Effect of Aging on the Trunk and Lower Limb Kinematics during Gait on a Compliant Surface in Healthy Individuals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Procedure
2.3. Data Analysis
2.4. Statistical Analysis
3. Results
3.1. Spatiotemporal Gait Parameters While Walking on Level and Compliant Surfaces
3.2. Kinematic Variables during Gait on the Level and Compliant Surface
3.3. Correlation between Age and Floor Surface-Related Changes in Gait Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paluch, A.E.; Bajpai, S.; Bassett, D.R.; Carnethon, M.R.; Ekelund, U.; Evenson, K.R.; Galuska, D.A.; Jefferis, B.J.; Kraus, W.E.; Lee, I.M.; et al. Daily steps and all-cause mortality: A meta-analysis of 15 international cohorts. Lancet Public Health 2022, 7, e219–e228. [Google Scholar] [CrossRef]
- Diep, L.; Kwagyan, J.; Kurantsin-Mills, J.; Weir, R.; Jayam-Trouth, A. Association of physical activity level and stroke outcomes in men and women: A meta-analysis. J. Womens Health 2010, 19, 1815–1822. [Google Scholar] [CrossRef] [Green Version]
- Reinholdsson, M.; Palstam, A.; Sunnerhagen, K.S. Prestroke physical activity could influence acute stroke severity (part of PAPSIGOT). Neurology 2018, 91, e1461–e1467. [Google Scholar] [CrossRef] [Green Version]
- Takayanagi, N.; Sudo, M.; Yamashiro, Y.; Chiba, I.; Lee, S.; Niki, Y.; Shimada, H. Screening prefrailty in Japanese community-dwelling older adults with daily gait speed and number of steps via tri-axial accelerometers. Sci. Rep. 2021, 11, 18673. [Google Scholar] [CrossRef]
- Souma, K.; Yokogawa, M.; Uchiyama, K.; Madokoro, S.; Miaki, H.; Yamazaki, T. Association of life-space with light-intensity and moderate to vigorous-intensity physical activity in older adults using daycare rehabilitation facilities. Physiother. Theory Pract 2022, 1–9. [Google Scholar] [CrossRef]
- Dunlap, P.M.; Rosso, A.L.; Zhu, X.; Klatt, B.N.; Brach, J.S. The Association of Mobility Determinants and Life Space among Older Adults. J. Gerontol. Ser. A 2022, 77, 2320–2328. [Google Scholar] [CrossRef]
- Zamparo, P.; Perini, R.; Orizio, C.; Sacher, M.; Ferretti, G. The energy cost of walking or running on sand. Eur. J. Appl. Physiol. Occup. Physiol. 1992, 65, 183–187. [Google Scholar] [CrossRef]
- Lejeune, T.M.; Willems, P.A.; Heglund, N.C. Mechanics and energetics of human locomotion on sand. J. Exp. Biol. 1998, 201, 2071–2080. [Google Scholar] [CrossRef]
- Svenningsen, F.P.; de Zee, M.; Oliveira, A.S. The effect of shoe and floor characteristics on walking kinematics. Hum. Mov. Sci. 2019, 66, 63–72. [Google Scholar] [CrossRef]
- Yun, S.H.; Cho, M.J.; Kwon, J.W. Comparison of forward versus backward walking on spatiotemporal and kinematic parameters on sand: A preliminary study. J. Biomech. 2022, 130, 110876. [Google Scholar] [CrossRef]
