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Abstract: Proteins that are amphiphilic and have low water solubility can self-assemble into nanoparti-
cles useful in food science, pharmaceutical science, or biotechnology. However, protein nanoparticles
exhibit drawbacks such as low stability unless the particles are coated. In the current study, tannic acid
is the coating agent for nanoparticles synthesized from the protein zein. Tannic acid is a hydrolyzable
tannin comprising a polyol esterified with galloyl residues. The nominal molecular formula of tannic
acid (C76H52O46) suggests the material is decagalloyl glucose, obscuring its complex composition
as a mixture of galloyl esters of glucose. We prepared hollow zein nanoparticles and coated them
with tannic acid preparations that had short or long galloyl ester chains. The % α-helix of zein in
nanoparticles is lower than in native zein but there is no effect of coating the particles with tannic
acid. Interactions between the tannic acid and the zein slightly perturb the IR spectrum of the protein
but there is no effect of galloyl chain length. We confirmed that tannic acid-coated particles have a
more negative zeta potential, suggesting greater stability compared to uncoated particles. Coating
with longer chain length tannic acid reduces particle diameter and tends to decrease polydispersity
but does not change particle digestibility. Coating with shorter galloyl chain length tannic acid tends
not to change particle diameter, reduces polydispersity of the particles, and stabilizes particles to
enzymatic digestion. Tannic acid is a naturally occurring tunable coating for nanoparticles that can be
used to adjust properties such as particle size, polydispersity, and digestibility for specific purposes.

Keywords: tannin; polyphenol; protein precipitation; digestibility; pentagalloyl glucose; multivalent
protein binding

1. Introduction

Biodegradable nanoparticles may have diverse applications for drug delivery, food
modifications, manufacturing, and biotechnology. For biological applications, nanoparticles
are attractive due to their submicron sizes that lead to relatively higher intracellular uptake
compared to microparticles [1]. Efficiency of cargo release is inversely proportional to parti-
cle size because release depends on surface area and proximity of the encapsulated material
to the particle surface, so controlling particle size is important [2,3]. Compared to delivery
systems such as emulsions, lipid nanoparticles, liposomes or microcapsules, biopolymer
nanoparticles have favorable qualities including biocompatibility and biomimetic charac-
teristics [4].

Proteins and polysaccharides are widely used to create biopolymer nanoparticles due
to low toxicity, biodegradability, and availability as a commodity [5]. In particular, plant
proteins are safe due to their minimal potential to provoke zoonotic disease transmission [6].
Zein, an alcohol-soluble protein (prolamin) is the major storage protein in maize endosperm
cells [7]. This protein is amphiphilic because 50% of its amino acids are hydrophobic.
Zein self-assembles into nanoparticles and can be developed as a delivery vehicle for
hydrophobic molecules [8].
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Both solid and hollow zein nanoparticles have been proposed for delivery applications.
Although hollow particles have more potential to load cargo, they are more difficult to
synthesize than solid particles [6]. Hollow nanoparticles are prepared by adding materials
to create cavities in the particle either during or after particle synthesis. A novel method
that uses sodium carbonate (Na2CO3) as a sacrificial template was developed by Xu and
colleagues [6]. While zein dissolves in aqueous ethanol, sodium carbonate has limited
solubility in organic-modified solutions. In 35% ethanol, carbonate forms particles that
serve as templates for protein deposition. Water is added to dissolve the template and
leave the protein nanoparticle suspended in basic solution. This “anti-solvent process” is a
simple and effective method for producing zein nanoparticles (ZNP) [6].

To deliver their contents by oral administration, nanoparticles must be stable under
gastrointestinal conditions comprising salts, extreme pH values and digestive enzymes.
Protein nanoparticles may be more or less stable than the parent protein. For example,
although zein has relatively low digestibility [9], unmodified ZNP aggregated and were
hydrolyzed under gastrointestinal conditions [10]. Strategies such as surface coating or
crosslinking with a polymer have demonstrated promising results including improved
particle stability, delivery potential and rate of drug release [10,11]. Tannic acid (TA) is a
biologically derived polymer that has been tested as a coating agent for protein nanoparti-
cles [7].

