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Abstract: The optimization of the new generation of piezoelectric nanogenerators based on 1D
nanostructures requires a fundamental understanding of the different physical mechanisms at play,
especially those that become predominant at the nanoscale regime. One such phenomenon is the
surface charge effect (SCE), which is very pronounced in GaN NWs with sub-100 nm diameters. With
an advanced nano-characterization tool derived from AFM, the influence of SCE on the piezo genera-
tion capacity of GaN NWs is investigated by modifying their immediate environment. As-grown
GaN NWs are analysed and compared to their post-treated counterparts featuring an Al2O3 shell.
We establish that the output voltages systematically decrease by the Al2O3 shell. This phenomenon
is directly related to the decrease of the surface trap density in the presence of Al2O3 and the cor-
responding reduction of the surface Fermi level pinning. This leads to a stronger screening of the
piezoelectric charges by the free carriers. These experimental results demonstrate and confirm that
the piezo-conversion capacity of GaN NWs is favoured by the presence of the surface charges.

Keywords: GaN NWs; surface charge effects; piezoelectric conversion

1. Introduction

The development of new ultracompact and highly efficient energy harvesting tech-
nologies is a key worldwide challenge, spurred by the constantly increasing use of portable
smart objects both in our daily lives, as well as in high-tech applications. Among the avail-
able sources of renewable energies, mechanical deformations and vibrations originating
from bodily or vehicular movements, acoustic waves, displacing fluids or friction present
the advantage of being ubiquitous, available at all times and highly suitable for multiscale
integration. These can be converted into an electrical output via piezoelectric systems.

In this context, nano-generators integrating piezoelectric nanowires (NWs) represent
a very promising alternative compared to conventional piezo-generators based on 2D
or bulk materials. In fact, thanks to their large aspect ratio and quasi-perfect crystalline
quality, NWs are characterised by superior mechanical and piezoelectric properties [1–3]. In
addition, NWs characterised by sub-100 nm diameters exhibit nanometre-scale phenomena,
opening up new possibilities for the modulation of their properties.

The first demonstration of direct piezoelectric conversion from 1D nanostructures
was evidenced with ZnO NWs [4]. Following the establishment of this new concept, other
piezoelectric nanostructures have demonstrated their ability to convert a mechanical input
into an electrical signal, such as PZT [5], CdS [6], CdSe [7], BaTiO3 [8], KNBO3 [9], GaAs [10],

Nanoenergy Adv. 2024, 4, 133–146. https://doi.org/10.3390/nanoenergyadv4020008 https://www.mdpi.com/journal/nanoenergyadv

https://doi.org/10.3390/nanoenergyadv4020008
https://doi.org/10.3390/nanoenergyadv4020008
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanoenergyadv
https://www.mdpi.com
https://orcid.org/0009-0003-5968-3264
https://orcid.org/0000-0001-6472-2916
https://orcid.org/0000-0003-4144-0793
https://orcid.org/0000-0002-4881-1617
https://doi.org/10.3390/nanoenergyadv4020008
https://www.mdpi.com/journal/nanoenergyadv
https://www.mdpi.com/article/10.3390/nanoenergyadv4020008?type=check_update&version=1


Nanoenergy Adv. 2024, 4 134

Ga(In)N [11–13] and ZnO [4,14,15], the widely used semiconductor in NW-based piezo
nanogenerators. Particularly, output signals up to 470 mV per nanowire [12] have been
reported. Rapidly, nanogenerators integrating NWs have been demonstrated based on
two main configurations: the lateral nanowire integrated nanogenerators (LINGs) and the
vertical nanowire integrated nanogenerators (VINGs) [16]. While these nanogenerators can
deliver output power densities reaching up to a few tens of µW/cm2 or a few mW/cm3

under laboratory conditions [17–24], their piezoelectric response remains very sensitive
to their measurement conditions and environment. This sensitivity is due to a number of
physical phenomena that become predominant in the nanoscale regime. Therefore, the
enhancement of the piezoelectric coefficients [25–27], or the formation of nanocontact at
the NW/electrode interface leading to an enhanced energy harvesting [28], have been
demonstrated. Only a deep understanding of all the phenomena in play can allow fine
control of the piezoelectric response of these nanostructures and, more largely, a suitable
device performance optimization.

