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Abstract: The advancement in depth-sensor technology increased the potential for the clinical use of
markerless three-dimensional motion analysis (3DMA); however, the accurate quantification of depth-
sensor-based 3DMA on gait characteristics deviating from normal patterns is unclear. This study
investigated the concurrent validity of the measurements of compensatory movements measured
by depth-sensor-based 3DMA compared to those measured by marker-based 3DMA. We induced
swing-phase compensatory movements due to insufficient toe clearance by restricting unilateral ankle
and knee joint movements in healthy individuals. Thirty-two healthy young adults (nineteen males,
aged 20.4 ± 2.0 years, height 164.4 ± 9.8 cm, weight 60.0 ± 9.3 kg [average ± standard deviation])
walked the 6 m walkway in slow speed, very slow speed, and knee–ankle–foot orthosis (KAFO;
participants wore KAFOs on the right leg) conditions. Gait kinematics were measured with marker-
based and depth-sensor-based 3DMA systems. The intraclass correlation coefficient (ICC3,1) was
used to measure the relative agreement between depth-sensor-based and marker-based 3DMA and
demonstrated good or moderate validity for swing-phase compensatory movement measurement.
Additionally, the ICC2,1 measured absolute agreement between the systems and showed lower
validity than the ICC3,1. The measurement errors for contralateral vaulting, trunk lateral flexion, hip
hiking, swing-side hip abduction, and circumduction between instruments were 0.01 m, 1.30◦, 1.99◦,
2.37◦, and 1.53◦, respectively. Depth-sensor-based 3DMA is useful for determining swing-phase
compensatory movements, although the possibility of missing a slight measurement error of 1–2◦

must be considered.

Keywords: markerless motion capture; depth sensor; validity study; abnormal gait pattern; kinematic

1. Introduction

The decreased walking speed in post-stroke patients is attributed to functional impair-
ments, including motor paralysis, muscle weakness, spasticity, and sensory disturbance.
Stroke-induced decreased walking speed is a serious problem in daily life, causing reduced
quality of life and limited social participation [1–4]. Perry et al. revealed that the walking
speeds of household-, limited community-, and community-walker post-stroke patients are
<0.4, 0.4–0.8, and >0.8 m/s, respectively [5]. Similarly, Fulk et al. [6] indicated that the cutoff
value for discriminating between household and community walkers is a comfortable
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walking speed of 0.49 m/s. Additionally, 43.08% (190/441) of post-stroke patients are
household walkers, indicating that a large number of these patients are unable to walk
independently outside the home [6]. Therefore, improving walking speed is crucial in
post-stroke gait rehabilitation.

Gait training has helped improve walking speed. Treadmill gait training for community-
dwelling post-stroke patients has improved walking speed by increasing ankle plantar
flexion moment during the paretic stance phase [7]. Conversely, Patterson et al. [8] revealed
no improvement in step-length asymmetry and swing-phase time asymmetry between the
paretic and nonparetic sides despite walking speed improvement by gait training. This
result indicates that walking speed improvement is attributed not only to the enhance-
ment of functional impairment on the paretic side but also to an increased compensatory
movement by the nonparetic side [8]. Spatiotemporal parameter asymmetry during gait
was associated with increased energy costs during gait [9] and reduced bone density in
the femoral neck of the paretic side [10]. Therefore, the gait pattern assessment findings
should be considered when providing gait rehabilitation to post-stroke patients to improve
walking speed and prevent secondary disability.

Typical gait measures include lower limb circumduction, hip hiking, and trailing limb
angle [11–13]. Given that these measures are calculated from the relative distance of each
joint position and angle of each segment, quantifying the movement of body landmarks
during gait is necessary. The gold standard method for quantifying the movement of body
landmarks is marker-based optical three-dimensional motion analysis (3DMA), which uses
multiple infrared cameras to measure the 3D coordinates of reflective markers attached
to the body landmarks [11–13]. This method accurately measures the 3D coordinates of
the landmarks; thus, marker-based 3DMA evaluates detailed gait characteristics [11–13].
However, the need for expensive measurement equipment and the burden of attaching
numerous reflective markers to the body during measurements limit its use in clinical prac-
tice [14]. Advancement in depth-sensor technology for quantitative gait pattern assessment
can solve the aforementioned problem in clinical practice [15,16]. Azure Kinect, a typical
markerless 3DMA system based on depth-sensor technology, captures the contour and
surface irregularities of a subject using a depth sensor and uses machine learning-based
skeletal recognition technology to process this depth image. This process allows the estima-
tion of the 3D coordinates of body landmarks [17]. Thus, Azure Kinect is advantageous
for clinical implementation due to the elimination of the need to attach reflective markers,
although it may provide less accurate measurements compared to the marker-based 3DMA
system.

The concurrent validity of depth-sensor-based 3DMA, measured against marker-based
3DMA, for measuring spatiotemporal and kinematic parameters during steady-state gait in
healthy individuals has been previously investigated [18,19]. A good concurrent validity in
the depth-sensor-based assessment of spatiotemporal variables and each lower limb joint
angle in the sagittal plane, except for the ankle joint angle, was reported [19]. Conversely,
the accuracy of measurement of the deviation of abnormal gait patterns from normal
patterns using depth-sensor-based 3DMA is unclear. Decreased knee flexion and ankle
dorsiflexion during the paretic swing phase reduce toe clearance in post-stroke patients with
hemiparesis, which induces compensatory movements during the swing phase, such as hip
hiking and circumduction [20]. Although previous studies have assessed the compensatory
movements during the swing phase by marker-based 3DMA (Table 1), it is unclear whether
these parameters can be assessed by depth-sensor-based 3DMA. These abnormal gait
patterns were observed in healthy individuals during gait with knee joint motion restricted
by the use of an immobilizing orthosis. Zissmimopoulos et al. [21] have demonstrated that
pelvic hiking in healthy individuals with knee braces was significantly larger than that of
individuals without knee braces. Akbus et al. [22] have reported that the pelvic hiking
during the swing phase in healthy individuals wearing a knee–ankle–foot orthosis (KAFO)
was not different from that of post-stroke patients. Thus, we induced an abnormal gait
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pattern in healthy individuals by directing them to wear a KAFO to their unilateral lower
limbs and verified the concurrent validity of the depth-sensor-based assessment.