Tannic acid, a commercially available hydrolyzable tannin, binds to and precipitates
protein via hydrogen bonding, hydrophobic, and sometimes covalent interactions [12,13].
Tannic acid is often used as a stabilizing agent for protein-containing foods, beverages and
pharmaceuticals [14–16]. It can also be used to fabricate hydrogels [17], thin films [18], and
nanoparticles. Zein nanoparticles that are coated with TA are reported to be more resistant
to digestion than uncoated ZNP [7]. Moreover, coating nanoparticles with TA has the
potential to co-deliver health benefits associated with some polyphenols such as antibacte-
rial, anticarcinogenic, antimutagenic, anti-allergic, anti-inflammatory or antihypertensive
activity [19,20]. Despite these promising features of TA-coated protein nanoparticles, lack
of understanding of how the galloyl chain length of TA preparations affects their function
in nanoparticles is a research gap that limits our use of these systems.

Commercially available TA is not a pure compound. It is a mixture of galloyl esters of
a core polyol, usually glucose, with different degrees and positions of esterification based
on the botanical source and purification steps used by different suppliers (Figure 1) [21–23].
Preparations from some plant sources can contain rearrangement products such as castala-
gin/vescalagin. The nominal molecular weight and formula of TA that is provided by most
suppliers (C76H52O46, 1701 g/mol) is representative of the mixture but is not specific to a
given preparation. Analysis with HPLC provides specific compositional information and
reveals the heterogeneity of commercial supplies [21]. We hypothesize that the galloyl chain
length of TA affects the properties of TA-coated ZNP, including their size, polydispersity
index, zeta potential, morphology, and digestibility.
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Figure 1. Biosynthetic basis for the variable galloyl chain length of commercial tannic acid prepara-
tions. In plants, 1-O-galloyl-β-D-glucose (monogalloyl glucose, glucogallin) (a) is esterified in a step-
wise fashion (b, c, d, e) to produce a series of short chain-length galloyl esters [24]. The central me-
tabolite pentagalloyl glucose (1,2,3,4,6-penta-O-galloyl--D-glucose) (f) is esterified at all five glu-
cose OH groups, and subsequent steps add galloyl groups as depsides to generate medium chain-
length (g) and long chain-length (h) galloyl esters. Positional isomers like those illustrated for 
decagalloyl glucose (h) add further structural diversity. Tannic acid is nominally comprised of 
decagalloyl glucose (h) (C76H52O46) but HPLC analysis reveals that different commercial prepara-
tions are mixtures of many biosynthetic intermediates and isomers. 

2. Materials and Methods
2.1. Materials

Zein was obtained from Sigma-Aldrich (St. Louis, MO, USA). Tannic acids were ob-
tained from several suppliers: ACR was from Acros Organics (Geel, Belgium), MAL was 
from Mallinckrodt Chemicals (Paris, KY, USA), GFS was from GFS Chemicals (Powell, 
OH, USA), and FIS was from Fisher Scientific (Fairlawn, NJ, USA). Pentagalloyl glucose 
(PGG) was synthesized in our lab from TA and its purity and structure were confirmed 
by proton NMR and ESI-MS [25]. Chymotrypsin and bovine serum albumin (BSA) were 
from Sigma-Aldrich (St. Louis, MO, USA), and 4-(2-aminoethyl) benzenesulfonyl fluoride 
hydrochloride (AEBSF) protease inhibitor was from ThermoFisher (Waltham, MA, USA). 
Solutions were prepared with nanopure water or HPLC grade solvents. All other chemi-
cals were reagent, HPLC, or electrophoresis grade. 

2.2. Methods 
2.2.1. HPLC Analysis 

The composition of each TA sample was determined by reversed phase HPLC. A 
Hewlett-Packard 1100 gradient HPLC system with an autosampler and a diode array de-
tector was equipped with an Agilent Zorbax C-8 column, 4.6 mm × 150 mm with 5-micron 
packing (Agilent, Santa Clara, CA, USA). The gradient program employed 0.13% (v/v) tri-
fluoroacetic acid (TFA) in nanopure water (A) and 0.10% (v/v) TFA in HPLC-grade ace-
tonitrile (B) at a flow rate of 0.5 mL/min. The 60 min runs were programed as follows: 0–
3 min, isocratic at 10% B; 3–40 min, increase to 30% B; 40–50 min, increase to 80% B; 50–55 
min, decrease to 10% B, and re-equilibrate. The detector was set at 220 nm and data were 
collected and processed using ChemStation Rev. A.09.03 software (Agilent, Santa Clara, 
CA, USA). 