The purpose of this paper is to address one important phenomenon particularly
pronounced in sub-100 nm wide GaN [29–32]: the surface charge effect (SCE). This effect
is associated with the abrupt interruption of the atomistic structure of a material at its
surfaces, where the absence of neighbouring atoms results in a different electron density
as compared to the bulk. This leads to the creation of new electronic states within the
semiconductor bandgap, commonly known as surface charges (SCs) [33].

The presence of these surface charges creates an energetically unfavourable situa-
tion, where charge neutrality is required to achieve stabilization at the Fermi level [33].
Consequently, a charge transfer occurs between the surface and the bulk of the material,
resulting in the creation of a space charge region at the interface, commonly referred to
as the depletion layer. The width of this layer is a function of the doping level of the
material [34]. Thus, a built-in electric field is created at the interface, and a strong band
bending occurs associated with the alignment of the surface and bulk Fermi levels (also
defined as surface Fermi level pinning (SFLP)) [34–38].

Unlike bulk materials, the SFLP can partially or even fully deplete sub-100 NWs,
inducing a local decrease in the diffusivity of the free charge carriers and, consequently, of
their conductance [39,40]. The origin of these surface charges might vary from one system
to another. In GaN NWs, they originate mainly from covalent dangling bonds [29], bistable
defects [41], nitrogen anti-sites or Ga vacancies [34,42,43]. In contrast, in ZnO NWs, surface
charges appear due to stabilization processes, including reconstruction, impurities and
chemical adsorbates incorporation [44]. The absorption of dioxygen atoms, which act as
electron acceptors, is favoured [45,46]. In GaN, Ga–O surface bonds seem to be at the origin
of the strong surface trap density [45].

While the surface charges are detrimental for the optoelectronic device performance,
they present an advantage for piezoelectric applications. In semiconductor materials pre-
senting piezoelectric properties, free charge carriers are known to degrade the piezoelectric
response by screening the generated piezo-charges [47–49]. This phenomenon has been
evidenced in ZnO [50–52] and GaN [48] NWs. The advantageous role of the SCE is clearly
illustrated in chemically synthesised ZnO NWs. In fact, these 1D nanostructures grown by
hydrothermal-based synthesis methods are generally characterised by a strong intrinsic
doping [53,54] sufficiently high to screen the quasi-totality of the piezo-charges. However,
a non-negligible piezo-response has been reported by several groups [14,55–57]. This unex-
pected response results from the presence of surface traps and, thus, the resulting SFLP,
limiting free carrier diffusion and leading to lower piezo-charge screening. Consequently,
the internal piezoelectric field within the ZnO NWs increases, allowing for a piezoelectric
response to be harvested [49].

While nanogenerators integrating NWs have been investigated for almost two decades,
only a few papers have considered the crucial role of the SCE. The first exploration of this
effect dates back to 2018, with theoretical simulations reported by Tao et al. [49]. In this
study, the piezo-potential variation in the NWs was simulated as a function of the charge
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carrier concentration, NW morphology and pinning conditions. Considering the SFLP, an
increase in the NW’s piezo-potential by a factor of 10 to 16 times was observed as compared
to NWs without SFLP. More recently, the relationship between the surface charge effect and
the piezoelectric response of the NWs as a function of their diameter has been demonstrated.
In ZnO NWs, the group of G. Ardila [57] observed variations in the piezoelectric coefficient
d33 as a function of the NW diameter. In GaN NWs, our group has demonstrated the
enhancement of the piezoelectric coupling coefficient from 5% to 43% by taking advantage
of the surface charges, with pronounced effects for a specific NW diameter window [58]. In
both these cases, the enhancement of the piezoelectric response is linked to the decrease
in NW diameter, leading to its depletion and limiting the diffusion of surface-free carriers
within the material, thus mitigating their screening impact.

