Capturing in Season Change-of-Direction Movement Pattern Change in Youth Soccer Players with Inertial Measurement Units
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Testing Protocol
2.3. Accelerometer Data
2.4. Injury Data
2.5. Data Processing
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
R Package | Version |
ggplot2 | 3.3.3 |
dplyr | 1.0.5 |
readxl | 1.3.1 |
tidyverse | 1.3.1 |
gtsummary | 1.4.1 |
References
- Bloomfield, J.; Polman, R.C.J.; Donoghue, P.O. Physical Demands of Different Positions in FA Premier League Soccer Do individual differences in working memory capacity influence skill acquisition? J. Sport. Sci. Med. 2007, 6, 63–70. [Google Scholar]
- Reilly, T.; Williams, A.M.; Nevill, A.; Franks, A. A multidisciplinary approach to talent identification in soccer. J. Sport. Sci. 2000, 18, 695–702. [Google Scholar] [CrossRef]
- Havens, K.L.; Sigward, S.M. Cutting Mechanics: Relation to Performance and Anterior Cruciate Ligament Injury Risk. Med. Sci. Sport. Exerc. 2015, 47, 818–824. [Google Scholar] [CrossRef]
- Cortes, N.; Onate, J.; Van Lunen, B. Pivot task increases knee frontal plane loading compared with sidestep and drop-jump. J. Sport. Sci. 2011, 29, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Hader, K.; Palazzi, D.; Buchheit, M. Change of Direction Speed in Soccer: How Much Braking is Enough? Kinesiology 2015, 47, 67–74. [Google Scholar]
- Havens, K.L.; Sigward, S.M. Whole body mechanics differ among running and cutting maneuvers in skilled athletes. Gait Posture 2015, 42, 240–245. [Google Scholar] [CrossRef]
- Della Villa, F.; Buckthorpe, M.; Grassi, A.; Nabiuzzi, A.; Tosarelli, F.; Zaffagnini, S.; Della Villa, S. Systematic video analysis of ACL injuries in professional male football (soccer): Injury mechanisms, situational patterns and biomechanics study on 134 consecutive cases. Br. J. Sport. Med. 2020, 54, 1–10. [Google Scholar] [CrossRef]
- Kristianslund, E.; Faul, O.; Bahr, R.; Myklebust, G.; Krosshaug, T. Sidestep cutting technique and knee abduction loading: Implications for ACL prevention exercises. Br. J. Sport. Med. 2012, 48, 779–783. [Google Scholar] [CrossRef] [Green Version]
- Serner, A.; Tol, J.L.; Jomaah, N.; Weir, A.; Whiteley, R.; Thorborg, K.; Robinson, M.; Hölmich, P. Diagnosis of Acute Groin Injuries: A Prospective Study of 110 Athletes. Am. J. Sport. Med. 2015, 43, 1857–1864. [Google Scholar] [CrossRef]
- Light, N.; Johnson, A.; Williams, S.; Smith, N.; Hale, B.; Thorborg, K. Injuries in youth football and the relationship to player maturation: An analysis of time-loss injuries during four seasons in an English elite male football academy. Scand. J. Med. Sci. Sport. 2021, 31, 1324–1334. [Google Scholar] [CrossRef]
- Read, P.J.; Oliver, J.L.; De Ste Croix, M.B.; Myer, G.D.; Lloyd, R.S. An audit of injuries in six english professional soccer academies. J. Sport. Sci. 2018, 36, 1542–1548. [Google Scholar] [CrossRef]