Table 1. Methods for assessing compensatory movements during the swing phase.

Study Participants Indicators of Compensatory Movements
during Swing Phase Equipment

Kerrigan et al. [11]
Post-stroke patients (n = 23),

healthy people
(n = 23)

Peak values during paretic swing phase
(coronal pelvic angle, transverse pelvic
rotation, hip adduction, hip abduction,
thigh adduction, and thigh abduction),

values at mid-swing (coronal pelvic angle,
transverse pelvic angle, bilateral coronal

hip angle, and affected thigh angle)

Marker-based 3DMA

Stanhope et al. [12] Post-stroke patients (n = 21) Peak paretic pelvic tilt angle, peak paretic
hip abduction angle, toe displacement Marker-based 3DMA

Tyrell et al. [13] Post-stroke patients (n = 22)

Hip hiking (the angle in the frontal plane
between the pelvis position in static

standing and the maximum deviation from
that position in the swing phase),

circumduction (maximum lateral difference
between the position of the heel marker in
the stance phase and the same heel marker
position in the swing phase immediately

following the stance phase)

Marker-based 3DMA

The present study aimed to investigate the concurrent validity of depth-sensor-based
3DMA for quantifying abnormal gait patterns during the swing phase as compared to a
reference marker-based 3DMA among healthy individuals. We hypothesized that depth-
sensor-based 3DMA would be effective in quantifying compensatory movements due to
insufficient toe clearance. Verifying that depth-sensor-based 3DMA is able to quantify
abnormal gait patterns during the swing phase with the equivalent accuracy as the marker-
based 3DMA would result in the development of rehabilitation practices based on objective
gait assessment.

2. Materials and Methods
2.1. Participants

The present study included 32 healthy young adults (Table 2) and excluded those with
musculoskeletal pain, previous lower extremity or trunk surgery, or neurological disease
history that could affect motor control.

Table 2. Participant information.

Sex (male, female) a 32 (19/13)
Age (years) b 20.4 ± 2.0
Height (cm) b 164.4 ± 9.8
Weight (kg) b 60.0 ± 9.3

a Number of participants; b mean ± standard deviation.

2.2. Experimental Procedure

Participants were instructed to walk a 6 m walkway five times in each of the slow speed,
very slow speed, and KAFO conditions. The cadence and step length were set at 90 bpm
and 350 mm, respectively, in the slow condition and 70 bpm and 250 mm, respectively, in
the very slow speed condition. We referenced the results of the spatiotemporal variables for
post-stroke patients to determine the cadence and step length for each condition [23]. Post-
stroke patients walking at speeds ranging from 0.5 to 1.4 km/h (0.14–0.39 m/s) exhibited a
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mean cadence and paretic step length of 72.72 steps/min and 24.64 cm, respectively. Con-
versely, those walking at speeds between 1.5 and 2.4 km/h (0.42–0.67 m/s) demonstrated
a mean cadence and paretic step length of 91.71 steps/min and 35.72 cm, respectively.
Participants in the KAFO condition wore a KAFO (Modular Leg Brace NEO, TOKUDA
Prosthetics and Orthotics Mfg Ltd., Kumamoto, Japan) on the right lower limb in addition
to performing the tasks in the very slow speed condition. The KAFO was set with the
knee and ankle joints in 0◦ extension and 0◦ dorsiflexion, respectively. Participants in the
cadence control were instructed to step according to an electronic metronome set for each
condition. The lengths of the first and second steps at the beginning of gait in the control
of step length were indicated by lines tape-marked on the floor, and participants were
instructed to maintain this step length. Data collections were conducted after practice using
the abovementioned settings before each condition to allow participants to familiarize
themselves with the task. After visually confirming that the participant was stepping onto
the electronic metronome, the examiner verbally asked the participant if they were familiar
with the task.

2.3. Data Collection

An eight-infrared-camera marker-based 3DMA system (MAC 3D, Motion Analysis
Corporation, Santa Rosa, CA, USA) and a depth-sensor-based 3DMA system (Azure Kinect,
Microsoft Corporation, Redmond, WA, USA) (ICpro-AK, Hu-tech Co., Ltd., Tama, Tokyo,
Japan) were used to simultaneously measure the 3D coordinates of the body landmarks
during gait (sampling frequencies of 100 and 30 Hz, respectively). The infrared cameras
were placed 3 to 5 m away from the walkway. In this setup, a 500 mm calibration wand
could be used for measurement, with a measurement error of <1 mm. The depth sensor was
placed 7 m from the starting position of walking, i.e., 1 m behind the endpoint (Figure 1).
The depth sensor was positioned in front of the participant, and the height from the floor
to the sensor was set at 0.7 m. Prior to the actual experiment, the skeletal recognition of the
depth sensor was not displayed when a 19 mm diameter reflective marker was attached to
the participant’s body, and the marker- and depth-sensor-based 3DMA systems were used
in the measurement. Contrarily, the use of 9.5 mm diameter reflective markers significantly
reduced the skeletal recognition error; thus, we used 9.5 mm diameter markers in the actual
experiment. Prior to the actual experiments, the 3DMA skeletal recognition using the depth
sensor started at a distance of approximately 5 m from the sensor. Given that artifacts were
observed immediately after skeletal recognition, the analysis section was set from 1.8 to
3.5 m, similar to that used by Ferraris et al. [24]. A depth sensor, set up according to the
instructions for the machine learning-based skeletal recognition technology produced by the
Microsoft Corporation, estimated and collected 19 body landmark positions during gait [25]
(Figure 2). In the marker-based 3DMA, 19 reflective markers were attached to the body
landmarks to calculate the trunk and lower limb kinematics (Figure 3). An experienced
physical therapist (K.H.) attached the reflective markers to the body landmarks.
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2.4. Failed Trial of Gait Analysis Using Depth-Sensor-Based 3DMA

Of the 32 participants, 10 were unable to walk under the KAFO condition because
they could not correctly wear the KAFO, which inhibited them from walking even a single
step. Hence, only 22 participants performed the gait trial in the KAFO condition, and
32 participants underwent the gait trial in the slow and very slow conditions. Failed trials
(i.e., unsuccessful trials) were observed in 9 (28%), 11 (34%), and 5 (23%) participants in
the slow, very slow, and KAFO conditions, respectively. The failed trials were defined as
those in which the coordinates of the body landmarks could not be measured by depth-
sensor-based 3DMA. After the measurement, the researchers (K.K. and K.H.) exported the
coordinate data to determine whether the trial was a failure or not.