Surface charges and trap densities have been reported to be of the order of 1012–1013 cm−2,
as determined though electrical and optical characterization techniques [30–32]. These
characteristics are inherent to the material itself and the nanostructure growth mode [40].
Notably, they exhibit strong sensitivity to the nanostructure environment. Consequently, a
limited number of research groups have undertaken the functionalization of nanostructures
to modulate the piezoelectric responses of the nanogenerators. Strategies such as gas
adsorption or nanoparticles deposition onto the NW surface have been employed for this
purpose, as demonstrated by X. Xue et al. [47] and S. Lu et al. [59]. These approaches aim
to modulate the depletion width within the NWs, thereby reducing the effective screening.

In the present study, we investigate the influence of SCE on the piezo generation
capacity of GaN NWs by modifying their immediate environment. Both as-grown GaN
NWs and post-treated NWs with an atomic layer deposition treatment to form an Al2O3
shell surrounding the GaN NW core are considered. To ensure that the expression of the
surface charge is solely influenced by the NW environment, the investigated GaN NWs
maintain an approximately constant diameter. To assess the impact of the surface charges
on the piezoelectric response, an advanced nano-characterization tool derived from atomic
force microscopy (AFM) in employed.

Based on experimental measurements, we highlight that, for an equivalent deforma-
tion rate, the average output voltages are consistently lower for GaN/Al2O3 core–shell
NWs compared to bare GaN NWs. This observed behaviour aligns with the reduction in
the surface trap density in presence of the Al2O3 shell. As the surface Fermi level pinning
decreases with a lower the trap density, the depletion of the NWs becomes less pronounced.
Consequently, the screening of the piezo charges by the free carriers increases, resulting in
a reduced output voltage. These results experimentally demonstrate and confirm that the
piezo-conversion capacity of GaN NWs is favoured by the presence of surface charges.

2. Materials and Methods

Self-assembled GaN NWs were grown on a conductive Si(111) substrate (resistivity
of about 0.007 Ω·cm) with a Plasma-Assisted Molecular Beam Epitaxy (PA-MBE) reactor
equipped with a radio frequency N plasma source. Prior to the growth, the Si substrate
was chemically cleaned and subsequently heated in situ at 850 ◦C to remove the organic
pollutants and the native oxide, respectively. Then, a 2.5 nm thick AlN buffer layer was
deposited at 620 ◦C on the clean Si surface, as describe in [60]. The objective of this AlN
buffer is to control the NW nucleation and density [61,62], reduce the NW twist [63],
improve the NW verticality [64] and to ensure the conductivity between the GaN NWs and
the conductive Si substrate [65]. Indeed, the deposition of the AlN buffer layer involves
two distinct steps. Firstly, the deoxidised Si(111) substrate is exposed at 620 ◦C to an Al
flux, resulting in the formation of Al droplets dispersed on the surface in the form of an
Al–Si eutectic [66]. Subsequently, the surface is exclusively exposed to a nitrogen flux (by
switching the Al/N shutters), leading to the formation of the AlN buffer layer over the
surface due to the Al diffusion. During the nitridation phase, the Si atoms dissolved into the
Al droplets are incorporated into the AlN layer, causing n-doping and thereby imparting
a conductive behaviour to the buffer layer. Finally, GaN NWs are grown at 770 ◦C under



Nanoenergy Adv. 2024, 4 136

nominally N-rich conditions (V/III = 1.36). During the growth, the Mg cell is maintained at
400 ◦C with a closed shutter to induce a p-type residual doping of the GaN NWs.

