Associations between Milk and Dairy Product Intake, Urinary Sodium-to-Potassium Ratio, and Socioeconomic Status in Japanese Male Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Socioeconomic Status
2.3. Spot Urine Collection
2.4. Dietary Assessment
2.5. Other Variables
2.6. Statistical Analysis
3. Results
4. Discussion
4.1. Association between SES and the Urinary Na/K Ratio
4.2. The Food Groups Associated with Urinary Na/K Ratio and the Effects of SES
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aburto, N.J.; Hanson, S.; Gutierrez, H.; Hooper, L.; Elliott, P.; Cappuccio, F.P. Effect of increased potassium intake on cardiovascular risk factors and disease: Systematic review and meta-analyses. BMJ 2013, 346, f1378. [Google Scholar] [CrossRef] [Green Version]
- Aburto, N.J.; Ziolkovska, A.; Hooper, L.; Elliott, P.; Cappuccio, F.P.; Meerpohl, J.J. Effect of lower sodium intake on health: Systematic review and meta-analyses. BMJ 2013, 346, f1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aaron, K.J.; Sanders, P.W. Role of dietary salt and potassium intake in cardiovascular health and disease: A review of the evidence. Mayo Clin. Proc. 2013, 88, 987–995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strazzullo, P.; D’Elia, L.; Kandala, N.; Cappuccio, F.P. Salt intake, stroke, and cardiovascular disease: Meta-analysis of prospective studies. BMJ 2009, 339, b4567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabara, Y.; Takahashi, Y.; Kumagai, K.; Setoh, K.; Kawaguchi, T.; Takahashi, M.; Muraoka, Y.; Tsujikawa, A.; Gotoh, N.; Terao, C.; et al. Descriptive epidemiology of spot urine sodium-to-potassium ratio clarified close relationship with blood pressure level: The Nagahama study. J. Hypertens. 2015, 33, 2407–2413. [Google Scholar] [CrossRef]
- Okuda, M.; Asakura, K.; Sasaki, S.; Shinozaki, K. Twenty-four-hour urinary sodium and potassium excretion and associated factors in Japanese secondary school students. Hypertens. Res. 2016, 39, 524–529. [Google Scholar] [CrossRef] [PubMed]
- Nagashima, Y.; Horikawa, A.; Mori, M. Association between 24 h urinary sodium and potassium excretion and dietary intake in Japanese male adolescent football players. Adolescents 2021, 1, 461–472. [Google Scholar] [CrossRef]
- Shi, L.; Krupp, D.; Remer, T. Salt, fruit and vegetable consumption and blood pressure development: A longitudinal investigation in healthy children. Br. J. Nutr. 2014, 111, 662–671. [Google Scholar] [CrossRef] [Green Version]
- Ji, C.; Kandala, N.; Cappuccio, F.P. Cappuccio FPSpatial variation of salt intake in Britain and association with socioeconomic statusBMJ Open. BMJ Open 2013, 3, e002246. [Google Scholar] [CrossRef] [Green Version]
- Miyaki, K.; Song, Y.; Taneichi, S.; Tsutsumi, A.; Hashimoto, H.; Kawakami, N.; Takahashi, M.; Shimazu, A.; Inoue, A.; Kurioka, S.; et al. Socioeconomic status is significantly associated with dietary salt intakes and blood pressure in Japanese workers (J-HOPE Study). Int. J. Environ. Res. Public Health 2013, 10, 980–993. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.W.; Noh, J.H.; Kim, D.J. Factors associated with high sodium intake based on estimated 24-hour urinary sodium excretion: The 2009—11 Korea national health and nutrition examination survey. Medicine 2016, 95, e2864. [Google Scholar] [CrossRef] [PubMed]
