Evaluating the Repeatability of Musculoskeletal Modelling Force Outcomes in Gait among Chronic Stroke Survivors: Implications for Contemporary Clinical Practice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Motion Capture
2.3. Musculoskeletal Modelling
2.3.1. Muscle Skeleton Models
2.3.2. Musculoskeletal Modelling
2.4. Data Processing and Statistics
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Belda-Lois, J.-M.; Horno, S.M.; Bermejo-bosch, I.; Moreno, J.C.; Pons, J.L.; Farina, D.; Iosa, M.; Molinari, M.; Tamburella, F.; Ramos, A.; et al. Rehabilitation of gait after stroke:a top down approach. J. Neuroeng. Rehabil. 2011, 8, 66. [Google Scholar] [CrossRef] [PubMed]
- Balaban, B.; Tok, F. Gait Disturbances in Patients with Stroke. PM R J. Inj. Funct. Rehabil. 2014, 6, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.A.B.; Neto, H.P.; Grecco, L.A.C.; Christovão, T.C.L.; Duarte, N.A.C.; Lazzari, R.D.; Galli, M.; Oliveira, C.S. Effect of ankle-foot orthosis on gait velocity and cadence of stroke patients: A systematic review. J. Phys. Ther. Sci. 2013, 25, 1503–1508. [Google Scholar] [CrossRef] [PubMed]
- Von Schroeder, H.P.; Coutts, R.D.; Lyden, P.D.; Billings, E.; Nickel, V.L. Gait parameters following stroke: A practical assessment. J. Rehabil. Res. Dev. 1995, 32, 25. Available online: https://pubmed.ncbi.nlm.nih.gov/7760264/ (accessed on 25 April 2024). [PubMed]
- Nardone, A.; Godi, M.; Grasso, M.; Guglielmetti, S.; Schieppati, M. Stabilometry is a predictor of gait performance in chronic hemiparetic stroke patients. Gait Posture 2009, 30, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Lauziere, S.; Betschart, M.; Aissaoui, R.; Nadeau, S. Understanding spatial and temporal gait asymmetries in individuals post stroke. Int. J. Phys. Med. Rehabil. 2014, 2, 201. Available online: https://www.longdom.org/abstract/understanding-spatial-and-temporal-gait-asymmetries-in-individuals-post-stroke-45980.html (accessed on 9 June 2022).
- Boudarham, J.; Roche, N.; Pradon, D.; Bonnyaud, C.; Bensmail, D.; Zory, R. Variations in Kinematics during Clinical Gait Analysis in Stroke Patients. PLoS ONE 2013, 8, e66421. [Google Scholar] [CrossRef] [PubMed]
- Peterson, C.L.; Hall, A.L.; Kautz, S.A.; Neptune, R.R. Pre-swing deficits in forward propulsion, swing initiation and power generation by individual muscles during hemiparetic walking. J. Biomech. 2010, 43, 2348–2355. [Google Scholar] [CrossRef] [PubMed]
- Olney, S.J.; Griffin, M.P.; Monga, T.N.; McBride, I.D. Work and power in gait of stroke patients. Arch. Phys. Med. Rehabil. 1991, 72, 309–314. Available online: https://www.archives-pmr.org/article/0003-9993(91)90247-G/fulltext (accessed on 10 June 2022).