- Ardern, C.L.; Glasgow, P.; Schneiders, A.; Witvrouw, E.; Clarsen, B.; Cools, A.; Gojanovic, B.; Griffin, S.; Khan, K.M.; Moksnes, H.; et al. 2016 Consensus statement on return to sport from the First World Congress in Sports Physical Therapy, Bern. Br. J. Sport. Med. 2016, 50, 853–864. [Google Scholar] [CrossRef] [Green Version]
- Barber-Westin, S.D.; Noyes, F.R. Factors Used to Determine Return to Unrestricted Sports Activities After Anterior Cruciate Ligament Reconstruction. Arthrosc. J. Arthrosc. Relat. Surg. 2011, 27, 1697–1705. [Google Scholar] [CrossRef]
- Spiteri, T.; Cochrane, J.L.; Hart, N.; Haff, G.G.; Nimphius, S. Effect of strength on plant foot kinetics and kinematics during a change of direction task. Eur. J. Sport. Sci. 2013, 13, 646–652. [Google Scholar] [CrossRef]
- Spiteri, T.; Newton, R.U.; Binetti, M.; Hart, N.H.; Sheppard, J.M.; Nimphius, S. Mechanical Determinants of Faster Change of Direction and Agility Performance in Female Basketball Athletes. J. Strength Cond. Res. 2015, 29, 2205–2214. [Google Scholar] [CrossRef]
- Dos’Santos, T.; Thomas, C.; Jones, P.A.; Comfort, P. Mechanical Determinants of Faster Change of Direction Speed Performance in Male Athletes. J. Strength Cond. Res. 2017, 31, 696–705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, P.A.; Herrington, L.; Graham-Smith, P. Braking characteristics during cutting and pivoting in female soccer players. J. Electromyogr. Kinesiol. 2016, 30, 46–54. [Google Scholar] [CrossRef]
- Read, P.J.; Oliver, J.L.; De Ste Croix, M.B.A.; Myer, G.D.; Lloyd, R.S. A prospective investigation to evaluate risk factors for lower extremity injury risk in male youth soccer players. Scand. J. Med. Sci. Sport. 2018, 28, 1244–1251. [Google Scholar] [CrossRef]
- Hart, L.M.; Cohen, D.D.; Patterson, S.D.; Springham, M.; Reynolds, J.; Read, P. Previous injury is associated with heightened countermovement jump force-time asymmetries in professional soccer players. Transl. Sport. Med. 2019, 2, 256–262. [Google Scholar] [CrossRef]
- McLean, S.G.; Oh, Y.K.; Palmer, M.L.; Lucey, S.M.; Lucarelli, D.G.; Ashton-Miller, J.A.; Wojtys, E.M. The Relationship Between Anterior Tibial Acceleration, Tibial Slope, and ACL Strain During a Simulated Jump Landing Task. J. Bone Jt. Surg. 2011, 93, 1310–1317. [Google Scholar] [CrossRef]
- Sheerin, K.R.; Reid, D.; Besier, T.F. The measurement of tibial acceleration in runners—A review of the factors that can affect tibial acceleration during running and evidence-based guidelines for its use. Gait Posture 2018, 67, 12–24. [Google Scholar] [CrossRef]
- Johnson, C.D.; Outerleys, J.; Davis, I.S. Relationships between tibial acceleration and ground reaction force measures in the medial-lateral and anterior-posterior planes. J. Biomech. 2021, 117, 110250. [Google Scholar] [CrossRef]
- LaFortune, M.A.; Hennig, E.M. Contribution of angular motion and gravity to tibial acceleration. Med. Sci. Sport. Exerc. 1991, 23, 360–363. [Google Scholar] [CrossRef]