- Chien, K.L.; Hsu, H.C.; Chen, P.C.; Su, T.C.; Chang, W.T.; Chen, M.F.; Lee, Y.T. Urinary sodium and potassium excretion and risk of hypertension in Chinese: Report from a community-based cohort study in Taiwan. J. Hypertens. 2008, 26, 1750–1756. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Van Horn, L.; Tinker, L.F.; Neuhouser, M.L.; Carbone, L.; Mossavar-Rahmani, Y.; Thomas, F.; Prentice, R.L. Measurement error corrected sodium and potassium intake estimation using 24-hour urinary excretion. Hypertension 2014, 63, 238–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucko, A.M.; Doktorchik, C.; Woodward, M.; Cogswell, M.; Neal, B.; Rabi, D.; Anderson, C.; He, F.J.; MacGregor, G.A.; L’Abbe, M.L.; et al. Percentage of Ingested sodium excreted in 24-hour urine collections: A systematic review and me-ta-analysis. J. Clin. Hypertens. 2018, 20, 1220–1229. [Google Scholar] [CrossRef] [Green Version]
- Iwahori, T.; Ueshima, H.; Miyagawa, N.; Ohgami, N.; Yamashita, H.; Ohkubo, T.; Murakami, Y.; Shiga, T.; Miura, K. Six random specimens of daytime casual urine on different days are sufficient to estimate daily sodium/potassium ratio in comparison to 7-day 24-h urine collections. Hypertens. Res. 2014, 37, 765–771. [Google Scholar] [CrossRef]
- Grimes, C.A.; Riddell, L.J.; Campbell, K.J.; Beckford, K.; Baxter, J.R.; He, F.J.; Nowson, C.A. Dietary intake and sources of sodium and potassium among Australian schoolchildren: Results from the cross-sectional salt and other nutrients in children (SONIC) Study. BMJ Open 2017, 7, e016639. [Google Scholar] [CrossRef] [Green Version]
- Seko, C.; Taguchi, Y.; Segawa, H.; Odani, K.; Aoi, W.; Wada, S.; Kitaoka, K.; Masumoto, T.; Higashi, A. Estimation of salt intake and sodium-to-potassium ratios assessed by urinary excretion among Japanese elementary school children. Clin. Exp. Hypertens. 2018, 40, 481–486. [Google Scholar] [CrossRef]
- De Mestral, C.; Mayén, A.L.; Petrovic, D.; Marques-Vidal, P.; Bochud, M.; Stringhini, S. Socioeconomic determinants of sodium intake in adult populations of high-income countries: A systematic review and meta-analysis. Am. J. Public Health 2017, 107, e1–e12. [Google Scholar] [CrossRef]
- Miyagawa, N.; Okuda, N.; Nakagawa, H.; Takezaki, T.; Nishi, N.; Takashima, N.; Fujiyoshi, A.; Ohkubo, T.; Kadota, A.; Okamura, T.; et al. Socioeconomic status associated with urinary sodium and potassium excretion in Japan: NIPPON DATA2010. J. Epidemiol. 2018, 28 (Suppl. 3), S29–S34. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, M.; Tabara, Y.; Higo, Y.; Setoh, K.; Kawaguchi, T.; Takahashi, Y.; Kosugi, S.; Nakayama, T.; Matsuda, F.; Wakamura, T.; et al. Association between socioeconomic factors and urinary sodium-to-potassium ratio: The Nagahama Study. Hypertens. Res. 2018, 41, 973–980. [Google Scholar] [CrossRef]
- Haff, G.G.; Triplett, N.T. Essentials of Strength Training and Conditioning, 4th ed.; Human Kinetics Publishers: Champaign, IL, USA, 2015. [Google Scholar]
- Ambrosini, G.L.; Oddy, W.H.; Robinson, M.; O’Sullivan, T.A.; Hands, B.P.; de Klerk, N.H.; Silburn, S.R.; Zubrick, S.R.; Kendall, G.E.; Stanley, F.J.; et al. Adolescent Dietary Patterns Are Associated with Lifestyle and Family Psychosocial Factors. Public Health Nutr. 2016, 19, 765. [Google Scholar] [CrossRef] [Green Version]
- The International Standard Classification of Education 2011 (ISCED). Available online: http://uis.unesco.org/en/topic/international-standard-classification-education-isced (accessed on 11 December 2021).