Figure 1. Biosynthetic basis for the variable galloyl chain length of commercial tannic acid prepa-
rations. In plants, 1-O-galloyl-β-D-glucose (monogalloyl glucose, glucogallin) (a) is esterified in a
stepwise fashion (b–e) to produce a series of short chain-length galloyl esters [24]. The central metabo-
lite pentagalloyl glucose (1,2,3,4,6-penta-O-galloyl-β-D-glucose) (f) is esterified at all five glucose
OH groups, and subsequent steps add galloyl groups as depsides to generate medium chain-length
(g) and long chain-length (h) galloyl esters. Positional isomers like those illustrated for decagalloyl
glucose (h) add further structural diversity. Tannic acid is nominally comprised of decagalloyl glucose
(h) (C76H52O46) but HPLC analysis reveals that different commercial preparations are mixtures of
many biosynthetic intermediates and isomers.

2. Materials and Methods
2.1. Materials

Zein was obtained from Sigma-Aldrich (St. Louis, MO, USA). Tannic acids were
obtained from several suppliers: ACR was from Acros Organics (Geel, Belgium), MAL
was from Mallinckrodt Chemicals (Paris, KY, USA), GFS was from GFS Chemicals (Powell,
OH, USA), and FIS was from Fisher Scientific (Fairlawn, NJ, USA). Pentagalloyl glucose
(PGG) was synthesized in our lab from TA and its purity and structure were confirmed
by proton NMR and ESI-MS [25]. Chymotrypsin and bovine serum albumin (BSA) were
from Sigma-Aldrich (St. Louis, MO, USA), and 4-(2-aminoethyl) benzenesulfonyl fluoride
hydrochloride (AEBSF) protease inhibitor was from ThermoFisher (Waltham, MA, USA).
Solutions were prepared with nanopure water or HPLC grade solvents. All other chemicals
were reagent, HPLC, or electrophoresis grade.

2.2. Methods
2.2.1. HPLC Analysis

The composition of each TA sample was determined by reversed phase HPLC. A
Hewlett-Packard 1100 gradient HPLC system with an autosampler and a diode array
detector was equipped with an Agilent Zorbax C-8 column, 4.6 mm × 150 mm with 5-
micron packing (Agilent, Santa Clara, CA, USA). The gradient program employed 0.13%
(v/v) trifluoroacetic acid (TFA) in nanopure water (A) and 0.10% (v/v) TFA in HPLC-grade
acetonitrile (B) at a flow rate of 0.5 mL/min. The 60 min runs were programed as follows:
0–3 min, isocratic at 10% B; 3–40 min, increase to 30% B; 40–50 min, increase to 80% B;
50–55 min, decrease to 10% B, and re-equilibrate. The detector was set at 220 nm and data
were collected and processed using ChemStation Rev. A.09.03 software (Agilent, Santa
Clara, CA, USA).
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2.2.2. Polyphenol Precipitability by Protein

The protein precipitability of the polyphenols in each TA sample was determined
using BSA as a model protein [26]. Various amounts of TA ranging from 0 to 100 µg were
added to 400 µL of pH 5.9 acetate buffer containing 25 µg of BSA. The solutions were mixed,
incubated at room temperature for 30 min, and centrifuged for 5 min at 12,000× g. The
supernatants were removed by aspiration and the pellets were redissolved in 800 µL of
1% (m/v) sodium dodecyl sulfate (SDS)/5% (v/v) triethanolamine solution before adding
200 µL of 0.01 M ferric ammonium sulfate in 0.01 M HCl. The absorbance of each sample at
510 nm was determined and converted to mass of TA precipitated using a calibration plot
prepared for each TA (Supplementary Figure S1).

2.2.3. Nanoparticle Synthesis

Slightly different procedures were used to produce uncoated hollow ZNP or hollow
ZNP coated with each of the TA preparations [7]. In order to synthesize 2.0 mL of ZNP,
50 µL of either 70% ethanol (uncoated nanoparticles) or 25 mg/mL TA in 70% ethanol
(coated nanoparticles) was added to a 500 µL of 70% ethanol containing 30 mg/mL zein.
After rotating at room temperature for 30 min, 450 µL of Na2CO3 suspended in 70% ethanol
(13 mg/mL) was added to the reaction mixture and rotated for 15 min. Finally, an equal
volume of nanopure water (1.0 mL) was added and the samples were rotated for another
30 min before centrifuging for 15 min at 5000× g. We noted that there was more sediment
in the samples of coated ZNP, consistent with the susceptibility of zein to precipitation
by tannin [27]. We estimated that 33% more protein was incorporated into uncoated ZNP
than into the coated ZNP. The supernatant contained the ZNP suspended in a solution of
2.9 mg/mL Na2CO3 in 35% ethanol. The particles were analyzed within 24 h of preparation.
The ZNP medium that was used to dilute samples for various analyses was made up of
2.9 mg/mL Na2CO3 dissolved in 35% ethanol.