- Parvataneni, K.; Olney, S.J.; Brouwer, B. Changes in muscle group work associated with changes in gait speed of persons with stroke. Clin. Biomech. 2007, 22, 813–820. [Google Scholar] [CrossRef]
- Brincks, J.; Nielsen, J.F. Increased power generation in impaired lower extremities correlated with changes in walking speeds in sub-acute stroke patients. Clin. Biomech. 2012, 27, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Holder, J.; Trinler, U.; Meurer, A.; Stief, F. A Systematic Review of the Associations Between Inverse Dynamics and Musculoskeletal Modeling to Investigate Joint Loading in a Clinical Environment. Front. Bioeng. Biotechnol. 2020, 8, 603907. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.H.L.; Coppack, R.J.; van den Bogert, A.J.; Bennett, A.N.; Bull, A.M.J. Review of musculoskeletal modelling in a clinical setting: Current use in rehabilitation design, surgical decision making and healthcare interventions. Clin. Biomech. 2021, 83, 105292. [Google Scholar] [CrossRef] [PubMed]
- Thelen, D.G.; Anderson, F.C.; Delp, S.L. Generating dynamic simulations of movement using computed muscle control. J. Biomech. 2003, 36, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Bolsterlee, B.; Veeger, D.J.E.; Chadwick, E.K. Clinical applications of musculoskeletal modelling for the shoulder and upper limb. Med. Biol. Eng. Comput. 2013, 51, 953–963. [Google Scholar] [CrossRef] [PubMed]
- Erdemir, A.; McLean, S.; Herzog, W.; van den Bogert, A.J. Model-based estimation of muscle forces exerted during movements. Clin. Biomech. 2007, 22, 131–154. [Google Scholar] [CrossRef] [PubMed]
- Giarmatzis, G.; Jonkers, I.; Wesseling, M.; Van Rossom, S.; Verschueren, S. Loading of Hip Measured by Hip Contact Forces at Different Speeds of Walking and Running. J. Bone Miner. Res. 2015, 30, 1431–1440. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.R.; Won Choi, K.; Negrut, D.; Thelen, D.G. Efficient computation of cartilage contact pressures within dynamic simulations of movement. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2018, 6, 491–498. [Google Scholar] [CrossRef]
- Giarmatzis, G.; Fotiadou, S.; Giannakou, E.; Kokkotis, C.; Fanaradelli, T.; Kordosi, S.; Vadikolias, K.; Aggelousis, N. Understanding Post-Stroke Movement by Means of Motion Capture and Musculoskeletal Modeling: A Scoping Review of Methods and Practices. BioMed 2022, 2, 409–421. [Google Scholar] [CrossRef]
- Killen, B.A.; Falisse, A.; De Groote, F.; Jonkers, I. In silico-enhanced treatment and rehabilitation planning for patients with musculoskeletal disorders: Can musculoskeletal modelling and dynamic simulations really impact current clinical practice? Appl. Sci. 2020, 10, 7255. [Google Scholar] [CrossRef]
- Lin, Y.C.; Dorn, T.W.; Schache, A.G.; Pandy, M.G. Comparison of different methods for estimating muscle forces in human movement. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2012, 226, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Anderson, F.C.; Pandy, M.G. Static and dynamic optimization solutions for gait are practically equivalent. J. Biomech. 2001, 34, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Akbas, T.; Neptune, R.R.; Sulzer, J. Neuromusculoskeletal simulation reveals abnormal rectus femoris-gluteus medius coupling in post-stroke gait. Front. Neurol. 2019, 10, 301. [Google Scholar] [CrossRef] [PubMed]
- Jansen, K.; De Groote, F.; Aerts, W.; De Schutter, J.; Duysens, J.; Jonkers, I. Altering length and velocity feedback during a neuro-musculoskeletal simulation of normal gait contributes to hemiparetic gait characteristics. J. Neuroeng. Rehabil. 2014, 11, 78. [Google Scholar] [CrossRef] [PubMed]