- Uechi, K.; Asakura, K.; Ri, Y.; Masayasu, S.; Sasaki, S. Advantage of multiple spot urine collections for estimating daily sodium excretion: Comparison with two 24-h urine collections as reference. J. Hypertens. 2016, 34, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, S.; Yanagibori, R.; Amano, K. Self-Administered Diet History Questionnaire developed for health education: A relative validation of the test-version by comparison with 3-day diet record in women. J. Epidemiol. 1998, 8, 203–215. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, S.; Yanagibori, R.; Amano, K. Validity of a Self-Administered Diet History Questionnaire for assessment of sodium and potassium: Comparison with single 24-hour urinary excretion. Jpn. Circ. J. 1998, 62, 431–435. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, S.; Honda, S.; Murakami, K.; Sasaki, S.; Okubo, H.; Hirota, N.; Notsu, A.; Fukui, M.; Date, C. Both comprehensive and brief self-administered diet history questionnaires satisfactorily rank nutrient intakes in Japanese adults. J. Epidemiol. 2012, 22, 151–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Science and Technology Agency. Standard Tables of Food Composition in Japan; 5th Revised and Enlarged; Printing Bureau of the Ministry of Finance: Tokyo, Japan, 2005. (In Japanese) [Google Scholar]
- Nagashima, Y.; Horikawa, A.; Koita, A.; Miyaki, M.; Iguchi, M.; Tanaka, A. Validity and reproducibility of a self-administered diet history questionnaire (dhq) answered by junior athletes and their mothers. Jpn. J. Sports Nutr. 2020, 13, 25–39. [Google Scholar]
- Ministry of Health, Labour and Welfare. Basic Survey on Wage Structure. Available online: https://www.mhlw.go.jp/toukei/itiran/roudou/chingin/kouzou/z2020/index.html (accessed on 17 December 2021).
- WHO. Potassium Intake for Adults and Children. Available online: https://www.who.int/publications/i/item/9789241504829 (accessed on 17 December 2021).
- WHO. Diet, Nutrition and the Prevention of Chronic Diseases; Report of a Joint WHO/FAO Expert Consultation; World Health Organization: Geneva, Switzerland, 2003; Volume 916, pp. 1–149. Available online: http://whqlibdoc.who.int/trs/WHO_TRS_916.pdf (accessed on 28 October 2021).
- Suh, S.H.; Song, S.H.; Choi, H.S.; Kim, C.S.; Bae, E.H.; Ma, S.K.; Kim, S.W. Parental educational status independently predicts the risk of prevalent hypertension in young adults. Sci. Rep. 2021, 11, 3698. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Hoffmann, G. Comparison of High vs. Normal/Low Protein Diets on Renal Function in Subjects without Chronic Kidney Disease: A Systematic Review and Meta-Analysis. PLoS ONE 2014, 9, e97656. [Google Scholar] [CrossRef] [Green Version]
- Grimes, C.A.; Campbell, K.J.; Riddell, L.J.; Nowson, C.A. Is socioeconomic status associated with dietary sodium intake in Aus-tralian children? A cross-sectional studyBMJ Open. BMJ Open 2013, 3, e002106. [Google Scholar]
- Gonçalves, C.; Abreu, S.; Padrão, P.; Pinho, O.; Graça, P.; Breda, J.; Santos, R.; Moreira, P. Sodium and potassium urinary excretion and dietary intake: A cross-sectional analysis in adolescents. Food Nutr. Res. 2016, 60, 29442. [Google Scholar] [CrossRef] [Green Version]
- Webster, J.L.; Dunford, E.K.; Neal, B.C. A systematic survey of the sodium contents of processed foods. Am. J. Clin. Nutr. 2010, 91, 413–420. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Health, Labour and Welfare. The National Health and Nutrition Survey Japan. 2020. Available online: www.mhlw.go.jp/stf/seisakunitsuite/bunya/kenkou_iryou/kenkou/eiyou/r1-houkoku_00002.html (accessed on 12 February 2022).