2.2.4. Dynamic Light Scattering

Dynamic light scattering (DLS) measurements were used to determine the hydrody-
namic diameter and the polydispersity index (PDI) of the uncoated and coated ZNP. The
analyses were performed on a Zetasizer Nano Series (Malvern Panalytical Ltd., Malvern,
UK) at 25 ◦C in disposable 40 µL cuvettes with three averaged instrument runs per sam-
ple. Zeta potential was measured using a Zeta Analyzer (Brookhaven Instrument Corp.,
Holtsville, NY, USA) with six averaged instrument runs per sample. To minimize multiple
scattering, samples were diluted with ZNP medium, using a 10-fold dilution for DLS
measurements and a 32-fold dilution for zeta potential measurements. The Zetasizer Nano
Series instrument collects data at 90◦. Instrument parameters such as viscosity and refrac-
tive index appropriate for the ZNP medium were used [28,29]. For each measurement three
independent samples were analyzed. Data were analyzed with Zetaziser Nano software v
3.30 supplied by Malvern Panalytical Ltd.

2.2.5. Infrared Spectrometry

Coated and uncoated ZNP samples were dried in a speed vacuum concentrator. The
dried sample was washed with 35% ethanol and re-dried. The dry, powdered sample was
placed on the surface of the crystal in the Perkin Elmer Spectrum One Fourier transform
infrared (FT-IR) spectrometer (Shelton, CT, USA) in order to obtain spectra over the wave-
length range from 400 cm−1 to 4000 cm−1. Spectra of pure zein, pure TA, uncoated ZNP,
and coated ZNP were obtained.

2.2.6. Scanning Electron Microscopy

Samples were prepared for scanning electron microscopy (SEM) by depositing a
drop of the coated or uncoated ZNP suspension on a clean cover slip mounted on an
aluminum stub with adhesive tabs and air drying the sample for 30 min. The stub was
then silver painted, and sputter coated with approximately 20 nm of gold. Secondary
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electron imaging of each sample was conducted on a Zeiss Supra 35 VP FEG (Baden-
Wurttemberg, Germany). All images were taken at 5 KV with an 11.0 mm working distance
and magnification varied from 5K times to 95K times for each micrograph. In order to
calculate the average particle diameter for each image, the diameter of every particle within
the same area was determined and averaged (Supplementary Figure S2).

2.2.7. Circular Dichromsim Spectrometry

Circular dichroism spectra were obtained with an Aviv CD Spectrometer model 435
(Lakewood, NJ, USA). Coated and uncoated ZNP suspensions were diluted 10 times using
ZNP medium and transferred to the cuvette (1 mm pathlength) for analysis at 25 ◦C.
Three scans were collected for each sample, and the signal was averaged from 195 nm to
260 nm with an averaging time of 3.0 s, and a settling time of 0.333 s. The ellipticity in
millidegrees (mdeg) from three independent determinations was averaged, the background
(buffer containing the appropriate TA) was subtracted, and the data were scaled to the
uncoated ZNP value 222 nm [30]. The spectra were quantitatively analyzed using the
Bestsel algorithm (https://bestsel.elte.hu/index.php (accessed on 10 March 2024)).

2.2.8. Nanoparticle Digestibility

Digestibility was assessed in an in vitro system. The alkaline pH of the ZNP medium
was unfavorable for pepsin digestion. The limited trypsin digestibility of zein (5 cleavage
sites) led us to focus on chymotrypsin (67 cleavage sites) for our digestion system (cleavage
sites predicted for Q00919_MAIZE using PeptideCutter from Expasy https://web.expasy.
org/peptide_cutter/ (accessed on 10 March 2024)). The suspension of coated or uncoated
ZNPs was diluted with ZNP medium and placed under a stream of nitrogen to remove
ethanol from the sample because ethanol inhibits chymotrypsin [31]. To accommodate
the lower protein incorporation in coated ZNP, we used 300 µL of coated ZNP diluted
with 100 µL of medium, or 200 µL of uncoated ZNP diluted with 200 µL of medium. After
removing the ethanol, 120 µL of water and 20 µL of 3M Tris HCl (pH 8) was added to each
sample. Chymotrypsin (1.25 mg/mL dissolved in 1 mM HCl containing 2 mM CaCl2) was
added to each sample (10 µL) and the samples were incubated at room temperature for
1 h. Digestion was stopped by adding 10 µL of the inhibitor AEBSF (9.6 mg/mL in water).
Undigested controls were prepared by adding 10 µL of AEBSF before adding chymotrypsin.
After the digestion step, 160 µL of denaturation solution (SDS, β-mercaptoethanol, glycerol
and Coomassie blue G-250 as a tracking dye) was added to each sample, and the samples
were heated at 100 ◦C for 10 min. The samples (10 µL) were run on 14% Tris/Tricine
SDS-PAGE gel (37.5:1 acrylamide to bis) [32]. Gels were fixed by soaking for 15 min in
12.5% trichloroacetic acid (TCA) in water, then stained with Coomassie stain overnight
followed by destaining in 12.5% TCA solution. Zein was the dominant band at about
20kD in digested and undigested samples, with no interference from chymotrypsin which
was below the limit of detection. Images were obtained using the ChemiDoc Imaging
system (Bio-Rad 3.0.1.14) and were analyzed with ImageJ software (ImageJ.org, National
Institute of Health). Five independent preparations of ZNP were digested to obtain average
digestibility for each treatment.

