1204.5 | 1195.2 |
NZ→NC | 1005.4 | 998.2 | 1196.9 | 1196.8 |
ZZ→ZC | 984.0 | 1001.3 | 1189.9 | 1181.7 |
NN→NC | 950.2 | 951.0 | 1221.5 | 1232.5 |
Deprotonation | Gas | Gas | Aq.sol. | Aq.sol. |
NZ→AZ=ZA | 1320.4 | 1313.9 | 1211.4 | 1210.0 |
NZ→NA | 1306.3 | 1306.1 | 1235.0 | 1225.7 |
ZZ→ZA | 1328.1 | 1300.4 | 1226.0 | 1223.5 |
NN→NA | 1362.9 | 1353.3 | 1210.3 | 1190.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pita, M.L.; Mosquera, R.A. Computational Study on the Conformational Preferences of Neutral, Protonated and Deprotonated Glycine Dimers. Compounds 2022, 2, 252-266. https://doi.org/10.3390/compounds2040021
Pita ML, Mosquera RA. Computational Study on the Conformational Preferences of Neutral, Protonated and Deprotonated Glycine Dimers. Compounds. 2022; 2(4):252-266. https://doi.org/10.3390/compounds2040021
Chicago/Turabian StylePita, M. Luisa, and Ricardo A. Mosquera. 2022. "Computational Study on the Conformational Preferences of Neutral, Protonated and Deprotonated Glycine Dimers" Compounds 2, no. 4: 252-266. https://doi.org/10.3390/compounds2040021
APA StylePita, M. L., & Mosquera, R. A. (2022). Computational Study on the Conformational Preferences of Neutral, Protonated and Deprotonated Glycine Dimers. Compounds, 2(4), 252-266. https://doi.org/10.3390/compounds2040021