- Barbara, R.C.; Freitas, S.M.; Bagesteiro, L.B.; Perracini, M.R.; Alouche, S.R. Gait characteristics of younger-old and older-old adults walking overground and on a compliant surface. Braz. J. Phys. Ther. 2012, 16, 375–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dixon, P.C.; Schutte, K.H.; Vanwanseele, B.; Jacobs, J.V.; Dennerlein, J.T.; Schiffman, J.M. Gait adaptations of older adults on an uneven brick surface can be predicted by age-related physiological changes in strength. Gait Posture 2018, 61, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Ippersiel, P.; Shah, V.; Dixon, P.C. The impact of outdoor walking surfaces on lower-limb coordination and variability during gait in healthy adults. Gait Posture 2022, 91, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Wolburg, T.; Rapp, W.; Rieger, J.; Horstmann, T. Muscle activity of leg muscles during unipedal stance on therapy devices with different stability properties. Phys. Ther. Sport 2016, 17, 58–62. [Google Scholar] [CrossRef]
- Okada, H.; Ae, M.; Fujii, N.; Morioka, Y. Body segment inertia properties of Japanese elderly. Biomechanism 1996, 13, 125–139. [Google Scholar] [CrossRef] [Green Version]
- Hamill, J.; Selbie, W.S.; Kepple, T.M. Three-dimensional kinematics. In Research Methods in Biomechanics, 2nd ed.; Robertson, D.G., Caldwell, G.E., Hamill, J., Kamen, G., Whittlesey, S.N., Eds.; Human Kinetics: Champaign, IL, USA, 2013; pp. 35–60. [Google Scholar]
- Luc-Harkey, B.A.; Franz, J.R.; Blackburn, J.T.; Padua, D.A.; Hackney, A.C.; Pietrosimone, B. Real-time biofeedback can increase and decrease vertical ground reaction force, knee flexion excursion, and knee extension moment during walking in individuals with anterior cruciate ligament reconstruction. J. Biomech. 2018, 76, 94–102. [Google Scholar] [CrossRef]
- Benedetti, M.G.; Catani, F.; Leardini, A.; Pignotti, E.; Giannini, S. Data management in gait analysis for clinical applications. Clin. Biomech. 1998, 13, 204–215. [Google Scholar] [CrossRef]
- Cohen, J. Quantitative methods in psychology: A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [Green Version]
- Gates, D.H.; Wilken, J.M.; Scott, S.J.; Sinitski, E.H.; Dingwell, J.B. Kinematic strategies for walking across a destabilizing rock surface. Gait Posture 2012, 35, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Toda, H.; Maruyama, T.; Tada, M. Indoor vs. outdoor walking: Does it make any difference in joint angle depending on road surface? Front. Sports Act. Living 2020, 2, 119. [Google Scholar] [CrossRef]
- Holcomb, A.E.; Hunt, N.L.; Ivy, A.K.; Cormier, A.G.; Brown, T.N.; Fitzpatrick, C.K. Musculoskeletal adaptation of young and older adults in response to challenging surface conditions. J. Biomech. 2022, 144, 111270. [Google Scholar] [CrossRef]
- Cham, R.; Redfern, M.S. Changes in gait when anticipating slippery floors. Gait Posture 2002, 15, 159–171. [Google Scholar] [CrossRef] [Green Version]
- Honda, K.; Sekiguchi, Y.; Shimazaki, S.; Suzuki, R.; Suzuki, T.; Kanetaka, H.; Izumi, S.I. Effects of aging on whole-body center of mass movement and lower limb joint kinematics and kinetics during deep-squat movement. J. Biomech. 2022, 134, 110996. [Google Scholar] [CrossRef]
- Fujimoto, M.; Hsu, W.L.; Woollacott, M.H.; Chou, L.S. Ankle dorsiflexor strength relates to the ability to restore balance during a backward support surface translation. Gait Posture 2013, 38, 812–817. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, M.E.; Ashton-Miller, J.A.; Alexander, N.B. Age-related differences in maintenance of balance during forward reach to the floor. J. Gerontol. Ser. A 2013, 68, 960–967. [Google Scholar] [CrossRef] [Green Version]
