An Overview of Selected Material Properties in Finite Element Modeling of the Human Femur
Abstract
:1. Introduction
1.1. Types of Material Properties
1.1.1. Isotropic Materials
1.1.2. Anisotropic Materials
1.1.3. Orthotropic Materials
1.2. Physical and Mechanical Properties of the Human Femur
1.2.1. Material Properties for Trabeculae
- For cancellous bone tissue, the ratios of the directional Young’s moduli exhibit a relationship similar to that reported in [36], where E1/E2 and E1/E3 are equal to approximately 2 (here, equal to 1.4 and 2.0, respectively), and E3/E2 is equal to approximately 0.6 (here, 0.07).
- The typical Young’s modulus is 1.0 GPa, which is in accordance with what has been documented in the literature.
1.2.2. Material Properties for Cortical Bone
1.2.3. Material Properties for Marrow
2. Results
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bazyar, P.; Baumgart, A. Effects of Additional Mechanisms on The Performance of Workshop Crane. J. Eng. Ind. Res. 2021, 3, 87–98. [Google Scholar] [CrossRef]
- Bazyar, P.; Jafari, A.; Alimardani, R.; Mohammadi, V.; Grichar, J. Finite Element Analysis of Small-scale Head of Combine Harvester for Harvesting Fine-Grain Products. Int. J. Adv. Biol. Biomed. Res. 2020, 8, 340–358. [Google Scholar] [CrossRef]
- Jacrot, B. The study of biological structures by neutron scattering from solution. Rep. Prog. Phys. 1976, 39, 911–953. [Google Scholar] [CrossRef]
- Amini, A.R.; Laurencin, C.T.; Nukavarapu, S.P. Bone Tissue Engineering: Recent Advances and Challenges. Crit. Rev. Biomed. Eng. 2012, 40, 363–408. [Google Scholar] [CrossRef] [Green Version]
- Mather, B.S. Correlations between strength and other properties of long bones. J. Trauma Inj. Infect. Crit. Care 1967, 7, 633–638. [Google Scholar] [CrossRef]
- Yamada, H.; Evans, F.G. Strength of Biological Materials. 1970. Available online: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Yamada%2C+H.%2C+%26+Evans%2C+F.+G.+%281970%29.+Strength+of+biological+materials.&btnG= (accessed on 20 January 2023). [CrossRef]
- Martens, M.; van Audekercke, R.; de Meester, P.; Mulier, J. Mechanical behaviour of femoral bones in bending loading. J. Biomech. 1986, 19, 443–454. [Google Scholar] [CrossRef]
- Keller, T.S.; Mao, Z.; Spengler, D.M. Young’s modulus, bending strength, and tissue physical properties of human compact bone. J. Orthop. Res. 1990, 8, 592–603. [Google Scholar] [CrossRef]
- Zani, L.; Erani, P.; Grassi, L.; Taddei, F.; Cristofolini, L. Strain distribution in the proximal Human femur during in vitro simulated sideways fall. J. Biomech. 2015, 48, 2130–2143. [Google Scholar] [CrossRef]
- Arun, K.V.; Jadhav, K.K. Behaviour of human femur bone under bending and impact loads. Eur. J. Clin. Biomed. Sci. 2016, 2, 6–13. [Google Scholar] [CrossRef]
- Schuster, P.; Jayaraman, G. Development and validation of a pedestrian lower limb non-linear 3-D finite element model. Stapp Car Crash J. 2000, 44, 315. Available online: https://digitalcommons.calpoly.edu/meng_fac/118 (accessed on 20 January 2023).
- Pellettiere, J.A. A Dynamic Material Model for Bone. University of Virginia: Charlottesville, VA, USA, 1999; Available online: https://www.proquest.com/openview/4b2efe43d488716177b54e8027c35af6/1?pq-origsite=gscholar&cbl=18750&diss=y (accessed on 20 January 2023).