2.5. Data Reduction and Analysis

The analysis used three or more successful measurement trials out of five trials in each
condition. A successful measurement trial was defined as a successful estimation of the 3D
coordinate values of 19 points by the depth-sensor-based 3DMA. MATLAB R2019b (The
Math Works, Inc., Natick, MA, USA) was used to calculate the subsequent data analysis
process.

The 3D coordinate data measured by the depth sensor were resampled from 30 to
100 Hz using cubic spline interpolation to align the sampling frequencies between pieces of
equipment. A zero-lag fourth-order Butterworth low-pass filter (cutoff frequency: 6 Hz)
was used to smooth the 3D coordinate data from both pieces of equipment.

The landmarks of the lower limbs (i.e., hip, knee, ankle, and toe) in marker-based
3DMA were defined from the 3D coordinates of the measured reflective markers according
to previous studies [26–28]. We analyzed the joint angles by projecting the 3D coordinates
onto a two-dimensional plane. The trunk flexion–extension and lateral flexion angles in
marker- and depth-sensor-based 3DMAs were identified as the angle of the longitudinal
axis of the trunk in the sagittal and coronal planes in the global coordinate system. Addi-
tionally, the trunk rotation angle was determined as the angle of the mediolateral axis of
the trunk in the transversal plane in the global coordinate system. The flexion–extension
(dorsiflexion–plantar flexion) angles of the hip, knee, and ankle joints were defined as the
angle between the longitudinal axes of the two segments adjacent to the reference joint in
the sagittal plane. The leg extension angle was calculated as the angle of the line connecting
the hip and ankle joint points in the global coordinate system in the sagittal plane [29].

The center of mass (CoM) was calculated using the 3D coordinate positions of the
shanks, thighs, and trunk measured by each piece of equipment and body segment inertia
parameters described elsewhere [30]. Foot information was removed from the CoM calcu-
lation because toe tracking on the depth sensor is generally very poor [19,31,32]. The CoM
velocity was obtained by applying a three-point differential equation to time series data of
CoM positions [30].

We analyzed the gait cycle of the right side, from the right initial contact (IC) to the
next ipsilateral IC. The IC in the right gait cycle was identified as the point where the right
ankle joint point is farthest forward from the pelvic center point [33,34]. The pelvic center
point in the marker-based 3DMA was defined as the midpoint between the left and right
posterior superior iliac spines. The toe-off (TO) was the point where the right ankle joint
point is farthest backward from the pelvic center point [33,34].

2.6. Spatiotemporal Variables

The spatiotemporal variables calculated based on previous reports were as follows [18,19]:
step width, right and left step lengths, stride length, cadence, gait velocity, stance phase
time, swing phase time, gait cycle time, %stance phase, %swing phase, step length ratio,
and swing time ratio.
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2.7. Trunk and Lower Limb Kinematics

The mean and peak-to-peak values of the trunk angle in each plane in the trunk
kinematics were calculated to determine the upper body sway and average posture during
a gait cycle. The maximum (i.e., maximum extension or plantar flexion), minimum (i.e.,
maximum flexion or dorsiflexion), and peak-to-peak values of each joint angle in the
sagittal plane in lower limb kinematics were calculated during a gait cycle. Additionally,
the maximum value of the leg extension angle during a gait cycle was calculated as an
indicator of propulsion [35].

2.8. Whole-Body Kinematics

The peak-to-peak value of the CoM position in the mediolateral and vertical axes was
calculated to determine the whole-body sway during a gait cycle. Additionally, the margin
of stability (MoS) was computed as the distance between the extrapolated CoM (XCoM)
positions and ankle joint (i.e., boundaries of the base of support) to determine the dynamic
stability during gait [36].

2.9. Definition of Abnormal Gait Patterns

The following five indices were calculated as abnormal gait patterns compensating
for toe clearance during the swing phase: contralateral vaulting, trunk lateral flexion to
the stance side, hip hiking, swing-side hip abduction, and circumduction. Contralateral
vaulting, which is the elevation due to the lower limb on the stance side, was determined by
subtracting the maximum height of the stance-side hip during 25–75% of the swing phase by
the time-averaged height of the ipsilateral hip during the pre-swing phase (Figure 4a) [37].
The trunk lateral flexion to the stance side was calculated by subtracting the maximum
trunk lateral flexion angle during 25–75% of the swing phase by the same time-averaged
angle during the pre-swing phase (Figure 4b) [37]. Hip hiking is a pelvic raising movement
on the swing limb due to stance-side hip abduction, which was determined by subtracting
the maximum pelvic angle (i.e., the line connecting the left–right hip joint) in the coronal
plane during 25–75% of the swing phase by the same time-averaged angle during the pre-
swing phase (Figure 4c) [11]. The swing-side hip abduction was calculated by subtracting
the maximum hip angle (i.e., angle of the thigh relative to the pelvis) in the coronal plane
during 25–75% of the swing phase by the same time-averaged angle during the pre-swing
phase (Figure 4d) [11,12]. Circumduction is the extent to which the lower extremity deviates
from its normal trajectory in the coronal plane as a result of swing-side hip abduction and
hip hiking [12], which was calculated by subtracting the maximum thigh angle in the
coronal plane (i.e., the angle of the longitudinal axis of the thigh in the coronal plane in the
global coordinate system) during 25–75% of the swing phase by the same time-averaged
angle during the pre-swing phase (Figure 4e) [12,13,38].