- Turin, T.C.; Okuda, N.; Miura, K.; Nakamura, Y.; Rumana, N.; Ueshima, H.; Nippon DATA80/90 Research Group. Dietary intake of potassium and associated dietary factors among representative samples of Japanese general population: NIPPON DATA 80/90. J. Epidemiol. 2010, 20 (Suppl. 3), S567–S575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno, L.A.; Bel-Serrat, S.; Santaliestra-Pasías, A.; Bueno, G. Dairy products, yogurt consumption, and cardiometabolic risk in children and adolescents, Nutrition Reviews. Nutr. Rev. 2015, 73 (Suppl. 1), 8–14. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, A.; Heary, C.; Nixon, E.; Kelly, C. Factors influencing the food choices of Irish children and adolescents: A qualitative investigation. Health Promot. Int. 2010, 25, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Dror, D.K.; Allen, L.H. Dairy product intake in children and adolescents in developed countries: Trends, nutritional contribution, and a review of association with health outcomes. Nutr. Rev. 2014, 72, 68–81. [Google Scholar] [CrossRef]
- Rasmussen, M.; Krølner, R.; Klepp, K.I.; Lytle, L.; Brug, J.; Bere, E.; Due, P. Determinants of fruit and vegetable consumption among children and adolescents: A review of the literature. Part I: Quantitative studies. Int. J. Behav. Nutr. Phys. Act. 2006, 3, 22. [Google Scholar]
- Institute of Medicine. (US) Committee on Capitalizing on Social Science and Behavioral Research to Improve the Public’s health. In Promoting Health: Intervention Strategies from Social and Behavioral Research; PAPER CONTRIBUTION E, Preadolescent and Adolescent Influences on Health; Smedley, B.D., Syme, S.L., Eds.; National Academies Press: Washington, DC, USA, 2000. Available online: https://www.ncbi.nlm.nih.gov/books/NBK222829/ (accessed on 12 February 2022).
- Pearson, N.; Biddle, S.J.; Gorely, T. Family correlates of fruit and vegetable consumption in children and adolescents: A systematic review. Public Health Nutr. 2009, 12, 267–283. [Google Scholar] [CrossRef]
- Fahey, M.T.; Sasaki, S.; Kobayashi, M.; Akabane, M.; Tsugane, S. Seasonal misclassification error and magnitude of true between-person variation in dietary nutrient intake: A random coefficients analysis and implications for the Japan Public Health Center (JPHC) Cohort Study. Public Health Nutr. 2003, 6, 385–391, Erratum in: Public Health Nutr. 2003, 6, 521. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Agriculture, Forestry and Fisheries. Report on the Survey of Wholesale Market of Fruits and Vegetables in 2020. Available online: https://www.maff.go.jp/j/tokei/kouhyou/seika_orosi/#s (accessed on 17 December 2021).
- Van der Horst, K.; Oenema, A.; Ferreira, I.; Wendel-Vos, W.; Giskes, K.; van Lenthe, F.; Brug, J. A systematic review of environmental correlates of obesity-related dietary behaviors in youth. Health Educ. Res. 2007, 22, 203–226. [Google Scholar] [CrossRef] [Green Version]