- Wirtz, D.C.; Schiffers, N.; Pandorf, T.; Radermacher, K.; Weichert, D.; Forst, R. Critical evaluation of known bone material properties to realize anisotropic FE-simulation of the proximal femur. J. Biomech. 2000, 33, 1325–1330. [Google Scholar] [CrossRef]
- Ciarelli, M.J.; Goldstein, S.A.; Kuhn, J.L.; Cody, D.D.; Brown, M.B. Evaluation of orthogonal mechanical properties and density of human trabecular bone from the major metaphyseal regions with materials testing and computed tomography. J. Orthop. Res. 1991, 9, 674–682. [Google Scholar] [CrossRef]
- Osterhoff, G.; Morgan, E.F.; Shefelbine, S.J.; Karim, L.; McNamara, L.M.; Augat, P. Bone mechanical properties and changes with osteoporosis. Injury 2016, 47, S11–S20. [Google Scholar] [CrossRef] [Green Version]
- Cristofolini, L.; Viceconti, M.; Cappello, A.; Toni, A. Mechanical validation of whole bone composite femur models. J. Biomech. 1996, 29, 525–535. [Google Scholar] [CrossRef]
- Reilly, D.T.; Burstein, A.H. The mechanical properties of cortical bone. JBJS 1974, 56, 1001–1022. Available online: https://journals.lww.com/jbjsjournal/Citation/1974/56050/The_Mechanical_Properties_of_Cortical_Bone.12.aspx (accessed on 20 January 2023). [CrossRef]
- Choi, K.; Kuhn, J.; Ciarelli, M.; Goldstein, S. The elastic moduli of human subchondral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus. J. Biomech. 1990, 23, 1103–1113. [Google Scholar] [CrossRef] [Green Version]
- Keaveny, T.M.; Guo, X.; Wachtel, E.F.; McMahon, T.A.; Hayes, W.C. Trabecular bone exhibits fully linear elastic behavior and yields at low strains. J. Biomech. 1994, 27, 1127–1136. [Google Scholar] [CrossRef]
- Bayraktar, H.H.; Morgan, E.F.; Niebur, G.L.; Morris, G.E.; Wong, E.K.; Keaveny, T.M. Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J. Biomech. 2004, 37, 27–35. [Google Scholar] [CrossRef]
- Augat, P.; Link, T.; Lang, T.F.; Lin, J.C.; Majumdar, S.; Genant, H.K. Anisotropy of the elastic modulus of trabecular bone specimens from different anatomical locations. Med. Eng. Phys. 1998, 20, 124–131. [Google Scholar] [CrossRef]
- Zysset, P.K. A review of morphology–elasticity relationships in human trabecular bone: Theories and experiments. J. Biomech. 2003, 36, 1469–1485. [Google Scholar] [CrossRef]
- Morgan, E.F.; Bayraktar, H.H.; Keaveny, T.M. Trabecular bone modulus–density relationships depend on anatomic site. J. Biomech. 2003, 36, 897–904. [Google Scholar] [CrossRef]
- Morgan, E.F.; Keaveny, T.M. Dependence of yield strain of human trabecular bone on anatomic site. J. Biomech. 2001, 34, 569–577. [Google Scholar] [CrossRef]
- Asgharpour, Z.; Zioupos, P.; Graw, M.; Peldschus, S. Development of a strain rate dependent material model of human cortical bone for computer-aided reconstruction of injury mechanisms. Forensic Sci. Int. 2014, 236, 109–116. [Google Scholar] [CrossRef]
- Yeni, Y.N.; Brown, C.U.; Wang, Z.; Norman, T.L. The influence of bone morphology on fracture toughness of the human femur and tibia. Bone 1997, 21, 453–459. [Google Scholar] [CrossRef]
- Falcinelli, C.; Whyne, C. Image-based finite-element modeling of the human femur. Comput. Methods Biomech. Biomed. Eng. 2020, 23, 1138–1161. [Google Scholar] [CrossRef]