2.10. Statistical Analysis

We initially performed a statistical analysis on a combined sample that integrated
all three gait conditions to investigate the concurrent validity of the depth-sensor-based
3DMA in a sample that included individuals with and without compensatory movements
for insufficient toe clearance (i.e., a population with high variability). Then, we examined
the concurrent validity of the depth-sensor-based 3DMA in a sample of individuals with
compensatory movements for insufficient toe clearance (i.e., a population with low vari-
ability) by performing statistical analyses for only the KAFO condition. Similarly, statistical
analyses were conducted on the samples in each of the slow and very slow conditions
(Supplementary Tables S1–S4).
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The intraclass correlation coefficient (ICC) is the method for concurrent validation
between the two gait analysis systems [19,39]. ICC2,1 is an absolute agreement measure
for evaluating the presence of an agreement between the two systems without taking
into account the systematic errors, whereas ICC3,1 is a relative agreement measure for
evaluating the presence of an agreement between the two systems, taking into account
the systematic errors. Therefore, we used ICC2,1 to test whether the depth-sensor- and
marker-based 3DMA results are in perfect agreement, and ICC3,1 to test whether the depth-
sensor-based 3DMA is an alternative to the marker-based 3DMA when systematic errors
are taken into account. The ICC was classified as either poor (<0.50), moderate (0.50–0.74),
good (0.75–0.90), or excellent (>0.90) [39]. The differences between the marker- and depth-
sensor-based 3DMA were confirmed by performing paired t-tests. Additionally, the root
mean square error (RMSE) between the gait parameters calculated with the marker- and
depth-sensor-based 3DMA was identified [40]. IBM Statistical Package for the Social
Sciences Statistics (version 26.0, IBM Corporation, Armonk, NY, USA) was used for all
statistical analyses. In the present study, we chose “Intraclass correlation coefficient” under
[Analyze] > [Scale] > [Reliability Analysis]. For ICC2,1, the model was set to “Two-Way
Random” and the type to “Absolute Agreement”; for ICC3,1, these were “Two-Way Mixed”
and “Consistency”, respectively.
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3. Results
3.1. Walking Speed in Each Condition

The mean and standard deviation of walking speeds were 0.64 ± 0.12, 0.38 ± 0.08,
and 0.35 ± 0.07 m/s for the slow, very slow, and KAFO conditions, respectively, in the
marker-based 3DMA.

3.2. Concurrent Validity of Abnormal Gait Patterns

In the combined sample, the ICC3,1 of trunk lateral flexion and circumduction showed
good validity, ranging from 0.76 to 0.85, whereas that of contralateral vaulting, hip hiking,
and swing-side hip abduction showed moderate validity, ranging from 0.57 to 0.64 (Table 3).
Conversely, the ICC3,1 of hip hiking in the KAFO condition was 0.38, indicating poor
validity. The ICC2,1 results were generally slightly lower than the ICC3,1 results. The
measurement errors between instruments were 0.01 m, 1.30◦, 1.99◦, 2.37◦, and 1.53◦ for
contralateral vaulting, trunk lateral flexion, hip hiking, swing-side hip abduction, and
circumduction, respectively.

Table 3. Concurrent validity of abnormal gait pattern.

Variables Marker-Based
3DMA

Depth-Sensor-
Based 3DMA p-Value ICC2,1 (95% CI) ICC3,1 (95% CI) RMSE

Combined sample
Contralateral vaulting (m) 0.01 ± 0.01 0.01 ± 0.01 0.827 0.57 (0.37–0.72) 0.57 (0.37–0.71) 0.01

Trunk lateral flexion to
stance side (deg) 3.39 ± 2.42 2.59 ± 2.06 0.624 0.80 (0.55–0.90) 0.85 (0.77–0.90) 1.30

Hip hiking (deg) 3.97 ± 4.87 2.91 ± 2.45 0.103 0.59 (0.39–0.72) 0.64 (0.47–0.77) 1.99
Swing-side hip abduction

(deg) 2.47 ± 3.13 2.68 ± 1.92 0.498 0.59 (0.40–0.73) 0.59 (0.40–0.73) 2.37

Circumduction (deg) 4.01 ± 2.68 8.46 ± 2.57 <0.001 a 0.61 (0.26–0.78) 0.76 (0.63–0.84) 1.53
KAFO condition

Contralateral vaulting (m) 0.01 ± 0.01 0.01 ± 0.01 0.644 0.51 (0.08–0.79) 0.56 (0.12–0.82) 0.01
Trunk lateral flexion to

stance side (deg) 6.23 ± 2.31 4.82 ± 1.95 <0.001 a 0.66 (0.04–0.89) 0.79 (0.51–0.92) 1.43

Hip hiking (deg) 11.33 ± 1.90 5.80 ± 2.25 0.047 a 0.370.09–0.75) 0.380.11–0.72) 1.77
Swing-side hip abduction

(deg) 1.09 ± 1.90 1.31 ± 2.17 0.083 0.510.09–0.84) 0.83 (0.60–0.94) 2.67

Circumduction (deg) 6.82 ± 2.77 10.43 ± 3.29 0.016 a 0.650.03–0.89) 0.72 (0.38–0.89) 0.96

Mean ± standard deviation; 3DMA: three-dimensional motion analysis; ICC: intraclass correlation coefficient;
RMSE: root mean square error; KAFO: knee–ankle–foot orthosis; a significant difference between systems
(p < 0.05).

3.3. Concurrent Validity of Spatiotemporal Variables

The ICC2,1 and ICC3,1 for all spatiotemporal variables, except %stance time, %swing
time, and step length ratio, ranged from 0.77 to 0.99 in the combined sample, indi-
cating good or excellent validity (Table 4). The other parameters (i.e., %stance time,
%swing time, and step length ratio) demonstrated moderate validity (ICC2,1 = 0.58–0.71,
ICC3,1 = 0.63–0.71; Table 4).