Under these growth conditions, vertically oriented GaN NWs crystallise in the wurtzite
structure and present a hexagonal cross-section delimited by {10-10} planes [63]. Figure 1a
illustrates the GaN NW morphology, characterised by a density of 3.4 × 109 NW/cm2 and
a diameter of 36 nm ± 9 nm. This approximatively constant diameter ensures that the
expression of the surface charges will not be dominated by diameter effects. Regarding the
NW height, a trimodal dispersion is measured, resulting in three different NW aspect ratios,
as we can see in Figure 1b. This distribution in terms of the aspect ratio allows spanning
a significant range of deformation rates under the same mechanical external input. Thus,
it provides the opportunity to experimentally establish the intrinsic relationship between
the piezo generated output voltage (OV) and the expression of the surface charges as a
function of the NW surrounding environment.
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Figure 1. (a) Top view and titled view SEM images of as-grown GaN NWs. (b) Histogram representing
the aspect ratio (NW height/NW diameter) population of the as-grown GaN NWs. (c) The same
as-grown GaN NW sample has been divided into two pieces: GaN and GaN/Al2O3 core–shell NWs
for demonstrating the influence of the surface charge effect on the piezoelectric response of the
nanostructures.

To highlight the significance of the surface charge modulation as a function of the NW
environment on the OV generation capacity, two portions of the same GaN NWs sample
were prepared following different procedures, schematised in Figure 1c. The GaN NWs of
the first portion were left unaltered, while those of the second portion were encapsulated
by a 10 nm thick Al2O3 shell through an atomic layer deposition treatment. The Al2O3
shell is recognised for its ability to reduce the SCE [67–69]. In presence of the Al2O3 shell,
the GaN NW surfaces are passivated [70–73] through a limitation or even a suppression
of the Ga–O bonds [45]. As a consequence, the surface trap density is reduced by one to
two orders of magnitude, resulting in a density of about 1011–1012 cm−2 for GaN/Al2O3
core–shell NWs, while this density is about 1013 cm−2 for as-grown GaN NWs [32].

The piezoelectric responses of the NWs were quantified using an atomic force micro-
scope (AFM) operating in contact mode, equipped with a homemade modified Resiscope
module [74] designed to measure the direct piezoelectric effect in the NWs [11]. In this
experimental configuration, schematised in Figure 2a, the electrical module is connected to
the substrate (forming an Ohmic contact with the GaN NWs [66]) and to the Cr/Pt AFM
tip (with a work function around 5.2 eV), forming a Schottky barrier with the GaN NWs
(electron affinity of the GaN is about 4.1 eV [75]), ensuring the harvesting of the piezo
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generated charges [50]. No external voltage is applied, and the generated electrical signals
are observed across a load resistance RL of 1 GΩ.
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Figure 2. (a) Principle of the piezoelectric measurements performed by AFM equipped with a home-
made modified Resiscope in the bending scanning configuration. (b) Distribution of the piezoelectric
field in a N-polar GaN NW deformed by bending from the stretched side to the compressed one.

The piezoelectric measurements on the GaN NWs were conducted under bending
deformation. The conductive AFM tip is brought in contact with the surface and scans
over the GaN NW array. The force applied by the tip, resulting from the convolution of the
constant normal force (CNF) and the scanning force, induces a lateral bending of the NWs.
In response to its elastic deformation, and owing to its piezoelectric properties, the NW
generates an output voltage harvested through the Schottky diode (Figure 2a).

For N-polar GaN NWs under bending deformation, the piezoelectric potential is
distributed from a negative value on the stretch side to a positive value on the compressed
side [76]. Depending on the majority charge carriers, the Schottky diode will be positively
biased according to the NW doping: for n-doped GaN NWs, negative OVs are harvested
when the conductive AFM tip is in contact with the negative piezo-potential, while for
p-doped GaN NWs (as in the present study), positive OVs are harvested when the AFM tip
is in contact with the positive piezo-potential (Figure 2b).

This modified Resiscope AFM technique combines the nanometre scale spatial reso-
lution with real-time electrical measurements while scanning over large surfaces (several
µm2). Hence, it allows for the simultaneous recording of topographic and electrical signals.
Thus, for each NW constituting the array, a direct correlation between its morphology and
its electromechanical response can be established.