- Chethan, K.N.; Bhat, S.; Zuber, M.; Shenoy, S. Finite Element Analysis of Different Hip Implant Designs along with Femur under Static Loading Conditions. J. Biomed. Phys. Eng. 2019, 9, 507–516. [Google Scholar] [CrossRef] [Green Version]
- Schileo, E.; Pitocchi, J.; Falcinelli, C.; Taddei, F. Cortical bone mapping improves finite element strain prediction accuracy at the proximal femur. Bone 2020, 136, 115348. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, A.-A.; Liu, J.-M.; Tong, W.-L.; Xiao, S.-N.; Liu, Z.-L. Effect of screw tunnels on proximal femur strength after screw removal: A finite element analysis. Orthop. Traumatol. Surg. Res. 2022, 108, 103408. [Google Scholar] [CrossRef]
- Kalaiyarasan, A.; Sankar, K.; Sundaram, S. Finite element analysis and modeling of fractured femur bone. Mater. Today: Proc. 2020, 22, 649–653. [Google Scholar] [CrossRef]
- Czarnecki, S. Isotropic Material Design. Comput. Methods Sci. Technol. 2015, 21, 49–64. [Google Scholar] [CrossRef] [Green Version]
- Ahn, S.H.; Montero, M.; Odell, D.; Roundy, S.; Wright, P.K. Anisotropic Material Properties of Fused Deposition Modeling ABS. Rapid Prototyp. J. 2002, 8, 248–257. Available online: https://www.emerald.com/insight/content/doi/10.1108/13552540210441166/full/html?casa_token=NZHMQUutX98AAAAA:hAYM9lDkITmpgApyvA6h8q_71p3ZWU2WNHJ1ZehYC_IHR3Ugx2JUj_PFYK9gqCBQH6lPnW9inX6ALxehn6Op3vTzuR0KHOpDbMX0JAj1zv2oWZy_ (accessed on 20 January 2023). [CrossRef] [Green Version]
- Peng, L.; Bai, J.; Zeng, X.; Zhou, Y. Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions. Med. Eng. Phys. 2006, 28, 227–233. [Google Scholar] [CrossRef]
- Dec, P.; Modrzejewski, A.; Pawlik, A. Existing and Novel Biomaterials for Bone Tissue Engineering. Int. J. Mol. Sci. 2023, 24, 529. [Google Scholar] [CrossRef]
- Petrakis, N.L. Temperature of Human Bone Marrow. J. Appl. Physiol. 1952, 4, 549–553. [Google Scholar] [CrossRef]
- Mirzaali, M.J.; Schwiedrzik, J.J.; Thaiwichai, S.; Best, J.P.; Michler, J.; Zysset, P.K.; Wolfram, U. Mechanical properties of cortical bone and their relationships with age, gender, composition and microindentation properties in the elderly. Bone 2016, 93, 196–211. [Google Scholar] [CrossRef]
- Katsamanis, F.; Raftopoulos, D.D. Determination of mechanical properties of human femoral cortical bone by the Hopkinson bar stress technique. J. Biomech. 1990, 23, 1173–1184. [Google Scholar] [CrossRef]
- Bryant, J.D.; David, T.; Gaskell, P.H.; King, S.; Lond, G. Rheology of Bovine Bone Marrow. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 1989, 203, 71–75. [Google Scholar] [CrossRef]
- Geraldes, D.M.; Phillips, A.T.M. A comparative study of orthotropic and isotropic bone adaptation in the femur. Int. J. Numer. Methods Biomed. Eng. 2014, 30, 873–889. [Google Scholar] [CrossRef] [Green Version]
- Bryant, J.D. On the Mechanical Function of Marrow in Long Bones. Eng. Med. 1988, 17, 55–58. [Google Scholar] [CrossRef]
- Saito, H.; Lai, J.; Rogers, R.; Doerschuk, C.M. Mechanical properties of rat bone marrow and circulating neutrophils and their responses to inflammatory mediators. Blood 2002, 99, 2207–2213. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Z.; Akkus, O. Effects of age and shear rate on the rheological properties of human yellow bone marrow. Biorheology 2011, 48, 89–97. [Google Scholar] [CrossRef]