2.2.9. Statistical Analysis

Particle size, polydispersity, zeta potential and digestibility data were analyzed with
the one-tailed Mann–Whitney test for significance using GraphPad Prism 5. The data were
presented as mean and standard error of mean.

3. Results and Discussion
3.1. Characterization of Tannic Acids

Commercially available TA is a mixture of related compounds that have various
degrees of galloylation and patterns of substitution (Figure 1) [21,22]. A well-characterized
sample of TA was used to correlate HPLC elution time with degree of esterification [22]

https://bestsel.elte.hu/index.php
https://web.expasy.org/peptide_cutter/
https://web.expasy.org/peptide_cutter/
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(Supplementary Figure S3). We categorized four commercial preparations of TA as short
chain length, mixed chain length, or long chain length TA (Figure 2, Table 1). The mixture
of isomers in MAL is predominantly mono- to tetra galloyl glucose (1–4 GG), so it is defined
as a short chain length TA. ACR and GFS are both dominated by isomers with chain lengths
ranging from 5 to 8 galloyl glucose (5–8 GG) and are assigned as long chain length TA.
FIS has an equal distribution of shorter and longer chain isomers and is designated as a
mixed chain length TA. Pentagalloyl glucose is a purified, defined TA with a fully esterified
core sugar.
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Figure 2. Reversed phase HPLC chromatograms for MAL, FIS, ACR, and GFS tannic acids. Hydrolyz-
able tannins from different suppliers were run on a C-8 column with a trifluoroacetic acid-modified
water/acetonitrile gradient. Arrows indicate the elution times of pure gallic acid and PGG. Tannic
acids were obtained from several suppliers: ACR was from Acros Organics (Geel, Belgium), MAL
was from Mallinckrodt Chemicals (Paris, KY, USA), GFS was from GFS Chemicals (Powell, OH, USA),
and FIS was from Fisher Scientific (Fairlawn, NJ, USA). Pentagalloyl glucose (PGG) was prepared
in-house.

Table 1. Percentage of each size class of galloyl esters in the tannic acid preparations.

Tannic Acid Preparation

MAL FIS ACR GFS

% of 1–4 GG 1 83 51 35 23
% of 5–8 GG 1 17 49 65 77
Chain length 2 Short Mixed Long Long

1 Percent galloyl glucose (GG) was calculated based on peak areas after assigning the peak families using the
calibration plot (Supplementary Figure S3). 2 Chain length categories are based on the distribution of material
between <5GG and >5GG for each type of TA.

The different preparations of TA had different abilities to precipitate with protein.
Tannins bind protein by a combination of hydrogen bonding, hydrophobic and sometimes
covalent interactions [12,13]. The tannin–protein complexes precipitate under favorable
conditions of tannin-to-protein ratio, pH, solvent composition, and temperature [33]. The
tendency to precipitate can easily be measured using a standard protein to determine
the percent of added polyphenol that can be precipitated (protein precipitability) [26,33].
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A limitation of the method is its dependence on the highly water-soluble model protein
BSA, which may not be directly relevant to interactions with protein such as the very
hydrophobic zein.

The two long chain TA preparations and PGG were highly precipitable, with about 70%
of the added TA co-precipitating with protein (Supplementary Figure S1). The mixed chain
length TA (FIS) was also highly precipitable (60%) but only after a threshold level of TA
was added to the protein sample (Supplementary Figure S1). The short chain length sample
(MAL) was less precipitable (48%) and required a high threshold level of TA to initiate
precipitation (Supplementary Figure S1). Our data are very similar to an earlier systematic
study of protein precipitability of purified hydrolzyable tannins, in which 80–100% of
the octagalloyl glucose (long chain) was precipitated at all tannin-to-protein ratios, but
less than 40% of the trigalloyl glucose (short chain) was precipitated at the best ratio [23].
Long-chain TA preparations appear to efficiently form multivalent crosslinks between BSA
molecules and co-precipitate with the protein [23]. Short chain TA may bind to the protein
but do not form crosslinks, limiting precipitation [33]. The precipitability data and the
chain length assignments highlight the unique characteristics of different preparations of
TA that we used to coat ZNP.