- Halliday, S.E.; Winter, D.A.; Frank, J.S.; Patla, A.E.; Prince, F. The initiation of gait in young, elderly, and Parkinson’s disease subjects. Gait Posture 1998, 8, 8–14. [Google Scholar] [CrossRef]
- Khanmohammadi, R.; Talebian, S.; Hadian, M.R.; Olyaei, G.; Bagheri, H. Preparatory postural adjustments during gait initiation in healthy younger and older adults: Neurophysiological and biomechanical aspects. Brain Res. 2015, 1629, 240–249. [Google Scholar] [CrossRef]
- Panebianco, G.P.; Bisi, M.C.; Mangia, A.L.; Fantozzi, S.; Stagni, R. Quantitative characterization of walking on sand inecological conditions: Speed, temporal segmentation, and variability. Gait Posture 2021, 86, 211–216. [Google Scholar] [CrossRef]
- Kent, J.A.; Takahashi, K.Z.; Stergiou, N. Uneven terrain exacerbates the deficits of a passive prosthesis in the regulation of whole body angular momentum in individuals with a unilateral transtibial amputation. J. Neuroeng. Rehabil. 2019, 16, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmalz, T.; Altenburg, B.; Ernst, M.; Bellmann, M.; Rosenbaum, D. Lower limb amputee gait characteristics on a specifically designed test ramp: Preliminary results of a biomechanical comparison of two prosthetic foot concepts. Gait Posture 2019, 68, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Gomez, N.G.; Foreman, K.B.; Hunt, M.; Merryweather, A.S. Regulation of whole-body and segmental angular momentum in persons with Parkinson’s disease on an irregular surface. Clin. Biomech. 2022, 99, 105766. [Google Scholar] [CrossRef] [PubMed]
- Gomez, N.G.; Gubler, K.K.; Foreman, K.B.; Merryweather, A.S. Changes in step characteristics over a known outdoor surface transition: The effect of Parkinson disease. J. Appl. Biomech. 2021, 37, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Moreno Catalá, M.; Woitalla, D.; Arampatzis, A. Reactive but not predictive locomotor adaptability is impaired in young Parkinson’s disease patients. Gait Posture 2016, 48, 177–182. [Google Scholar] [CrossRef]
- Xu, H.; Hunt, M.; Bo Foreman, K.; Zhao, J.; Merryweather, A. Gait alterations on irregular surface in people with Parkinson’s disease. Clin. Biomech. 2018, 57, 93–98. [Google Scholar] [CrossRef]
- Böhm, H.; Hösl, M.; Schwameder, H.; Döderlein, L. Stiff-knee gait in cerebral palsy: How do patients adapt to uneven ground? Gait Posture 2014, 39, 1028–1033. [Google Scholar] [CrossRef]
- Malone, A.; Kiernan, D.; French, H.; Saunders, V.; O’Brien, T. Do children with cerebral palsy change their gait when walking over uneven ground? Gait Posture 2015, 41, 716–721. [Google Scholar] [CrossRef]
- Romkes, J.; Freslier, M.; Rutz, E.; Bracht-Schweizer, K. Walking on uneven ground: How do patients with unilateral cerebral palsy adapt? Clin. Biomech. 2020, 74, 8–13. [Google Scholar] [CrossRef]
- Sekiguchi, Y.; Honda, K.; Izumi, S.I. Effect of walking adaptability on an uneven surface by a stepping pattern on walking activity after stroke. Front. Hum. Neurosci. 2022, 15, 762223. [Google Scholar] [CrossRef]