To perform reliable electrical measurements, and knowing that MBE-grown GaN NWs
are very flexible [11], their bases were embedded into a soft polymer matrix (Figure 3a).
PDMS was chosen at this scope due to its Young’s modulus of about 0.9 MPa [77], which
is lower than the one of the GaN NWs estimated at 1.8 GPa. This ensures mechanical
consolidation of the nanostructures (preventing their fold up towards the neighbouring
NWs or the substrate, leading to the leakage of the piezoelectric charges) while avoiding
any strain effect on the NWs. The PDMS matrix was spin-coated and etched back by RIE
using a O2/CF4 plasma treatment to uncover the top portion of both sets of NWs. In the
specific case of GaN/Al2O3 core–shell NWs, two additional steps have been implemented
in order to guaranty sample comparison. Before the matrix deposition, the GaN/Al2O3
core–shell NWs were exposed to oxygen plasma to enhance the wettability of PDMS with
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the NW sidewalls and thus achieve a matrix distribution equivalent to that around the
NWs. It is worth noting that this plasma treatment does not affect the surface trap density,
since it is controlled by the GaN/Al2O3 interface. Finally, the Al2O3 capping the top facet
of the NWs is removed by ion beam etching (IBE) to ensure the same GaN–Cr/Pt Schottky
diode formed between the conductive AFM tip and the NWs.
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Figure 3. Schematic representation of the NW preparation. (a) The as-grown NW sample was divided
into two portions to obtain GaN and GaN/Al2O3 core–shell NWs, respectively. (b) Nanostructures
are mechanically consolidated by embedding their bases into a soft PDMS matrix. (c) The top portion
of the consolidated NWs presents the same aspect ratio to ensure the equivalent deformation rate
under applied force.

It should be noted that the deposition of the Al2O3 shell increases the effective diameter
of the NWs, which, in return, makes them stiffer. For the sake of comparing the piezoelectric
responses of the NWs with the Al2O3 shell and as-grown NWs, an adjustment to the NW
height emanating from the PDMS matrix was made. Thus, to probe the same deformation
degree under an equivalent deformation force, the average aspect ratio of the NW emerging
portion has been kept constant and equal to 5.5. This aspect ratio has been chosen to be
able to access multiple degrees of deformation as a function of the applied force. Thus, for
GaN NWs characterised by an average diameter of 36 ± 9 nm, the average NW top portion
height has been fixed at 200 nm, while, for GaN/Al2O3 core–shell NWs with an average
diameter of 56 ± 9 nm, the NW top portion height has been fixed at 310 nm (Figure 3b).

3. Results and Discussions

In the first instance, the piezoelectric response of the 1D nanostructures depends on
their deformation degree. However, the response is also affected by surface charge effects.
For both sets of NWs, the topographic and output voltage mappings were simultaneously
registered at constant normal forces (CNFs) ranging between 120 nN and 380 nN. The 3D
electrical mappings are presented in Figure 4, and the corresponding statistical analyses
are summarised in Table S1 (Supplementary Materials).
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and GaN/Al2O3 core–shell NWs (g–l) under bending deformation. The increase in the OVs with the
applied constant normal force is a direct demonstration of the direct piezoelectric effect taking place.

The average output voltages are plotted as a function of the applied force in Figure 5a,b
for both samples. Similar behaviours can be observed. Firstly, positive output voltages are
generated by the NWs independently from their stiffness and the applied CNF. This be-
haviour results from the intrinsic p-type doping of the GaN NWs achieved with our growth
conditions [13,24]. Secondly, the average output voltages follow Gaussian multimodal
distributions, as shown in Figure 5c. This behaviour stems from the NW self-assembled
growth paradigm, leading to a dispersion of morphologies [12,58]: while the NW diameter
is constant, the nanostructures are characterised by a multimodal dispersion of heights and,
hence, of stiffnesses. In the present case, the first distribution corresponds to the shorter
and most rigid set of NWs, while the second and third distributions refer to taller and
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more flexible NWs. Finally, we observe that the three distributions show an increase in the
average OV when increasing the applied CNF due to the direct piezoelectric effect and the
increased stability of the Schottky contact [28,78].
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Figure 5. Statistical analysis of 3D electrical mappings for an applied force evolving in the 120–380 nN
range for pure GaN NWs (a) and GaN/Al2O3 core–shell NWs (b). The saturation values of the
different distributions are indicated for comparison. A trimodal distribution of the averaged OV is
evidenced, as it is clearly visible in (c), showing examples of the OV distribution for two CNFs well
described by Gaussian functions.