3.2. Size, PDI and Zeta Potential of Zein Nanoparticles

The diameters of the uncoated ZNP (Table 2) were as much as three times larger
than the diameters previously reported for solid ZNP [34] or hollow ZNP [6,35]. The high
concentration of Na2CO3 (2–9%) used to form the template in earlier studies of hollow
ZNP probably promoted rapid precipitation of the carbonate and thus small template
particles and small ZNP. We used a lower concentration of Na2CO3 (1.3%) that may have
precipitated more slowly to form larger templates and thus larger ZNP. A study of how
carbonate concentration affects particle size would be useful for future applications of the
anti-solvent process.

Table 2. Diameter, PDI and zeta potential of coated or uncoated zein nanoparticles determined
by DLS.

Coating Diameter 1 (nm) PDI 1 Zeta Potential 1 (mV)

Uncoated 200 ± 4 0.082 ± 0.012 −26.7 ± 0.3
MAL (short) 189 ± 3 0.044 ± 0.011 * −33.7 ± 0.3 **
FIS (mixed) 186 ± 1 ** 0.048 ± 0.010 −36.0 ± 0.6 **
PGG (pure) 185 ± 1 ** 0.046 ± 0.019 −36.7 ± 0.3 **
ACR (long) 179 ± 0 ** 0.047 ± 0.017 −35.3 ± 0.7 **
GFS (long) 183 ± 1 ** 0.062 ± 0.023 −35.0 ± 1.5 **

1 The means and standard errors of mean are shown (n = 3). Statistical comparisons to the mean are indicated by
* p < 0.1, ** p < 0.05.

Our TA-coated ZNP are more compact than uncoated ZNP (Table 2). In comparison to
some earlier studies in which the TA coating minimally reduced the size of the particles
(92 nm vs. 88 nm diameter) [7], our TA coatings reduced particle diameter by around 8%
compared to uncoated particles (Table 2). Coating with a short chain length TA tended
to reduce the particle size (p = 0.100) but the effect was greater and reached significance
(p < 0.05) for the mixed chain length TA, long chain length TA, or pure PGG. The reduced
particle size is consistent with the multivalent nature of long chain TA, allowing it to bind
zein at several sites resulting in crosslinks that pull proteins close together and shrink
the ZNP.

Uncoated hollow ZNP have a homogeneous size distribution with acceptable PDI
values (Table 2). Although some authors report that coating hollow ZNP with TA slightly
increases the PDI [7], we found that coating the particles with TA tended to decrease
polydispersity (Table 2). Particles coated with long or mixed chain length TA or with PGG
are slightly less polydisperse than uncoated particles, but particles coated with short chain
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length TA were significantly less polydisperse (p < 0.1, Table 2). This effect of MAL is
consistent with the limited precipitation ability of this TA. Short-chain TA may add a polar
coat to the ZNP but do not bind at multiple sites and are unable to crosslink the protein,
thus preventing aggregation and yielding a more homogeneous population of particles.

The zeta potentials of the coated ZNP were significantly more negative than those
of the uncoated ZNP (Table 2), similar to earlier reports [7]. The zeta potential is dictated
by the pH of the solution and the pKa values for functional groups on the surface of the
particle. The ZNP medium has a pH of about 10, well above the pI of zein (pI~6), so ZNP
typically have a negative surface charge [35] similar to our uncoated ZNP (Table 2). The pH
of the ZNP medium for coated nanoparticles is about 8, because during particle synthesis
the weakly acidic TA neutralizes some of the carbonate in the solution. The many phenolic
functional groups of TA are about half protonated at pH 8 (pKa~7.8) [36], so the TA coat
contributes additional negative charge beyond that of the zein, resulting in a more negative
zeta potential for all of the coated ZNP (Table 2). In principle, a more negative zeta potential
is associated with less aggregation and increased stability of particle suspensions, leading
us to believe that TA may stabilize ZNP.