- Sekiguchi, Y.; Honda, K.; Owaki, D.; Izumi, S.I. Classification of ankle joint stiffness during walking to determine the use of ankle foot orthosis after stroke. Brain Sci. 2021, 11, 1512. [Google Scholar] [CrossRef]
Characteristic | |
---|---|
Gender (males, females) a | 12, 10 |
Age (years) b | 43.5 (21.5) |
20–29 years a | 11 |
30–39 years a | 1 |
40–49 years a | 2 |
50–59 years a | 2 |
60–69 years a | 1 |
70–79 years a | 5 |
Height (cm) b | 165.7 (7.5) |
Weight (kg) b | 59.8 (8.1) |
Floor Surface | Statistical Value | |||
---|---|---|---|---|
Level | Compliant | p-Value | Effect Size, r | |
Walking speed (m/s) | 1.27 (0.19) | 1.30 (0.23) | 0.062 | −0.398 |
Step length (m) | ||||
Left side | 0.62 (0.06) | 0.63 (0.07) | 0.372 | −0.19 |
Right side | 0.63 (0.07) | 0.66 (0.06) | 0.062 | −0.398 |
Stride length (m) | 1.29 (0.17) | 1.35 (0.15) | 0.101 | −0.35 |
Step width (m) | 0.14 (0.03) | 0.16 (0.05) | <0.001 | −0.765 |
Cadence (steps/min) | 111.3 (9.1) | 111.6 (10.0) | 0.123 | −0.329 |
Floor Surface | Statistical Value | |||
---|---|---|---|---|
Level | Compliant | p-Value | Effect Size, r | |
Hip joint angle (degree) [positive value: extension] | ||||
Flexion angle at initial contact | −30.5 (7.6) | −32.9 (7.3) | 0.002 | 0.67 |
Maximum flexion angle in 1st half of the stance phase | −30.5 (7.8) | −33.0 (7.4) | 0.002 | 0.65 |
Maximum extension angle in stance phase | 6.8 (6.8) | 6.8 (5.3) | 0.123 | −0.33 |
Extension angle at toe-off | −0.5 (9.1) | −0.9 (5.2) | 0.263 | 0.24 |
Maximum flexion angle in the swing phase | −34.6 (7.4) | −37.7 (6.8) | <0.001 | 0.88 |
Peak-to-peak value throughout the gait cycle | 41.0 (5.6) | 45.1 (4.1) | <0.001 | −0.88 |
Knee joint angle (degree) [positive value: extension] | ||||
Flexion angle at initial contact | 0.1 (4.8) | −1.8 (6.9) | <0.001 | 0.85 |
Maximum flexion angle in 1st half of the stance phase | −14.1 (3.4) | −17.3 (7.0) | <0.001 | 0.83 |
Maximum extension angle in 2nd half of stance phase | 0.3 (4.8) | −1.8 (4.6) | <0.001 | 0.85 |
Flexion angle at toe-off | −39.9 (5.2) | −42.7 (3.3) | 0.001 | 0.73 |
Maximum flexion angle in the swing phase | −61.9 (5.9) | −65.4 (4.2) | <0.001 | 0.88 |
Peak-to-peak value throughout the gait cycle | 63.9 (5.6) | 66.2 (6.3) | 0.001 | −0.70 |
Ankle joint angle (degree) [positive value: plantarflexion] | ||||
Dorsiflexion angle at initial contact | 1.6 (3.3) | 3.7 (4.8) | 0.003 | −0.64 |
Maximum plantarflexion angle in 1st half of the stance phase | 9.8 (3.8) | 7.5 (3.7) | <0.001 | 0.81 |
Maximum dorsiflexion angle in 2nd half of stance phase | −11.6 (3.3) | −10.2 (4.6) | <0.001 | −0.85 |
Plantarflexion angle at toe-off | 10.7 (5.1) | 13.4 (9.5) | <0.001 | −0.83 |
Maximum dorsiflexion angle in the swing phase | −1.1 (4.9) | −0.3 (4.8) | 0.020 | −0.49 |
Peak-to-peak value throughout the gait cycle | 28.4 (5.7) | 27.2 (7.8) | 0.485 | −0.15 |
Foot angle (degree) [positive value: toe higher than heel] | ||||
Angle at initial contact | 18.5 (3.6) | 15.6 (6.3) | 0.006 | 0.59 |
Floor Surface | Statistical Value | |||
---|---|---|---|---|
Level | Compliant | p-Value | Effect Size, r | |
Thoracic angle (degree) [positive value: extension] | ||||