- Rakova, N.; Jüttner, K.; Dahlmann, A.; Schröder, A.; Linz, P.; Kopp, C.; Rauh, M.; Goller, U.; Beck, L.; Agureev, A.; et al. Long-Term Space Flight Simulation Reveals Infradian Rhythmicity in Human Na+ Balance. Cell Metab. 2013, 17, 125–131. [Google Scholar] [CrossRef] [Green Version]
Variable | Total Sample (n = 138) | |
---|---|---|
Mean | SD | |
Age, years | 12.7 | 1.7 |
Age group, n (%) | ||
9–12 years | 50 (36.2) | |
13–15 years | 88 (63.8) | |
Physical activity level, n (%) a | ||
Level III (high) | 27 (19.6) | |
Level IV (very high) | 111 (80.4) | |
Sports activities, h/week | 20.7 | 4.9 |
Family size | ||
Nuclear family | 117 (84.8) | |
Extended family | 21 (15.2) | |
TV or video watching, h/week | 4.4 | 2.1 |
Body height, cm | 156.3 | 11.9 |
Body mass, kg | 45.7 | 10.4 |
BMI, kg/m2 | 18.4 | 2.1 |
Body fat percentage, % | 13.1 | 4.8 |
Fat-free mass, kg | 39.7 | 9.1 |
FFMI, kg/m2 | 16.0 | 1.7 |
Systolic blood pressure, mmHg | 120.7 | 13.8 |
Diastolic blood pressure, mmHg | 67.6 | 10.0 |
Socioeconomic Status n (%) b | ||
Low | 19 (13.8) | |
Middle | 56 (40.6) | |
High | 63 (45.7) |
Variable | Total Sample (n = 138) | |
---|---|---|
Mean | SD | |
Sodium, mmol/L | 154.0 | 44.5 |
Potassium, mmol/L | 37.8 | 14.0 |
Na/K ratio, molar ratio | 4.8 | 1.8 |
Variable | Total Sample (n = 138) | |
---|---|---|
Mean | SD | |
Nutritional intake | ||
Energy, kcal/day | 2938 | 762 |
Protein, g/kg BM | 2.2 | 0.7 |
Protein, % of energy | 13.3 | 1.8 |
Fat, g/kg BM | 2.1 | 0.8 |
Fat, % of energy | 27.6 | 5.9 |
Carbohydrate, g/kg BM | 9.5 | 2.8 |
Carbohydrate, % of energy | 57.5 | 7.0 |
Potassium, mg/day | 2475 | 188 |
Salt, g/day | 7.9 | 1.4 |
Dietary intake | ||
Grains, g/day | 782.1 | 323.1 |
Potatoes, g/day | 31.6 | 22.5 |
Vegetables, g/day | 199.4 | 98.0 |
Fruit, g/day | 176.0 | 164.5 |
Fishes and shellfishes, g/day | 65.8 | 45.6 |
Milk and dairy products, g/day | 306.7 | 181.4 |
Seasoning, g/day | 16.1 | 8.0 |
Variable | Total Sample (n = 138) | 9–12 Years (n = 50) | 13–15 Years (n = 88) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Unadjusted | Adjusted | Unadjusted | Adjusted | Unadjusted | Adjusted | |||||||
β | p | β | p | β | p | β | p | β | p | β | p | |
Middle/low a (reference) | ||||||||||||
High | −0.33 | <0.001 | −0.35 | <0.001 | −0.51 | <0.001 | −0.58 | <0.001 | −0.25 | 0.021 | −0.22 | 0.042 |
Variable | Socioeconomic STATUS a | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
9–12 Years (n = 50) | 13–15 Years (n = 88) | |||||||||
Low and Middle | High | p | Low and Middle | High | p | |||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |||
Nutritional intake | ||||||||||
Energy, kcal/day | 2440.3 | 769.1 | 2608.3 | 592.5 | 0.397 | 3220.3 | 670.5 | 3127.5 | 732.6 | 0.537 |
Protein, g/kg BM | 2.2 | 0.7 | 2.8 | 0.9 | 0.018 | 1.9 | 0.6 | 2.1 | 0.7 | 0.154 |
Protein, % of energy | 13.7 | 1.8 | 14.4 | 1.5 | 0.109 | 12.5 | 1.4 | 13.3 | 2.0 | 0.032 |
Fat, g/kg BM | 2.1 | 0.6 | 2.8 | 0.9 | 0.001 | 1.7 | 0.7 | 2.0 | 0.7 | 0.148 |
Fat, % of energy | 29.3 | 4.4 | 32.3 | 5.0 | 0.026 | 24.9 | 5.6 | 27.2 | 5.9 | 0.073 |