- Winer, J.P.; Janmey, P.A.; McCormick, M.E.; Funaki, M. Bone Marrow-Derived Human Mesenchymal Stem Cells Become Quiescent on Soft Substrates but Remain Responsive to Chemical or Mechanical Stimuli. Tissue Eng. Part A 2009, 15, 147–154. [Google Scholar] [CrossRef]
- Lai-Fook, S.J.; Hyatt, R.E. Effects of age on elastic moduli of human lungs. J. Appl. Physiol. 2000, 89, 163–168. [Google Scholar] [CrossRef] [Green Version]
- Rashid, B.; Destrade, M.; Gilchrist, M.D. Influence of preservation temperature on the measured mechanical properties of brain tissue. J. Biomech. 2013, 46, 1276–1281. [Google Scholar] [CrossRef] [Green Version]
- Melo, E.; Cárdenes, N.; Garreta, E.; Luque, T.; Rojas, M.; Navajas, D.; Farré, R. Inhomogeneity of local stiffness in the extracellular matrix scaffold of fibrotic mouse lungs. J. Mech. Behav. Biomed. Mater. 2014, 37, 186–195. [Google Scholar] [CrossRef]
- Miller, K.; Chinzei, K.; Orssengo, G.; Bednarz, P. Mechanical properties of brain tissue in-vivo: Experiment and computer simulation. J. Biomech. 2000, 33, 1369–1376. [Google Scholar] [CrossRef]
- Booth, A.J.; Hadley, R.; Cornett, A.M.; Dreffs, A.A.; Matthes, S.A.; Tsui, J.L.; Weiss, K.; Horowitz, J.C.; Fiore, V.F.; Barker, T.H.; et al. Acellular Normal and Fibrotic Human Lung Matrices as a Culture System for In Vitro Investigation. Am. J. Respir. Crit. Care Med. 2012, 186, 866–876. [Google Scholar] [CrossRef] [Green Version]
- Chatelin, S.; Constantinesco, A.; Willinger, R. Fifty years of brain tissue mechanical testing: From in vitro to in vivo investigations. Biorheology 2010, 47, 255–276. [Google Scholar] [CrossRef]
Young’s Moduli (MPa) | Shear Moduli (MPa) | Poisson’s Ratios |
---|---|---|
E1 = 1352 | G12 = 292 | V12 = 0.30 |
E2 = 968 | G23 = 370 | V23 = 0.30 |
E3 = 676 | G13 = 505 | V13 = 0.30 |
Young’s Moduli (MPa) | Shear Moduli (MPa) | Poisson’s Ratios |
---|---|---|
E1 = 1352 | G12 = 399 | V12 = 0.30 |
E2 = 822 | G23 = 370 | V23 = 0.30 |
E3 = 822 | G13 = 399 | V13 = 0.30 |
Young’s Moduli (GPA) | Poisson’s Ratios |
---|---|
E1 = 1 | V12 = 0.30 |
Elastic Modulus (MPa) | Tangent Modulus (MPa) | Poisson’s Ratios | Yield Stress (MPa) |
---|---|---|---|
E = 1000 | Etan = 1000 | 0.3 | 7.5 |
Young’s Moduli (GPa) | Shear Moduli (GPa) | Poisson’s Ratios |
---|---|---|
E1 = 16 | G12 = 3.2 | V12 = 0.30 |
E2 = 6.88 | G23 = 3.6 | V23 = 0.45 |
E3 = 6.30 | G13 = 3.3 | V13 = 0.30 |
Young’s Moduli (GPa) | Shear Moduli (GPa) | Poisson’s Ratios |
---|---|---|
E1 = 16 | G12 = 3.3 | V12 = 0.30 |
E2 = 6.30 | G23 = 3.6 | V23 = 0.45 |
E3 = 6.30 | G13 = 3.3 | V13 = 0.30 |
Young’s Moduli (GPa) | Poisson’s Ratios |
---|---|
E1 = 16 | V12 = 0.36 |
Elastic Modulus (GPa) | Tangent Modulus (MPa) | Poisson’s Ratios | Yield Stress (MPa) |
---|---|---|---|
E = 16 | Etan = 800 | 0.36 | 108 |
Marrow Sample Temperature | Rheology (kPa) | Indentation (kPa) | Cavitation (kPa) |
---|---|---|---|
25 °C | 20 °C | 20 °C | |
1 | 52.1 ±10.2 | 30.3 ± 4.0 | 64.3 ± 0.2 |
2 | 4.0 ± 0.9 | 5.7 ± 0.3 | 9.0 ± 0.01 |
3 | 0.7 ± 0.3 | 0.9 ± 0.2 | 0.9 ± 0.2 |
4 | 3.2 ± 1.9 | 2.1 ± 0.3 | 14.4 ± 10.0 |
5 | 84.4 ± 6.5 | 35.3 ± 4.9 | no data |