- Roelker, S.A.; Caruthers, E.J.; Hall, R.K.; Pelz, N.C.; Chaudhari, A.M.W.; Siston, R.A. Effects of optimization technique on simulated muscle activations and forces. J. Appl. Biomech. 2020, 36, 259–278. [Google Scholar] [CrossRef] [PubMed]
- Fregly, B.J. A Conceptual Blueprint for Making Neuromusculoskeletal Models Clinically Useful. Appl. Sci. 2021, 11, 2037. [Google Scholar] [CrossRef]
- Balasubramanian, C.K.; Neptune, R.R.; Kautz, S.A. Variability in spatiotemporal step characteristics and its relationship to walking performance post-stroke. Gait Posture 2009, 29, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Kainz, H.; Graham, D.; Edwards, J.; Walsh, H.P.J.; Maine, S.; Boyd, R.N.; Lloyd, D.G.; Modenese, L.; Carty, C.P. Reliability of four models for clinical gait analysis. Gait Posture 2017, 54, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Fotiadou, S.; Aggeloussis, N.; Gourgoulis, V.; Malliou, P.; Papanas, N.; Giannakou, E.; Iliopoulos, I.; Vadikolias, K.; Terzoudi, A.; Piperidou, H. Reproducibility of gait kinematics and kinetics in chronic stroke patients. NeuroRehabilitation 2018, 42, 53–61. [Google Scholar] [CrossRef]
- Seth, A.; Hicks, J.L.; Uchida, T.K.; Habib, A.; Dembia, C.L.; Dunne, J.J.; Ong, C.F.; DeMers, M.S.; Rajagopal, A.; Millard, M.; et al. OpenSim: Simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement. PLOS Comput. Biol. 2018, 14, e1006223. [Google Scholar] [CrossRef]
- Sharifi, M.; Shirazi-Adl, A.; Marouane, H. Sensitivity of the knee joint response, muscle forces and stability to variations in gait kinematics-kinetics. J. Biomech. 2020, 99, 109472. [Google Scholar] [CrossRef] [PubMed]
- Bytyqi, D.; Shabani, B.; Lustig, S.; Cheze, L.; Karahoda Gjurgjeala, N.; Neyret, P. Gait knee kinematic alterations in medial osteoarthritis: Three dimensional assessment. Int. Orthop. 2014, 38, 1191–1198. [Google Scholar] [CrossRef] [PubMed]
- Favre, J.; Clancy, C.; Dowling, A.V.; Andriacchi, T.P. Modification of knee flexion angle has patient-specific effects on anterior cruciate ligament injury risk factors during jump landing. Am. J. Sports Med. 2016, 44, 1540–1546. [Google Scholar] [CrossRef] [PubMed]
- Trinler, U.; Hollands, K.; Jones, R.; Baker, R. A systematic review of approaches to modelling lower limb muscle forces during gait: Applicability to clinical gait analyses. Gait Posture 2018, 61, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Roelker, S.A.; Caruthers, E.J.; Baker, R.K.; Pelz, N.C.; Chaudhari, A.M.W.; Siston, R.A. Interpreting Musculoskeletal Models and Dynamic Simulations: Causes and Effects of Differences between Models. Ann. Biomed. Eng. 2017, 45, 2635–2647. [Google Scholar] [CrossRef] [PubMed]
- Bini, R.; Hume, P. Reproducibility of lower limb motion and forces during stationary submaximal pedalling using wearable motion tracking sensors. Sport. Biomech. 2020, 22, 1041–1062. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.B.; Õunpuu, S.; Tyburski, D.; Gage, J.R. A gait analysis data collection and reduction technique. Hum. Mov. Sci. 1991, 10, 575–587. [Google Scholar] [CrossRef]
- Delp, S.L.; Anderson, F.C.; Arnold, A.S.; Loan, P.; Habib, A.; John, C.T.; Guendelman, E.; Thelen, D.G. OpenSim: Open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 2007, 54, 1940–1950. [Google Scholar] [CrossRef]
- Hamner, S.R.; Seth, A.; Delp, S.L. Muscle contributions to propulsion and support during running. J. Biomech. 2010, 43, 2709–2716. [Google Scholar] [CrossRef]
- Rajagopal, A.; Dembia, C.L.; DeMers, M.S.; Delp, D.D.; Hicks, J.L.; Delp, S.L. Full-Body Musculoskeletal Model for Muscle-Driven Simulation of Human Gait. IEEE Trans. Biomed. Eng. 2016, 63, 2068–2079. [Google Scholar] [CrossRef]
- Delp, S.L.; Loan, J.P.; Hoy, M.G.; Zajac, F.E.; Topp, E.L.; Rosen, J.M. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans. Biomed. Eng. 1990, 37, 757–767. [Google Scholar] [CrossRef]