Carbohydrate, g/kg BM | 9.2 | 3.0 | 9.9 | 2.7 | 0.410 | 9.5 | 3.0 | 9.3 | 2.6 | 0.736 |
Carbohydrate, % of energy | 55.4 | 5.2 | 52.1 | 5.3 | 0.028 | 60.8 | 6.3 | 58.0 | 7.4 | 0.066 |
Potassium, mg/day | 2498.8 | 189.4 | 2469.9 | 191.0 | 0.595 | 2446.8 | 186.3 | 2496.7 | 188.4 | 0.217 |
Salt, g/day | 7.5 | 1.1 | 7.0 | 1.6 | 0.249 | 8.5 | 1.3 | 7.9 | 1.3 | 0.041 |
Dietary intake | ||||||||||
Grains, g/day | 607.1 | 256.9 | 521.7 | 175.3 | 0.183 | 949.7 | 288.3 | 848.5 | 323.8 | 0.125 |
Potatoes, g/day | 30.6 | 22.8 | 40.8 | 31.0 | 0.186 | 26.7 | 16.2 | 32.7 | 22.1 | 0.145 |
Vegetables, g/day | 155.4 | 77.6 | 194.5 | 79.9 | 0.086 | 200.6 | 95.2 | 230.4 | 113.5 | 0.185 |
Fruit, g/day | 99.2 | 70.9 | 178.0 | 132.6 | 0.010 | 182.9 | 168.4 | 223.9 | 201.6 | 0.301 |
Fishes and shellfishes, g/day | 58.7 | 33.9 | 68.6 | 31.3 | 0.292 | 69.1 | 36.0 | 65.1 | 49.9 | 0.668 |
Milk and dairy products, g/day | 263.0 | 144.9 | 391.8 | 207.2 | 0.013 | 259.4 | 160.1 | 343.9 | 191.7 | 0.027 |
Seasoning, g/day | 13.6 | 5.5 | 16.5 | 7.8 | 0.144 | 17.5 | 9.0 | 16.0 | 8.7 | 0.426 |
Variable | Urinary Na/K Ratio | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
9–12 Years (n = 50) | 13–15 Years (n = 88) | |||||||||||
Model 1 | Model 2 | Model 3 | Model 1 | Model 2 | Model 3 | |||||||
β | P | β | P | β | P | β | P | β | P | β | P | |
Dietary intake | ||||||||||||
Grains, g/day | −0.14 | 0.315 | −0.12 | 0.246 | ||||||||
Potatoes, g/day | −0.21 | 0.152 | −0.12 | 0.279 | ||||||||
Vegetables, g/day | −0.18 | 0.219 | −0.12 | 0.272 | ||||||||
Fruit, g/day | −0.40 | 0.004 | −0.40 | 0.004 | −0.22 | 0.078 | −0.22 | 0.007 | −0.26 | 0.016 | −0.25 | 0.018 |
Fishes and shellfishes, g/day | −0.05 | 0.749 | 0.02 | 0.820 | ||||||||
Milk and dairy products, g/day | −0.57 | <0.001 | −0.56 | <0.001 | −0.35 | <0.001 | −0.35 | 0.001 | −0.35 | 0.001 | −0.31 | 0.003 |
Seasoning, g/day | −0.14 | 0.332 | 0.08 | 0.458 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagashima, Y.; Horikawa, A.; Mitsume, A.; Mori, M. Associations between Milk and Dairy Product Intake, Urinary Sodium-to-Potassium Ratio, and Socioeconomic Status in Japanese Male Adolescents. Adolescents 2022, 2, 73-85. https://doi.org/10.3390/adolescents2010008
Nagashima Y, Horikawa A, Mitsume A, Mori M. Associations between Milk and Dairy Product Intake, Urinary Sodium-to-Potassium Ratio, and Socioeconomic Status in Japanese Male Adolescents. Adolescents. 2022; 2(1):73-85. https://doi.org/10.3390/adolescents2010008
Chicago/Turabian StyleNagashima, Yosuke, Akiko Horikawa, Ayana Mitsume, and Mari Mori. 2022. "Associations between Milk and Dairy Product Intake, Urinary Sodium-to-Potassium Ratio, and Socioeconomic Status in Japanese Male Adolescents" Adolescents 2, no. 1: 73-85. https://doi.org/10.3390/adolescents2010008
APA StyleNagashima, Y., Horikawa, A., Mitsume, A., & Mori, M. (2022). Associations between Milk and Dairy Product Intake, Urinary Sodium-to-Potassium Ratio, and Socioeconomic Status in Japanese Male Adolescents. Adolescents, 2(1), 73-85. https://doi.org/10.3390/adolescents2010008