Mean value throughout the gait cycle | −4.8 (5.6) | −6.3 (6.9) | <0.001 | 0.87 |
Peak-to-peak value throughout the gait cycle | 3.7 (0.6) | 4.1 (0.9) | 0.003 | −0.63 |
Pelvic angle (degree) [positive value: posterior tilt] | ||||
Mean value throughout the gait cycle | −10.1 (6.6) | −9.8 (7.3) | 0.306 | 0.22 |
Peak-to-peak value throughout the gait cycle | 3.2 (1.0) | 3.3 (0.7) | 0.291 | −0.22 |
r | p | |
---|---|---|
Spatiotemporal parameters | ||
Walking speed | 0.09 | 0.683 |
Step length on the left side | −0.35 | 0.114 |
Step length on the right side | −0.37 | 0.093 |
Stride length | −0.44 | 0.042 |
Step width | 0.60 | 0.003 |
Cadence | 0.60 | 0.003 |
Kinematic variables | ||
Hip flexion angle at initial contact | 0.22 | 0.332 |
Maximum hip flexion angle in 1st half of the stance phase | 0.24 | 0.292 |
Maximum hip extension angle in the stance phase | −0.17 | 0.454 |
Hip extension angle at toe-off | −0.20 | 0.379 |
Maximum hip flexion angle in the swing phase | 0.01 | 0.970 |
Peak-to-peak value of hip joint angle | −0.15 | 0.519 |
Knee flexion angle at initial contact | −0.32 | 0.148 |
Maximum knee flexion angle in 1st half of the stance phase | −0.15 | 0.497 |
Maximum knee extension angle in 2nd half of stance phase | −0.21 | 0.346 |
Knee flexion angle at toe-off | −0.07 | 0.741 |
Maximum knee flexion angle in the swing phase | −0.12 | 0.607 |
Peak-to-peak value of knee joint angle | −0.18 | 0.413 |
Ankle dorsiflexion angle at initial contact | 0.59 | 0.004 |
Maximum ankle plantarflexion angle in 1st half of stance phase | 0.28 | 0.212 |
Maximum ankle dorsiflexion angle in 2nd half of stance phase | 0.27 | 0.232 |
Ankle plantarflexion angle at toe-off | −0.35 | 0.105 |
Maximum ankle dorsiflexion angle in the swing phase | 0.61 | 0.002 |
Peak-to-peak value of ankle joint angle | −0.57 | 0.005 |
Foot angle at initial contact | −0.59 | 0.004 |
Mean value of the thoracic angle in the sagittal plane | −0.42 | 0.049 |
Peak-to-peak value of the thoracic angle in the sagittal plane | 0.30 | 0.172 |
Mean value of the pelvic angle in the sagittal plane | −0.28 | 0.211 |
Peak-to-peak value of the pelvic angle in the sagittal plane | 0.22 | 0.328 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Honda, K.; Sekiguchi, Y.; Izumi, S.-I. Effect of Aging on the Trunk and Lower Limb Kinematics during Gait on a Compliant Surface in Healthy Individuals. Biomechanics 2023, 3, 103-114. https://doi.org/10.3390/biomechanics3010010
Honda K, Sekiguchi Y, Izumi S-I. Effect of Aging on the Trunk and Lower Limb Kinematics during Gait on a Compliant Surface in Healthy Individuals. Biomechanics. 2023; 3(1):103-114. https://doi.org/10.3390/biomechanics3010010
Chicago/Turabian StyleHonda, Keita, Yusuke Sekiguchi, and Shin-Ichi Izumi. 2023. "Effect of Aging on the Trunk and Lower Limb Kinematics during Gait on a Compliant Surface in Healthy Individuals" Biomechanics 3, no. 1: 103-114. https://doi.org/10.3390/biomechanics3010010
APA StyleHonda, K., Sekiguchi, Y., & Izumi, S. -I. (2023). Effect of Aging on the Trunk and Lower Limb Kinematics during Gait on a Compliant Surface in Healthy Individuals. Biomechanics, 3(1), 103-114. https://doi.org/10.3390/biomechanics3010010