3.4. Concurrent Validity of Trunk and Lower Limb Kinematics

The average hip, knee, and ankle joint angles in the sagittal plane during the gait
cycle evaluated by marker-based and depth-sensor-based 3DMA are shown in Figure 5.
The ICC3,1 for peak-to-peak angles of the trunk ranged from 0.76 to 0.85 in the combined
sample, indicating good validity (Table 5). In the mean angle of the trunk, the ICC3,1
for flexion–extension was good, and that for lateral flexion and rotation was moderate.
The ICC3,1 results revealed that the concurrent validity of the hip and knee joint-related
parameters and leg extension angle was good or excellent (ICC3,1 = 0.75–0.93), whereas the
measure of absolute agreement was varied (ICC2,1 = 0.23–0.93).
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Table 4. Concurrent validity of spatiotemporal variables.

Variables Marker-Based
3DMA

Depth-Sensor-
Based 3DMA p-Value ICC2,1 (95% CI) ICC3,1 (95% CI) RMSE

Combined sample
Step width (m) 0.18 ± 0.04 0.18 ± 0.04 0.213 0.89 (0.79–0.91) 0.87 (0.78–0.91) 0.02
Step length (m) Right 0.34 ± 0.08 0.31 ± 0.08 <0.001 a 0.93 (0.51–0.98) 0.96 (0.95–0.98) 0.03

Left 0.34 ± 0.08 0.32 ± 0.08 <0.001 a 0.93 (0.56–0.97) 0.96 (0.94–0.98) 0.03
Stride length (m) 0.75 ± 0.19 0.77 ± 0.19 <0.001 a 0.98 (0.96–0.99) 0.98 (0.98–0.99) 0.04

Cadence (steps/min) 78.17 ± 9.93 78.62 ± 10.20 0.146 0.97 (0.95–0.98) 0.97 (0.95–0.98) 2.40
Gait velocity (m/s) 0.47 ± 0.17 0.47 ± 0.17 0.013 a 0.99 (0.99–1.00) 0.99 (0.99–1.00) 0.01

Stance time (s) 1.03 ± 0.15 1.01 ± 0.15 0.222 0.93 (0.88–0.96) 0.94 (0.90–0.96) 0.05
Swing time (s) 0.52 ± 0.05 0.53 ± 0.05 0.477 0.80 (0.67–0.88) 0.82 (0.73–0.83) 0.03

Gait cycle time (s) 1.55 ± 0.19 1.54 ± 0.19 0.217 0.97 (0.96–0.98) 0.97 (0.95–0.98) 0.04
%Stance time (%) 66.5 ± 2.44 65.5 ± 2.33 <0.001 a 0.58 (0.34–0.74) 0.63 (0.45–0.76) 2.27
%Swing time (%) 33.5 ± 2.46 34.5 ± 2.37 <0.001 a 0.58 (0.34–0.74) 0.63 (0.43–0.76) 2.27
Step length ratio 0.99 ± 0.12 0.99 ± 0.15 0.705 0.71 (0.56–0.82) 0.71 (0.55–0.81) 0.10
Swing time ratio 1.06 ± 0.09 1.02 ± 0.10 0.021 a 0.71 (0.42–0.85) 0.77 (0.65–0.86) 0.08
KAFO condition
Step width (m) 0.22 ± 0.03 0.22 ± 0.05 0.087 0.87(0.67–0.95) 0.88 (0.71–0.96) 0.02

Step length (m) Right 0.28 ± 0.07 0.25 ± 0.06 <0.001 a 0.85 (0.17–0.96) 0.93 (0.81–0.97) 0.04
Left 0.29 ± 0.06 0.28 ± 0.05 <0.001 a 0.93 (0.80–0.97) 0.94 (0.84–0.98) 0.03

Stride length (m) 0.62 ± 0.13 0.63 ± 0.11 0.121 0.97 (0.92–0.99) 0.97 (0.92–0.99) 0.03
Cadence (steps/min) 70.12 ± 1.54 71.03 ± 2.38 0.124 0.350.09–0.70) 0.740.11–0.72) 2.42
Gait velocity (m/s) 0.35 ± 0.07 0.35 ± 0.06 0.063 0.94 (0.90–0.99) 0.97 (0.92–0.99) 0.02

Stance time (s) 1.14 ± 0.05 1.13 ± 0.06 0.251 0.360.10–0.71) 0.370.12–0.71) 0.06
Swing time (s) 0.57 ± 0.05 0.57 ± 0.04 0.930 0.72 (0.38–0.89) 0.72 (0.37–0.86) 0.04

Gait cycle time (s) 1.71 ± 0.04 1.70 ± 0.05 0.180 0.350.11–0.70) 0.360.13–0.71) 0.04
%Stance time (%) 66.7 ± 2.60 66.3 ± 2.40 0.518 0.63 (0.22–0.84) 0.62 (0.21–0.84) 2.26
%Swing time (%) 33.3 ± 2.60 33.7 ± 2.40 0.518 0.63 (0.22–0.85) 0.62 (0.21–0.84) 2.26
Step length ratio 0.97 ± 0.15 0.91 ± 0.16 0.027 a 0.75 (0.38–0.91) 0.79 (0.52–0.92) 0.12
Swing time ratio 1.16 ± 0.11 1.12 ± 0.11 0.061 0.66 (0.28–0.86) 0.69 (0.35–0.88) 0.10

Mean ± standard deviation; 3DMA: three-dimensional motion analysis; ICC: intraclass correlation coefficients;
RMSE: root mean square error; KAFO: knee–ankle–foot orthosis; a significant difference between systems
(p < 0.05).
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Table 5. Concurrent validity of the trunk and lower limb kinematics.