- Sheerin, K.R.; Besier, T.; Reid, D.; Hume, P.A. The one-week and six-month reliability and variability of three-dimensional tibial acceleration in runners. Sport. Biomech. 2017, 17, 1–10. [Google Scholar] [CrossRef]
- Alanen, A.; Räisänen, A.; Benson, L.; Pasanen, K. The use of inertial measurement units for analyzing change of direction movement in sports: A scoping review. Int. J. Sport. Sci. Coach. 2021, 16, 1332–1353. [Google Scholar] [CrossRef]
- Edwards, W.B.; Derrick, T.R.; Hamill, J. Musculoskeletal attenuation of impact shock in response to knee angle manipulation. J. Appl. Biomech. 2012, 28, 502–510. [Google Scholar] [CrossRef]
- Tamura, A.; Akasaka, K.; Otsudo, T.; Sawada, Y.; Okubo, Y.; Shiozawa, J.; Toda, Y.; Yamada, K. Fatigue Alters Landing Shock Attenuation During a Single-Leg Vertical Drop Jump. Orthop. J. Sport. Med. 2016, 4, 1–7. [Google Scholar] [CrossRef]
- Tamura, A.; Akasaka, K.; Otsudo, T.; Shiozawa, J.; Toda, Y.; Yamada, K. Dynamic knee valgus alignment influences impact attenuation in the lower extremity during the deceleration phase of a single-leg landing. PLoS ONE 2017, 12, e0179810. [Google Scholar] [CrossRef]
- Pasanen, K.; Rossi, M.T.; Parkkari, J.; Heinonen, A.; Steffen, K.; Myklebust, G.; Krosshaug, T.; Vasankari, T.; Kannus, P.; Avela, J.; et al. Predictors of lower extremity injuries in team sports (PROFITS-study): A study protocol. BMJ Open Sport Exerc. Med. 2015, 1, e000076. [Google Scholar] [CrossRef]
- Green, B.S.; Blake, C.; Caulfield, B.M. A Comparison of Cutting Technique Performance in Rugby Union Players. J. Strength Cond. Res. 2011, 25, 2668–2680. [Google Scholar] [CrossRef] [Green Version]
- Everitt, B.S. The Analysis of Repeated Measures: A Practical Review with Examples. Statistician 1995, 44, 113. [Google Scholar] [CrossRef]
- Everitt, B.S. A Handbook of Statistical Analyses Using S-Plus, 2nd ed.; Chapman and Hall: London, UK, 2001. [Google Scholar]
- Wundersitz, D.W.T.; Gastin, P.B.; Robertson, S.; Davey, P.C.; Netto, K.J. Validation of a Trunk-mounted Accelerometer to Measure Peak Impacts during Team Sport Movements. Int. J. Sport. Med. 2015, 36, 742–746. [Google Scholar] [CrossRef]
- Giandolini, M.; Pavailler, S.; Samozino, P.; Morin, J.-B.; Horvais, N. Foot strike pattern and impact continuous measurements during a trail running race: Proof of concept in a world-class athlete. Footwear Sci. 2015, 7, 127–137. [Google Scholar] [CrossRef]
- Simons, C.; Bradshaw, E.J. Reliability of accelerometry to assess impact loads of jumping and landing tasks. Sport. Biomech. 2016, 15, 1–10. [Google Scholar] [CrossRef]
- Bishop, C.; Lake, J.; Loturco, I.; Papadopoulos, K.; Turner, A.; Read, P. Interlimb Asymmetries: The Need for an Individual Approach to Data Analysis. J. Strength Cond. Res. 2021, 35, 695–701. [Google Scholar] [CrossRef]