- Arnold, E.M.; Delp, S.L. Fibre operating lengths of human lower limb muscles during walking. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 1530–1539. [Google Scholar] [CrossRef] [PubMed]
- Thelen, D.G.; Anderson, F.C. Using computed muscle control to generate forward dynamic simulations of human walking from experimental data. J. Biomech. 2006, 39, 1107–1115. [Google Scholar] [CrossRef] [PubMed]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Growney, E.; Meglan, D.; Johnson, M.; Cahalan, T.; An, K.N. Repeated measures of adult normal walking using a video tracking system. Gait Posture 1997, 6, 147–162. [Google Scholar] [CrossRef]
- Trinler, U.; Schwameder, H.; Baker, R.; Alexander, N. Muscle force estimation in clinical gait analysis using AnyBody and OpenSim. J. Biomech. 2019, 86, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Arnold, E.M.; Hamner, S.R.; Seth, A.; Millard, M.; Delp, S.L. How muscle fiber lengths and velocities affect muscle force generation as humans walk and run at different speeds. J. Exp. Biol. 2013, 216, 2150–2160. [Google Scholar] [CrossRef] [PubMed]
- Lamontagne, A.; Malouin, F.; Richards, C.L.; Dumas, F. Mechanisms of disturbed motor control in ankle weakness during gait after stroke. Gait Posture 2002, 15, 244–255. [Google Scholar] [CrossRef] [PubMed]
- Yavuzer, G.; Öken, Ö.; Elhan, A.; Stam, H.J. Repeatability of lower limb three-dimensional kinematics in patients with stroke. Gait Posture 2008, 27, 31–35. [Google Scholar] [CrossRef]
- Caillet, A.H.; Phillips, A.T.M.; Carty, C.; Farina, D.; Modenese, L. Hill-type computational models of muscle-tendon actuators: A systematic review. bioRxiv 2022. [Google Scholar] [CrossRef]
- Borzelli, D.; Pastorelli, S.; Gastaldi, L. Model of the human arm stiffness exerted by two antagoniste muscles. Adv. Intell. Syst. Comput. 2017, 540, 285–292. [Google Scholar] [CrossRef]
- Borzelli, D.; Pastorelli, S.; Gastaldi, L. Determination of the human arm stiffness efficiency with a two antagonist muscles model. Mech. Mach. Sci. 2017, 47, 71–78. [Google Scholar] [CrossRef]
- Sartori, M.; Durandau, G.; Došen, S.; Farina, D. Robust simultaneous myoelectric control of multiple degrees of freedom in wrist-hand prostheses by real-time neuromusculoskeletal modeling. J. Neural Eng. 2018, 15. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Jiang, L.; Guo, C.; Huang, Q.; Yang, B.; Liu, H. SEMG-based estimation of human arm force using regression model. In Proceedings of the 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), Macau, China, 5–8 December 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Xiao, F.; Wang, Y.; He, L.; Wang, H.; Li, W.; Liu, Z. Motion Estimation From Surface Electromyogram Using Adaboost Regression and Average Feature Values. IEEE Access 2019, 7, 13121–13134. [Google Scholar] [CrossRef]
- Żuk, M.; Syczewska, M.; Pezowicz, C. Use of the surface electromyography for a quantitative trend validation of estimated muscle forces. Biocybern. Biomed. Eng. 2018, 38, 243–250. [Google Scholar] [CrossRef]
- Karimi, M.T.; Hemmati, F.; Mardani, M.A.; Sharifmoradi, K.; Hosseini, S.I.; Fadayevatan, R.; Esrafilian, A. Determination of the correlation between muscle forces obtained from OpenSim and muscle activities obtained from electromyography in the elderly. Phys. Eng. Sci. Med. 2021, 44, 243–251. [Google Scholar] [CrossRef]
- Giarmatzis, G.; Giannakou, E.; Gkrekidis, A.; Vadikolias, Κ.; Aggelousis, N. Clinical Validation of Static Optimization during Post Stroke Gait. In Proceedings of the 28th Congress of European Society of Biomechanics, Maastricht, The Netherlands, 9–12 July 2023; Available online: https://esbiomech.org/conference/wp-content/uploads/2023/ESB2023_Book_of_Abstracts.pdf (accessed on 23 January 2024).