Variables Marker-Based
3DMA

Depth-Sensor-
Based 3DMA p-Value ICC2,1 (95% CI) ICC3,1 (95% CI) RMSE

Combined sample
Trunk angle (deg)

Peak-to-peak
Flexion–extension 3.78 ± 1.77 4.73 ± 1.85 <0.001 a 0.74 (0.22–0.90) 0.85 (0.75–0.90) 1.49

Lateral flexion 5.89 ± 3.37 5.96 ± 2.13 0.099 0.76 (0.63–0.86) 0.76 (0.63–0.84) 1.89
Rotation 10.82 ± 3.45 13.62 ± 4.30 <0.001 a 0.79 (0.01–0.85) 0.79 (0.68–0.87) 3.77

Mean
Flexion–extension 3.20 ± 3.20 2.70 ± 2.43 0.086 0.270.03–0.65) 0.85 (0.76–0.91) 6.10

Lateral flexion 0.71 ± 1.41 0.28 ± 1.06 <0.001 a 0.65 (0.44–0.77) 0.69 (0.53–0.80) 1.08
Rotation −0.61 ± 3.87 −0.90 ± 3.17 0.386 0.73 (0.58–0.83) 0.72 (0.58–0.83) 2.63

Hip joint angle [+extension/−flexion] (deg)
Maximum 15.89 ± 4.81 9.23 ± 4.63 <0.001 a 0.40 (0.07–0.75) 0.80 (0.69–0.87) 7.42
Minimum −13.17 ± 4.94 −23.76 ± 4.46 <0.001 a 0.23 (0.03–0.60) 0.80 (0.70–0.88) 11.00

Peak-to-peak 29.05 ± 5.33 32.99 ± 6.23 0.092 0.72 (0.06–0.93) 0.93 (0.89–0.96) 4.45
Knee joint angle [+extension/−flexion] (deg)

Maximum −1.33 ± 4.18 −6.70 ± 2.75 <0.001 a 0.620.07–0.86) 0.75 (0.69–0.80) 6.24
Minimum −40.04 ± 18.63 −39.86 ± 15.90 0.522 0.93 (0.83–0.95) 0.92 (0.88–0.95) 5.93

Peak-to-peak 38.71 ± 20.53 33.90 ± 15.10 <0.001 a 0.87 (0.70–0.93) 0.90 (0.84–0.94) 8.52
Ankle joint angle [+plantar flexion/−dorsal flexion] (deg)

Maximum 28.05 ± 7.09 64.09 ± 33.10 <0.001 a 0.03 (–0.12–0.15) 0.05 (–0.30–0.20) 49.67
Minimum 6.61 ± 3.87 10.80 ± 8.56 <0.001 a 0.05(–0.12–0.10) 0.27 (–0.49–0.03) 10.81

Peak-to-peak 21.44 ± 8.06 53.29 ± 36.56 <0.001 a 0.43 (0.02–0.67) 0.57 (–0.37–0.71) 49.63
Maximum leg extension angle (deg) 19.82 ± 3.89 17.75 ± 3.74 <0.001 a 0.81 (0.03–0.93) 0.92 (0.87–0.95) 2.56

KAFO condition
Trunk angle (deg)

Peak-to-peak
Flexion–extension 5.86 ± 1.94 7.00 ± 1.48 <0.001 a 0.71 (0.03–0.91) 0.85 (0.64–0.94) 1.47

Lateral flexion 10.31 ± 2.50 8.42 ± 1.65 <0.001 a 0.570.07–0.81) 0.69 (0.32–0.87) 1.89
Rotation 13.37 ± 3.84 15.92 ± 4.43 <0.001 a 0.69 (0.08–0.90) 0.81 (0.54–0.93) 3.77

Mean
Flexion–extension 1.10 ± 3.40 4.67 ± 0.93 0.043 a 0.300.04–0.70) 0.83 (0.59–0.93) 6.02

Lateral flexion 1.56 ± 1.76 0.93 ± 1.30 0.048 a 0.67 (0.30–0.87) 0.71 (0.36–0.88) 1.34
Rotation −1.98 ± 3.91 −2.50 ± 3.13 0.213 0.90 (0.74–0.96) 0.90 (0.74–0.96) 1.68

Hip joint angle [+extension/−flexion] (deg)
Maximum 14.91 ± 4.55 8.58 ± 3.79 <0.001 a 0.360.08–0.75) 0.75 (0.43–0.90) 6.99
Minimum −12.18 ± 5.13 −21.86 ± 4.55 <0.001 a 0.270.05–0.68) 0.76 (0.46–0.91) 10.24

Peak-to-peak 27.09 ± 3.75 30.44 ± 4.41 0.027 a 0.680.08–0.92) 0.90 (0.04–0.96) 3.84
Knee joint angle [+extension/−flexion] (deg)

Maximum −4.59 ± 4.14 −5.25 ± 3.21 <0.001 a 0.460.02–0.76) 0.450.02–0.75) 3.95
Minimum −12.09 ± 4.94 −16.16 ± 4.29 <0.001 a 0.340.08–0.68) 0.450.02–0.76) 6.34

Peak-to-peak 7.49 ± 1.69 10.91 ± 2.83 <0.001 a 0.030.02–0.34) 0.070.41–0.52) 4.67
Ankle joint angle [+plantar flexion/−dorsal flexion] (deg)

Maximum 21.30 ± 2.09 64.04 ± 25.50 0.033 a 0.020.12–0.28) 0.050.42–0.51) 49.46
Minimum 9.52 ± 1.84 4.42 ± 7.69 0.021 a 0.020.09–0.16) 0.060.52–0.41) 9.52

Peak-to-peak 11.78 ± 1.99 59.62 ± 29.52 <0.001 a 0.020.47–0.49) 0.020.45–0.46) 55.88
Maximum leg extension angle (deg) 17.78 ± 2.85 17.75 ± 3.74 <0.001 a 0.640.09–0.90) 0.85 (0.62–0.94) 2.70

Mean ± standard deviation; 3DMA: three-dimensional motion analysis; ICC: intraclass correlation coefficient;
RMSE: root mean square error; KAFO: knee–ankle–foot orthosis; a significant difference between systems
(p < 0.05).

3.5. Concurrent Validity of Whole-Body Kinematics

The ICC2,1 and ICC3,1 for the peak-to-peak value of CoM movement in the medio-
lateral direction ranged from 0.94 to 0.95 in the combined sample, indicating excellent
validity (Table 6), whereas the concurrent validity of the peak-to-peak value of CoM move-
ment in the vertical direction was poor. The ICC3,1 of the MoS in the mediolateral and
anteroposterior directions was 0.75–0.77, indicating good validity (Table 6).
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Table 6. Concurrent validity of whole-body kinematics.