6 | 135.6 ± 25.6 | 37.1 ± 6.3 | no data |
7 | 69.0 ± 21.4 | — | — |
8 | — | 12.2 ± 2.8 | — |
9 | — | — | 16.0 ± 1.6 |
Average | 38.77 | 13.73 | 11.52 |
Forces | Material | Fy | Fz | Fr |
---|---|---|---|---|
Predicted | Isotropic | 59 | − 319 | 73 |
Orthotropic | 53 | − 306 | 71 |
Slice | Region | Model | 0–100% | 0–33% | 66–100% | |||
---|---|---|---|---|---|---|---|---|
RMSE (%) | r | RMSE (%) | r | RMSE (%) | r | |||
1 | 5% femoral head | Iso | 32.48 | 0.49 | 17.31 | 0.77 | 22.90 | − 0.12 |
Ortho | 29.23 | 0.49 | 17.08 | 0.77 | 20.74 | − 0.02 | ||
2 | 20% shaft | Iso | 75.83 | 0.74 | 43.09 | 0.77 | 57.81 | 0.59 |
Ortho | 51.27 | 0.88 | 25.92 | 0.88 | 38.92 | 0.72 | ||
3 | 40% shaft | Iso | 107.50 | 0.29 | 65.73 | 0.37 | 78.23 | − 0.66 |
Ortho | 82.32 | 0.54 | 35.04 | 0.72 | 64.87 | − 0.09 | ||
4 | 60% shaft | Iso | 63.95 | 0.67 | 28.38 | 0.86 | 55.40 | 0.37 |
Ortho | 64.03 | 0.65 | 36.38 | 0.89 | 48.41 | 0.74 | ||
5 | 80% shaft | Iso | 72.34 | 0.53 | 34.80 | 0.73 | 53.69 | 0.60 |
Ortho | 68.29 | 0.46 | 27.07 | 0.69 | 51.83 | 0.81 | ||
6 | 95% shaft | Iso | 66.15 | 0.43 | 30.57 | 0.85 | 42.81 | 0.64 |
Ortho | 66.10 | 0.25 | 21.43 | 0.89 | 45.24 | 0.80 | ||
7 | Neck | Iso | 25.65 | 0.72 | 18.53 | 0.89 | 17.21 | 0.68 |
Ortho | 12.29 | 0.88 | 9.56 | 0.93 | 5.38 | 0.89 | ||
8 | Greater trochanter | Iso | 26.67 | 0.58 | 22.48 | 0.82 | 12.47 | − 0.14 |
Ortho | 30.72 | 0.55 | 26.08 | 0.81 | 14.90 | − 0.13 | ||
9 | Femoral head | Iso | 30.06 | 0.40 | 23.60 | 0.46 | 16.81 | 0.26 |
Ortho | 25.87 | 0.50 | 19.31 | 0.40 | 15.98 | 0.24 | ||
10 | Femoral head | Iso | 28.72 | 0.55 | 20.48 | 0.73 | 17.35 | 0.17 |
Ortho | 24.53 | 0.60 | 18.01 | 0.73 | 14.25 | 0.24 | ||
11 | Femoral shaft | Iso | 82.43 | 0.57 | 45.73 | 0.67 | 63.81 | 0.10 |
Ortho | 65.87 | 0.69 | 32.45 | 0.83 | 50.73 | 0.46 | ||
12 | Femoral condyles | Iso | 69.25 | 0.48 | 32.69 | 0.79 | 48.25 | 0.62 |
Ortho | 67.20 | 0.35 | 24.25 | 0.79 | 48.54 | 0.80 | ||
13 | Whole femur | Iso | 55.63 | 0.54 | 31.61 | 0.72 | 39.70 | 0.25 |
Ortho | 47.79 | 0.58 | 24.21 | 0.77 | 34.03 | 0.44 |
Material Properties | Elastic Bending Stiffness of the Bone | Elastic Torsion Stiffness of the Bone |
---|---|---|
Isotropic | 267 | 19.4 |
Orthotropic | 278 | 11.6 |
Anisotropic | 278 | 11.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bazyar, P.; Baumgart, A.; Altenbach, H.; Usbeck, A. An Overview of Selected Material Properties in Finite Element Modeling of the Human Femur. Biomechanics 2023, 3, 124-135. https://doi.org/10.3390/biomechanics3010012
Bazyar P, Baumgart A, Altenbach H, Usbeck A. An Overview of Selected Material Properties in Finite Element Modeling of the Human Femur. Biomechanics. 2023; 3(1):124-135. https://doi.org/10.3390/biomechanics3010012
Chicago/Turabian StyleBazyar, Pourya, Andreas Baumgart, Holm Altenbach, and Anna Usbeck. 2023. "An Overview of Selected Material Properties in Finite Element Modeling of the Human Femur" Biomechanics 3, no. 1: 124-135. https://doi.org/10.3390/biomechanics3010012
APA StyleBazyar, P., Baumgart, A., Altenbach, H., & Usbeck, A. (2023). An Overview of Selected Material Properties in Finite Element Modeling of the Human Femur. Biomechanics, 3(1), 124-135. https://doi.org/10.3390/biomechanics3010012