- Read, P.J.; Oliver, J.L.; Croix, M.B.D.S.; Myer, G.D.; Lloyd, R.S. Reliability of the Tuck Jump Injury Risk Screening Assessment in Elite Male Youth Soccer Players. J. Strength Cond. Res. 2016, 30, 1510–1516. [Google Scholar] [CrossRef] [Green Version]
- Hanzlíková, I.; Richards, J.; Athens, J.; Hébert-Losier, K. Which jump-landing task best represents lower extremity and trunk kinematics of unanticipated cutting maneuver? Gait Posture 2021, 85, 171–177. [Google Scholar] [CrossRef]
- Grindem, H.; Snyder-Mackler, L.; Moksnes, H.; Engebretsen, L.; Risberg, M.A. Simple decision rules can reduce reinjury risk by 84% after ACL reconstruction: The Delaware-Oslo ACL cohort study. Br. J. Sport. Med. 2016, 50, 804–808. [Google Scholar] [CrossRef] [Green Version]
- Brughelli, M.; Cronin, J.; Levin, G.; Chaouachi, A. Understanding Change of Direction Ability in Sport: A review of resistance training studies. Sport. Med. 2008, 38, 1045–1063. [Google Scholar] [CrossRef]
- van der Sluis, A.; Elferink-Gemser, M.; Coelho-e-Silva, M.; Nijboer, J.; Brink, M.; Visscher, C. Sport Injuries Aligned to Peak Height Velocity in Talented Pubertal Soccer Players. Int. J. Sports Med. 2013, 35, 351–355. [Google Scholar] [CrossRef]
- Materne, O.; Chamari, K.; Farooq, A.; Weir, A.; Hölmich, P.; Bahr, R.; Greig, M.; McNaughton, L.R. Association of Skeletal Maturity and Injury Risk in Elite Youth Soccer Players: A 4-Season Prospective Study With Survival Analysis. Orthop. J. Sport. Med. 2021, 9, 1–11. [Google Scholar] [CrossRef]
- Kim, H.; Son, S.J.; Seeley, M.K.; Hopkins, J.T. Altered movement strategies during jump landing/cutting in patients with chronic ankle instability. Scand. J. Med. Sci. Sport. 2019, 29, 1130–1140. [Google Scholar] [CrossRef]
- Dugdale, J.H.; Sanders, D.; Hunter, A.M. Reliability of Change of Direction and Agility Assessments in Youth Soccer Players. Sports 2020, 8, 51. [Google Scholar] [CrossRef]
Female n = 13 | Male n = 19 | |
---|---|---|
Mean age (SD) | 16.5 years (0.7) | 16.2 years (0.7) |
Mean height (SD) | 166.0 cm (6.6) | 182.7 cm (11.2) |
Mean body mass (SD) | 59 kg (6) | 66 kg (6) |
Playing position | ||
Goalkeeper | 0 | 2 |
Defender | 5 | 6 |
Midfielder | 4 | 4 |
Forward | 4 | 7 |
Years played (Mean) | 8.7 | 10.6 |
Leg dominance | ||
Left | 0 | 4 (injured = 1, noninjured = 3) |
Right | 13 (injured = 7, noninjured = 6) | 15 (injured = 9, noninjured = 6) |
Previous injury 1 | ||
Acute injury | 6 (knee = 1, ankle = 3, thigh = 2) | 9 (groin = 3, ankle = 4, thigh = 2) |
Overuse injury | 1 (knee = 1) | 1 (knee = 1) |
No injuries | 6 | 9 |
Injured, N = 17 1 | Noninjured, N = 15 1 | Cohen’s d | 95% CI 2 | p-Value 3 | Adjusted p-Value 4 | |
---|---|---|---|---|---|---|
180° Pivot Turns | Mean Change between the Tests (m/s2) | |||||
FFC right leg | 33 (36) | −6 (43) | 1.0 | 0.23, 1.7 | 0.012* | 0.14 |
PFC right leg | 1 (65) | 3 (80) | −0.02 | −0.72, 0.67 | >0.9 | >0.9 |
FFC left leg | 3 (36) | 10 (70) | −0.13 | −0.82, 0.57 | 0.7 | >0.9 |
PFC left leg | 14 (53) | −9 (49) | 0.44 | −0.26, 1.1 | 0.2 | >0.9 |
135° cuts | ||||||