Variables Marker-Based
3DMA

Depth-Sensor-
Based 3DMA p-Value ICC2,1 (95% CI) ICC3,1 (95% CI) RMSE

Combined sample
Peak-to-peak value of center of mass movement (m)

Mediolateral 0.08 ± 0.03 0.08 ± 0.02 0.063 0.94 (0.91–0.97) 0.95 (0.91–0.97) 0.01
Vertical 0.05 ± 0.02 0.03 ± 0.01 <0.001 a 0.010.15–0.17) 0.110.26–0.26) 0.03

Mediolateral margin of stability (m) 0.09 ± 0.02 0.12 ± 0.03 <0.001 a 0.440.10–0.76) 0.77 (0.64–0.86) 0.04
Anteroposterior margin of stability (m) −0.02 ± 0.03 0.08 ± 0.05 <0.001 a 0.210.04–0.56) 0.75 (0.61–0.84) 0.10

KAFO condition
Peak-to-peak value of center of mass movement (m)

Mediolateral 0.11 ± 0.02 0.11 ± 0.02 0.392 0.84 (0.55–0.94) 0.87 (0.70–0.94) 0.01
Vertical 0.05 ± 0.02 0.03 ± 0.01 0.013 a 0.100.38–0.30) 0.140.57–0.35) 0.03

Mediolateral margin of stability (m) 0.11 ± 0.03 0.14 ± 0.03 <0.001 a 0.460.11–0.80) 0.72 (0.38–0.89) 0.04
Anteroposterior margin of stability (m) −0.02 ± 0.02 0.06 ± 0.03 <0.001 a 0.070.04–0.31) 0.410.07–0.74) 0.09

Mean ± standard deviation; 3DMA: three-dimensional motion analysis; ICC: intraclass correlation coefficient;
RMSE: root mean square error; KAFO: knee–ankle–foot orthosis; a significant difference between systems
(p < 0.05).

4. Discussion

The present study investigated the validity of the quantification of abnormal gait
patterns (i.e., compensatory movements due to insufficient toe clearance) by depth-sensor-
based 3DMA, as compared to marker-based 3DMA. The results of our study revealed
good validity for trunk lateral flexion to the stance side and circumduction and moderate
validity for contralateral vaulting, hip hiking, and swing-side hip abduction (Figure 6). The
measurement error between instruments ranged from 1.30◦ to 2.37◦ and was 0.01 m for
contralateral vaulting. Most previous studies have validated depth-sensor-based 3DMA
for lower limb joint angles in the sagittal plane, which revealed measurement errors of
4.1–11.3◦, 5.3–8.6◦, 9.14–38.6◦, and 1.11–5.12◦ for maximum hip flexion, hip extension,
knee joint flexion, and knee joint extension angles, respectively, during gait [40,41]. The
measurement error of abnormal gait patterns in the coronal plane reported in this study
is very small compared to the results of previous studies. This is not a surprising result,
because the depth-sensor-based 3DMA estimates the 3D coordinate values of the body
landmarks using the contour and depth information of a subject captured from the front. In
a previous study investigating the validity of depth-sensor-based 3DMA for estimating hip
motion in the coronal plane, a measurement error between devices of 12.5◦ in hip abduction
angle throughout a gait cycle was reported [42]. The present study used Azure Kinect, the
successor to Kinect v2 used in the previous study. The smaller measurement error in the
abnormal gait pattern measures in the coronal plane in the present study, as compared to
that of the previous study, may indicate the higher performance of Azure Kinect’s body
landmark estimation. To the best of our knowledge, this is the first study to reveal that
depth-sensor-based 3DMA is useful for quantifying compensatory movements due to insuf-
ficient toe clearance during the swing phase of gait. However, the circumduction evaluated
by depth-sensor-based 3DMA was significantly higher than that by marker-based-3DMA.
It must be considered that depth-sensor-based 3DMA estimates body landmarks rather
than measuring them; thus, it does not perfectly match the systems that actually measure
marker locations.
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The ICC3,1 demonstrated good or excellent validity for most of the spatiotemporal
and kinematic variables, supporting the results of previous studies [18,19,32,43]. The
measurement errors of the angles of the trunk and lower extremity joints, excluding the
ankle joint, ranged from 1.08◦ to 11.0◦, which was equal to or less than the results of
the aforementioned previous studies [40,41]. Additionally, comparisons between systems
showed significantly shorter step lengths, significantly longer %swing phase time, and
significantly greater hip and knee flexion for the depth-sensor-based 3DMA than for the
marker-based 3DMA. When comparing the results between the marker- and depth-sensor-
based 3DMA, we should consider the measurement error. Only the peak-to-peak value of
the CoM movement in the vertical direction exhibited poor validity, which is inconsistent
with the result of a previous study [24]. Ferraris et al. [24] revealed a highly valid CoM
vertical sway, but they defined the CoM position as the midpoint between the left and
right hip joints. The CoM is generally calculated from the position and mass of each body
segment, and the CoM position described in previous studies was based on a simplified
definition. Methodological differences may have caused discrepancies between the results
of the previous study and this study. Our study results reveal a greater measurement
error of kinematic variables in the sagittal plane than in the coronal plane. Therefore, the
peak-to-peak value of the vertical CoM movement may have had less validity because the
flexion–extension movement of each joint in the sagittal plane primarily influenced it.

The statistical analysis for the combined sample revealed moderate validity of the
assessment for hip hiking using depth-sensor-based 3DMA, but it is important to consider
that the greater the variability of the data in the collected sample, the higher the reliability
coefficient [44]. Taking this issue into account, the present study conducted a statistical
analysis for only the KAFO condition, which demonstrated compensatory movement due
to insufficient toe clearance during the swing phase. Hence, the validity of the hip hiking
measurement was poor. The hip hiking evaluated by the marker-based 3DMA revealed
11.30◦ ± 1.90◦ (mean ± standard deviation) and 3.97◦ ± 4.87◦ in the KAFO condition
and combined sample, respectively. Therefore, the differences in the standard deviations
between conditions may affect the validity results. However, a previous study reported hip
hiking of 8.7◦ ± 4.3◦ in 23 post-stroke patients [11], which is comparable to the standard
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deviation of hip hiking in the combined sample of our study. The depth-sensor-based
3DMA may be useful for identifying the compensatory movements during the swing phase,
including hip hiking, in post-stroke patients, considering the results of the present study
and previous studies, despite the possibility of missing a small difference of approximately
2◦ of measurement error.