3.3. Intermolecular Interactions between Zein and TA in Zein Nanoparticles

The FT-IR spectra of zein and of TA were similar to published spectra [37–39]. The
spectrum of uncoated ZNP was almost indistinguishable from that of pure zein (Figure 3).
The spectra of ZNP coated with any type of TA had features of both zein and TA, confirming
incorporation of TA into the particles [7]. For example, the 1203 cm−1 band due to aromatic
esters is clearly visible in the spectra of TA or coated ZNP, but not in pure zein or uncoated
ZNP (Figure 3). The aryl C-H bending band at 750 cm−1 is present in spectrum of TA and
the spectra of TA-coated ZNP (Figure 3).

There were no clear differences between the spectra from ZNP made with the different
preparations of TA, consistent with the structural variation in number but not types of func-
tional groups in the different types of TA. In some regions, the protein signals overwhelmed
the TA signals suggesting close interactions between the TA and protein [40]. For example,
the TA aromatic C-O stretch (1609 cm−1) and the TA phenolic ester stretch (1698 cm−1) are
both obscured by the strong amide carbonyl band at 1645 cm−1 contributed by the protein
(Figure 3). The >3000 cm−1 region of the zein spectrum has a distinct band centered at
3291 cm−1 but the TA control has a broad band in the same region (Figure 3). These bands
are attributed to the amide nitrogen stretch and inter- and intra-molecular hydrogen bond-
ing of phenolic OH groups, respectively. Loss of the signal typical of phenolic hydrogen
bonds in the TA-coated ZNP may be indicative of TA-amide hydrogen bonding in the ZNP.
The strong spectral band attributed to aromatic C-O bending (1310 cm−1) is distinct in the
TA control but is barely visible in the coated ZNP spectra (Figure 3), providing additional
support for the idea that the phenolic OH groups are involved in the TA–zein interaction
that forms the ZNP coat. The strong TA signals at 1195 cm−1, 1080 cm−1 and 1019 cm−1

are attributed to C-O stretching (Figure 3). Each of these bands appears to have shifted
slightly to 1203 cm−1, 1120 cm−1 and 1046 cm−1 in the coated particles, again pointing to
changes in the TA when it coats the ZNP.
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3.4. Morphology of Zein Nanoparticles

During the process of drying the samples for SEM, the uncoated ZNP form irregular
aggregates of highly textured particles (Figure 4a). The TA-coated ZNPs have smooth
surfaces and are arranged like beads on a string (Figure 4b–f). For MAL and FIS, the
images reveal small groups and chains of particles that are only two to three particles
wide (Figure 4b,c). Zein nanoparticles coated with PGG, ACR or GFS form longer chains
that may be four to five particles wide (Figure 4d–f). For each type of ZNP, the size of
the individual particles determined by SEM (Table 3) is about 25% smaller than the size
determined by DLS (Table 2), because SEM reveals the size of the dry particle while DLS
provides the hydrodynamic size of the fully hydrated ZNP. For the SEM measurements,
the uncoated particles are larger than the coated particles (Table 3), with the difference
reaching significance for the ZNP coated with pure PGG or long chain TA (Table 3). The
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tendency of long galloyl chain TA to decrease the size of the ZNP is consistent for the DLS
and the SEM determinations.
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Table 3. Average zein nanoparticle size determined from the scanning electron microscopy images.

Coating Diameter (nm) 1

Uncoated 156 ± 7
MAL (short) 145 ± 4
FIS (mixed) 151 ± 5
PGG (pure) 136 ± 4 ***
ACR (long) 134 ± 4 ***
GFS (long) 140 ± 5 ***

1 The values are the average +/− standard error of mean for n = 48–96 particles found in a grid of 5.92 mm2

(Supplementary Figure S2). Statistical comparisons to the mean are indicated by *** p < 0.001.

3.5. Protein Secondary Structure in Zein Nanoparticles

The secondary structure of the protein in ZNP was not changed by coating the particles
with TA (Figure 5). The CD spectra of either uncoated or coated ZNP had negative peaks at
208 and 222 nm, indicating some α-helical elements in the protein. The literature suggested
that forming the nanoparticles would increase β-sheet and random coil elements compared
to the 50–60% α-helix typical of native zein under favorable dissolution conditions of 70%
ethanol [41–43]. We analyzed our spectra with the Bestsel web-based algorithm (https://
bestsel.elte.hu/index.php (accessed on 10 March 2024)), which is used to optimize detection
of β-structures [30] (Supplementary Table S1). The quantitative analysis indicated that less
than 10% of the secondary structure of zein in ZNP comprised α-helices. Beta structures
(25%), turns (15%) and unordered regions (50%) dominated the protein structure in the
ZNP with no effect of coating the particles with TA of any chain length (Supplementary