Number | Age | Body Mass Index | |
---|---|---|---|
male | 6 | 68.2 (5.7) | 28.2 (2.7) |
female | 6 | 60.8 (10) | 31.5 (3.7) |
Muscle Group | MCCoef | Model | DOF | Optimisation | ||||
---|---|---|---|---|---|---|---|---|
P | NP | P | NP | P | NP | P | NP | |
Hip flexors | 0.95 (0.80) | 0.95 (0.80) | Raj (Ham) | Raj (Ham) | 311 (322) | 311 (322) | SO (SO) | SO (SO) |
Hip extensors | 0.96 (0.80) | 0.96 (0.75) | Ham (Raj) | Ham (Raj) | 331 (332) | 331 (332) | SO (CMC) | SO (CMC) |
Hip abductors | 0.97 (0.87) | 0.97 (0.81) | Ham (Raj) | Ham (Raj) | 311 (332) | 311 (332) | SO (CMC) | SO (CMC) |
Hip adductors | 0.93 (0.72) | 0.91 (0.71) | Raj (Ham) | Raj (Raj) | 311 (332) | 312 (331) | CMC (CMC) | CMC (SO) |
Hip internal rotators | 0.94 (0.79) | 0.95 (0.80) | Raj (Ham) | Raj (Ham) | 321 (332) | 321 (332) | SO (CMC) | SO (CMC) |
Hip external rotators | 0.94 (0.67) | 0.93 (0.68) | Ham (Raj) | Ham (Raj) | 311 (331) | 311 (331) | SO (SO) | SO (SO) |
Knee flexors | 0.95 (0.77) | 0.95 (0.74) | Ham (Raj) | Ham (Ham) | 332 (332) | 331 (321) | SO (CMC) | SO (CMC) |
Knee extensors | 0.96 (0.70) | 0.95 (0.78) | Ham (Ham) | Ham (Ham) | 322 (332) | 321 (332) | SO (CMC) | SO (CMC) |
Ankle dorsiflexors | 0.90 (0.64) | 0.85 (0.63) | Ham (Ham) | Ham (Ham) | 311 (332) | 311 (322) | SO (CMC) | SO (CMC) |
Ankle plantarflexors | 0.95 (0.77) | 0.95 (0.80) | Ham (Raj) | Ham (Raj) | 311 (332) | 311 (332) | SO (CMC) | SO (CMC) |
Muscle Group | MCCoef | DOF | ||
---|---|---|---|---|
P | NP | P | NP | |
Hip flexors | 0.94 (0.91) | 0.95 (0.89) | 311 (331) | 311 (332) |
Hip extensors | 0.96 (0.96) | 0.97 (0.94) | 331 (321) | 331 (332) |
Hip abductors | 0.92 (0.90) | 0.97 (0.95) | 311 (332) | 311 (332) |
Hip adductors | 0.97 (0.96) | 0.91 (0.85) | 322 (321) | 321 (332) |
Hip internal rotators | 0.94 (0.91) | 0.95 (0.91) | 311 (331) | 311 (332) |
Hip external rotators | 0.95 (0.91) | 0.93 (0.88) | 331 (321) | 311 (332) |
Knee flexors | 0.95 (0.91) | 0.96 (0.93) | 332 (321) | 331 (321) |
Knee extensors | 0.96 * (0.90) | 0.96 * (0.91) | 322 c,e (332) | 321 f (332) |
Ankle dorsiflexors | 0.90 * (0.75) | 0.85 * (0.76) | 311 f (312) | 311 d (322) |
Ankle plantarflexors | 0.95 (0.94) | 0.96 (0.95) | 311 (331) | 312 (331) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giarmatzis, G.; Fotiadou, S.; Giannakou, E.; Karakasis, E.; Vadikolias, K.; Aggelousis, N. Evaluating the Repeatability of Musculoskeletal Modelling Force Outcomes in Gait among Chronic Stroke Survivors: Implications for Contemporary Clinical Practice. Biomechanics 2024, 4, 333-345. https://doi.org/10.3390/biomechanics4020023
Giarmatzis G, Fotiadou S, Giannakou E, Karakasis E, Vadikolias K, Aggelousis N. Evaluating the Repeatability of Musculoskeletal Modelling Force Outcomes in Gait among Chronic Stroke Survivors: Implications for Contemporary Clinical Practice. Biomechanics. 2024; 4(2):333-345. https://doi.org/10.3390/biomechanics4020023
Chicago/Turabian StyleGiarmatzis, Georgios, Styliani Fotiadou, Erasmia Giannakou, Evangelos Karakasis, Konstantinos Vadikolias, and Nikolaos Aggelousis. 2024. "Evaluating the Repeatability of Musculoskeletal Modelling Force Outcomes in Gait among Chronic Stroke Survivors: Implications for Contemporary Clinical Practice" Biomechanics 4, no. 2: 333-345. https://doi.org/10.3390/biomechanics4020023
APA StyleGiarmatzis, G., Fotiadou, S., Giannakou, E., Karakasis, E., Vadikolias, K., & Aggelousis, N. (2024). Evaluating the Repeatability of Musculoskeletal Modelling Force Outcomes in Gait among Chronic Stroke Survivors: Implications for Contemporary Clinical Practice. Biomechanics, 4(2), 333-345. https://doi.org/10.3390/biomechanics4020023