The OV variations are analysed for both sets of investigated samples. For the pure GaN
NWs, the first distribution increases continuously with the applied CNF from ~58 ± 75 mV
to ~250 ± 42 mV, while the second one saturates around 350 ± 62 mV for CNF ≥ 160 nN.
The third distribution is characterised by approximatively constant OV values around
515 ± 25 mV in the whole CNF range. This means that these NWs are very flexible and
attained their maxima of piezo-conversion at smaller forces. Concerning the GaN/Al2O3
core–shell NWs, equivalent behaviours are observed. While the first distribution increases
from 49 ± 33 mV to about 100 ± 70 mV, the second one achieves a saturation around
320 ± 60 mV for CNF ≥ 160 nN. Finally, the third distribution is characterised by approxi-
matively constant OV values around 480 ± 60 mV.

At this stage, it is noteworthy that GaN NWs deliver average output voltages reaching
up to 528 mV per NW, marking the highest recorded OV reported in the literature for this
system, to the best of our knowledge. This piezoelectric response is higher than those
generated by other piezoelectric 1D nanostructures, particularly ZnO NWs, which remain
the most extensively investigated nanostructures for the development of a new generation
of piezoelectric energy harvesters.

We now compare the OV generated by each set of samples. As a reminder, this com-
parison is possible, since the average aspect ratio of the emerging NW top portion has
been maintained constant (AR = 5.5) for both samples. Consequently, the NWs present
equivalent deformation rates under the same AFM scanning conditions. Referring to
Figures 4 and 5, along with Table S1 (Supplementary Materials), it is observed that, regard-
less of the applied CNF value and the specific NW distribution, the OVs generated by the
GaN/Al2O3 core–shell NWs are systematically lower than the ones generated by the pure
GaN NWs with reduction ranges from several tens of mV, representing a decrease ranging
from 9 to 56%, depending on the specific NW considered.
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To elucidate the variations in OVs observed among the sets of NWs, it is important
to consider the different parameters influencing the NW ability to convert mechanical
deformation into a direct electrical signal.

- The piezo-conversion firstly depends on the deformation degree of the material.

According to the direct piezoelectric effect, as the deformation increases, the output
signal rises accordingly. Consequently, under an equivalent mechanical input, two NWs
presenting a different stiffness (directly related to the NW aspect ratio) will generate
distinct internal piezoelectric fields and thus different output voltages. This mechanism is
schematised in Figure 6.
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Figure 6. Schematic representation of the piezoelectric field distribution inside the NWs characterised
by an equivalent diameter (D) but three different heights (H), resulting in three different aspect ratios,
and the corresponding output voltage generated in response to an equivalent lateral force applied to
the AFM tip. In the present experiments, the NWs being intrinsically p-doped, the OV is collected
through the Schottky diode when the conductive AFM tip is in contact with the compressive NW
side, where the piezo potential is positive [76].

- The piezo-conversion is directly related to the conductivity/resistivity of the NWs.

It is widely acknowledged that the free charge carriers play a crucial role in screening
the generated piezo-charges, leading to a reduction in the internal piezoelectric field within
the NW and consequent degradation of the output signal. As previously explained, the
surface charges lead to a Fermi-level pinning in the depletion region along the NW sidewall
surface formed by the M-plane facets. The extent of depletion, whether partial or complete,
is contingent upon its diameter and the material’s doping level [39,58]. The surface barrier
height, ΦSurface

B , is of the order of the SFLP. For large NWs (NW diameters > two times the
depletion width), a conduction channel exists surrounded by a SFLP at the NW surface
(Figure 7a). In contrast, for thin NWs (NW diameters ≤ two times the depletion width), the
NW is fully depleted (Figure 7b).
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depleted GaN NWs. (b) Fully depleted GaN NWs. (c) Fully depleted GaN/Al2O3 core–shell NWs.
ΦSurface

B is the maximal surface barrier height, and ∆E is the energy difference between the Fermi level
and the valence band maximum. For the fully depleted NWs, the ΦSurface

B (GaN/Al2O3) is higher
than the ΦSurface

B (GaN), and by consequence, the ∆E(GaN/Al2O3) is smaller than the ∆E(GaN),
due to the passivation of the GaN core by the Al2O3 shell inducing the reduction of the surface
trap density.