https://bestsel.elte.hu/index.php
https://bestsel.elte.hu/index.php
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Table S1). Data from other authors for ZNP were similar to our data, with loss of helical
structure relative to the native protein [43]. Although increasing solvent polarity decreases
helical structure in zein [41], the dominant effect on structure for ZNP appears to be protein
aggregation and packing. The effect of solvent on the structure was relatively limited,
with about 40% helical structure for zein in 45% ethanol compared to 10% for ZNP in 35%
ethanol (Supplementary Table S1).
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Figure 5. Circular dichroism spectra of coated or uncoated zein nanoparticles. Each line represents
the average spectrum based on three independent samples. The background with the appropriate TA
was subtracted and the data were scaled to the signal at 222 nm for the uncoated ZNP.

3.6. Digestibility of Zein Nanoparticles

Zein is a protein with low digestibility due to its high disulfide content and prepon-
derance of hydrophobic residues [9]. We optimized a simple in vitro system that used
SDS-PAGE to monitor loss of the 20 kD zein band after chymotrypsin digestion. Replication
of the integrated peak areas was poor with errors as large as 30% of the mean (Table 4), but
differences between the TA treatments could be discerned. Under the optimized conditions,
about 40% of the uncoated ZNP sample was digested (Table 4). Digestibility of ZNP was
not affected when the particles were coated with long chain length tannic acids (Table 4).
Pure PGG-coated ZNP tended to be less digestible than the uncoated ZNP, but the change
did not reach significance (Table 4). In contrast, coating the ZNP with short chain length TA
significantly increased digestibility of the particles, and mixed chain length TA similarly
tended to increase digestibility (Table 4).

Table 4. Average % digestion of coated or uncoated zein nanoparticles by chymotrypsin.

Coating Average Digestion (%) 1

Uncoated 42.8 ± 6.5
MAL (short) 62.4 ± 5.5 **
FIS (mixed) 54.9 ± 13.8
PGG (pure) 29.7 ± 7.5
ACR (long) 40.4 ± 4.4
GFS (long) 40.7 ± 12.6

1 Average +/− standard error of mean (n = 5). Statistical comparisons to the mean are indicated by ** p < 0.05.

The digestibility results were surprising in light of the well-established dogma that
tannin is a universal enzyme inhibitor [44]. However, there is little opportunity for the
nanoparticle-bound TA to interact with the soluble enzyme, so it is likely that the TA does
not directly inhibit the enzyme in this system. The long chain TA that were the most
efficient protein precipitating agents tended to decrease (PGG) or not change (ACR, GFS)
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ZNP digestibility, suggesting that the enzyme was able to access the TA-substrate complex,
with regions of the zein that were not directly bound to the TA being susceptible to cleavage.
Based on the increased digestibility of ZNP coated with short or mixed chain length TA, we
suggest that a redox chemistry mechanism has the most important impact on digestibility of
TA-coated ZNP. We propose that TA acts on zein as a reducing agent, converting disulfide
bonds to thiols and increasing zein digestibility [45,46]. The oxidative activity of short
chain TA is higher than that of long chain TA [47], making MAL and FIS better candidates
to reduce disulfides and increase digestibility, consistent with our data. We suggest that TA
with specific protein binding and redox properties could be used to “tune” the digestibility
of ZNP or other thiol-rich proteins for specific applications.

4. Conclusions

We conclude that variability of galloyl ester chain length for different preparations
of TA can influence the structural and functional features of zein protein nanoparticles
coated with TA. This effect was reflected in our data relevant to size, polydispersity index,
zeta potential, morphology, and digestibility. Coating the ZNP with any TA increased
the surface charge (zeta potential) and increased surface uniformity of the nanoparticles
regardless of the TA chain length. However, the chain length of the galloyl esters influenced
size of the ZNP and the digestibility of the protein nanoparticles. Thus, TA could be used to
optimize the properties of ZNP for different applications. For example, it may be favorable
to use particles with increased digestibility (short chain TA coating) for some cargos. For
other applications, it may be desirable to create particles with minimal size (long chain TA
coat). Future work includes extending this work to coating the particles with condensed
tannins as well as loading particles with drugs to more fully explore how polyphenol
coatings can be used to obtain protein nanoparticles with the best combination of properties
for any application.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/compounds4020024/s1, Figure S1: Protein precipitability of the
TA preparations; Figure S2: Example of diameter determination from SEM images; Figure S3. HPLC
calibration plot developed with a well-characterized sample of TA and purified standard galloyl
esters; Table S1. Quantitative analysis of native zein and ZNP secondary structures.
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