FFC right leg | 16 (41) | 10 (71) | 0.10 | −0.60, 0.79 | 0.8 | >0.9 |
PFC right leg | 7 (64) | −2 (96) | 0.11 | −0.58, 0.81 | 0.8 | >0.9 |
FFC left leg | 1 (54) | 8 (30) | −0.17 | −0.86, 0.53 | 0.6 | >0.9 |
PFC left leg | −1 (51) | −8 (56) | 0.14 | −0.56, 0.83 | 0.7 | >0.9 |
90° cuts | ||||||
FFC right leg | 20 (60) | −17 (35) | 0.75 | 0.02, 1.5 | 0.039 * | 0.5 |
PFC right leg | 20 (56) | 0 (86) | 0.28 | −0.42, 1.0 | 0.4 | >0.9 |
FFC left leg | 18 (80) | 19 (43) | −0.01 | −0.70, 0.69 | >0.9 | >0.9 |
PFC left leg | 5 (65) | 0 (50) | 0.08 | −0.61, 0.78 | 0.8 | >0.9 |
COD | Test 1 | Test 2 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PRA (m/s2) | PRA (m/s2) | |||||||||||
Injured Leg, N = 17 1 | Noninjured Leg, N = 17 1 | Cohen’s d 2 | 95% CI 2,3 | p-Value 4 | Adjusted p-Value 5 | Injured Leg, N = 17 1 | Noninjured Leg, N = 17 1 | Cohen’s d 2 | 95% CI 2,3 | p-Value 4 | Adjusted p-Value 5 | |
FFC180 | 178 (48) | 158 (52) | 0.39 | −0.29, 1.1 | 0.3 | >0.9 | 145 (47) | 154 (49) | −0.18 | −0.85, 0.50 | 0.6 | >0.9 |
PFC180 | 156 (53) | 180 (61) | −0.43 | −1.1, 0.25 | 0.2 | >0.9 | 159 (43) | 162 (37) | −0.10 | −0.77, 0.58 | 0.8 | >0.9 |
FFC135 | 164 (51) | 159 (58) | 0.09 | −0.58, 0.77 | 0.8 | >0.9 | 151 (38) | 156 (43) | −0.14 | −0.81, 0.54 | 0.7 | >0.9 |
PFC135 | 136 (49) | 163 (58) | -0.52 | −1.2, 0.17 | 0.14 | 0.9 | 140 (45) | 152 (44) | −0.29 | −1.0, 0.39 | 0.4 | >0.9 |
FFC90 | 178 (63) | 186 (63) | -0.13 | −0.81, 0.54 | 0.7 | >0.9 | 156 (37) | 170 (46) | −0.33 | −1.0, 0.35 | 0.3 | >0.9 |
PFC90 | 173 (64) | 183 (61) | -0.16 | −0.83, 0.52 | 0.7 | >0.9 | 157 (46) | 175 (37) | −0.43 | −1.1, 0.25 | 0.2 | >0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alanen, A.-M.; Bruce, O.L.; Benson, L.C.; Chin, M.; van den Berg, C.; Jordan, M.J.; Ferber, R.; Pasanen, K. Capturing in Season Change-of-Direction Movement Pattern Change in Youth Soccer Players with Inertial Measurement Units. Biomechanics 2023, 3, 155-165. https://doi.org/10.3390/biomechanics3010014
Alanen A-M, Bruce OL, Benson LC, Chin M, van den Berg C, Jordan MJ, Ferber R, Pasanen K. Capturing in Season Change-of-Direction Movement Pattern Change in Youth Soccer Players with Inertial Measurement Units. Biomechanics. 2023; 3(1):155-165. https://doi.org/10.3390/biomechanics3010014
Chicago/Turabian StyleAlanen, Aki-Matti, Olivia L. Bruce, Lauren C. Benson, Mathieu Chin, Carla van den Berg, Matthew J. Jordan, Reed Ferber, and Kati Pasanen. 2023. "Capturing in Season Change-of-Direction Movement Pattern Change in Youth Soccer Players with Inertial Measurement Units" Biomechanics 3, no. 1: 155-165. https://doi.org/10.3390/biomechanics3010014
APA StyleAlanen, A. -M., Bruce, O. L., Benson, L. C., Chin, M., van den Berg, C., Jordan, M. J., Ferber, R., & Pasanen, K. (2023). Capturing in Season Change-of-Direction Movement Pattern Change in Youth Soccer Players with Inertial Measurement Units. Biomechanics, 3(1), 155-165. https://doi.org/10.3390/biomechanics3010014