Depending on the depletion degree, the band curvature and the corresponding barrier
for surface electron–hole pair recombination are modulated. In other terms, a lower ΦSurface

B
results in a higher NW depletion and an increased difference between the Fermi level and
the top of the valence band, denoted as ∆E. Consequently, the internal piezo-potential
created in response to deformation will be more or less screened, leading to a corresponding
decrease or increase in the generated OV.

In our intrinsically p-doped GaN NWs (doping level estimated to be around 5 × 1016 cm−3

from SIMS measurements on 2D GaN films), the depletion width has been estimated to be
less than 30 nm [58]. With a diameter of 36 ± 9 nm, the investigated nanostructures are
thus fully depleted, with the SFLP taking place across the entire NWs. Considering the OVs
collected for these nanostructures (Figures 4 and 5) and an estimated surface trap density
of around 1013 cm−2 for the pure GaN NWs [32], we infer a reduced band curvature.
This results in a smaller barrier, noted as ΦSurface

B (GaN), and thus to a non-negligible
∆E, as illustrated in Figure 7b. This configuration is thus favourable for minimising the
screening of the piezoelectric charges and for enhancing the internal piezo-potential and
the generated Ovs.

In the case of the same GaN NWs surrounded by the Al2O3 shell, the nanostructures
are also considered fully depleted, since their core is defined by an unchanged doping level
and diameter. However, due to their surface passivation, the surface trap density is reduced
to around 1011–1012 cm−2, according to the literature [67–69]. The OVs generated by these
core–shell NWs are still significant but remain systematically lower than the ones generated
by the pure GaN NWs. This combination of factors indicates that, for the GaN/Al2O3

core–shell NWs, the SFLP is less pronounced. The surface barrier
(

ΦSurface
B (GaN/Al2O3)

)
and the corresponding ∆E(GaN/Al2O3) are, respectively, higher and smaller than the ones
of the GaN NWs

(
ΦSurface

B (GaN), ∆E(GaN)
)

, as illustrated in Figure 7c. As a consequence,
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for an equivalent deformation degree, the screening of the piezo-charges is higher, leading
to a reduction of the piezoelectric field and resulting OVs.

These experimental measurements thus demonstrate that the surface charge effect is
favourable for enhancing the piezoelectric conversion efficiency in 1D-nanostructures.

4. Conclusions

While the piezoelectric response of materials is preliminarily regulated by the defor-
mation rate, the role of the surface charges cannot be overlooked, especially in sub-100 nm
wide NWs. The results presented in this study experimentally demonstrate that surface
charges can play a favourable role by increasing the piezo-generation capacity of non-
intentionally p-type doped GaN NWs. Consequently, by modifying the NW environment,
it is possible to modulate the piezoelectric response of GaN NWs, known for their surface
trap density on the order of 1013 cm−2. The passivation of the GaN core by an Al2O3 shell
leads to a noticeable reduction in the surface charge density, resulting in a significant de-
crease of the output voltages due to reduced surface Fermi level pinning and the resulting
enhanced screening of the internal piezoelectric field. To support this conclusion, further
investigations involving different shells and the quantification of the surface trap density
are currently underway.

Leveraging the surface charge effect, the OVs generated by GaN NWs can reach an
average value of 529 mV. This outcome stands as the highest reported in the literature for
GaN NWs and exceeds the ones reported other piezoelectric 1D nanostructures.

In conclusion, surface engineering for the modulation and control of surface trap
densities opens up new pathways to enhance the piezoelectric conversion efficiency of
NWs and thus improve the performance of devices integrating these 1D nanostructures.
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