The high validity of depth-sensor-based 3DMA, i.e., markerless 3DMA, for quantifying
compensatory movements may accelerate the accumulation of data on gait characteristics
in clinical practice. Kinematic and neurological factors reportedly cause compensatory
movements, including circumduction and hip hiking, in post-stroke patients [45,46]. In-
adequate knee joint flexion during the pre-swing phase of the paretic side is the trigger in
the case of kinetic factors, whereas the co-activation of the gluteus medius, which occurs
simultaneously with an abnormal stretch reflex in the rectus femoris muscle, is the trigger
in the case of neurological factors. As described previously, only a few longitudinal data
provide a basis for the effective interventions for compensatory movements during the
swing phase in post-stroke patients, despite the partially clarified triggers of compensatory
movements among these patients. Accumulating changes in compensatory movements
due to insufficient toe clearance before and after a rehabilitation intervention using depth-
sensor-based 3DMA may be useful in providing effective gait rehabilitation for post-stroke
patients.

The present study has several limitations. First, we defined cases in which body
landmark estimation could not be conducted using depth-sensor-based 3DMA as failed
trials and excluded them from the data analysis. Prior to the actual experiment, we noticed
that the errors in skeletal estimation occur when the reflective markers are large and
numerous. Thus, we adjusted the number and size of the markers as described in the
Materials and Methods section. Despite this countermeasure, several failed trials still
occurred. Unfortunately, our results revealed no reason for the failure. Although we
expect the failure rate to decrease in clinical settings where reflective markers are not
attached, further investigation is still required to determine the interfering factors, such as
the participants’ body types, wear, ambient lighting, and other environmental conditions.
Second, the effect of clothing on determining the validity of depth-sensor-based 3DMA
was not considered. All of our study participants wore spandex clothing, which may
have increased the study’s validity. Restricting clothing is necessary when conducting
gait assessment with a depth-sensor-based 3DMA in clinical practice. Third, the effect
of the presence or absence of a caregiver on 3D coordinate data by depth-sensor-based
3DMA has not been investigated. This study captured and analyzed only the participants
undergoing gait assessment. Placing a caregiver near the patient is often necessary to
prevent falls when the depth-sensor-based 3DMA is used in clinical practice. Therefore,
investigating the association of the presence of a caregiver with difficulties in measuring
3D coordinate data during gait is essential. Fourth, the present study did not include
post-stroke patients. However, depth-sensor-based 3DMA was effective in quantifying
compensatory movements during the swing phase, as we examined the validity based
on the abnormal gait patterns during the swing phase induced by the KAFO. Finally, this
study did not consider simultaneous capture from the sagittal plane. Combining imaging
from the sagittal plane may solve the problem of ankle joint motion evaluation, which was
very inaccurate in our study.

5. Conclusions

We revealed the high concurrent validity of quantifying compensatory movements
due to insufficient toe clearance using a depth-sensor-based 3DMA. The gait assessment
using a depth-sensor-based 3DMA can potentially provide a rehabilitation program based
on the objective evaluation of gait in clinical practice.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/biomechanics4030028/s1: Table S1: The concurrent validity of
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the abnormal gait patterns in the slow and very slow conditions, Table S2: The concurrent validity of
the spatiotemporal variables in the slow and very slow conditions, Table S3: The concurrent validity
of the trunk and lower limb kinematics in the slow and very slow conditions, Table S4: The concurrent
validity of the whole-body kinematics in the slow and very slow conditions.

Author Contributions: Conceptualization, K.K., S.M., D.N., M.K., H.H., T.M. (Toshihiro Miwa), T.M.
(Toru Maeda), T.N., S.N. and K.H.; Data curation, K.K., D.N., T.M. (Toshihiro Miwa), and K.H.; Formal
analysis, K.K. and K.H.; Funding acquisition, K.H.; Investigation, K.K. and K.H.; Methodology, K.K.,
S.M., D.N., M.K., H.H., T.M. (Toshihiro Miwa), T.M. (Toru Maeda), T.N., S.N. and K.H.; Project
administration, K.K. and K.H.; Resources, K.H.; Software, K.K. and K.H.; Supervision, S.N. and
K.H.; Validation, K.K. and K.H.; Visualization, K.K. and K.H.; Writing—original draft, K.K. and K.H.;
Writing—review and editing, K.K., S.M., D.N., M.K., H.H., T.M. (Toshihiro Miwa), T.M. (Toru Maeda),
T.N., S.N. and K.H. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by JSPS KAKENHI [Grant Number 22K11443].

Institutional Review Board Statement: The study was conducted in accordance with the guidelines
stipulated in the Declaration of Helsinki and approved by the Ethics Committee of Kumamoto Health
Science University (protocol code: 22043; date of approval: 7 February 2023).

Informed Consent Statement: Informed consent was obtained from all participants involved in the
study. Written informed consent was obtained from the participants to publish this paper.

Data Availability Statement: Data are available on request due to privacy and ethical restrictions.

Acknowledgments: We would like to thank TOKUDA Prosthetics and Orthotics Mfg Ltd. for lending
us the Modular Leg Brace NEO.

Conflicts of Interest: The authors have received KAFO (Modular Leg Brace NEO) on loan from
TOKUDA Prosthetics and Orthotics Mfg Ltd.

References
1. Van de Port, I.G.; Kwakkel, G.; Lindeman, E. Community ambulation in patients with chronic stroke: How is it related to gait

speed? J. Rehabil. Med. 2008, 40, 23–27. [CrossRef] [PubMed]
2. Thilarajah, S.; Mentiplay, B.F.; Bower, K.J.; Tan, D.; Pua, Y.H.; Williams, G.; Koh, G.; Clark, R.A. Factors associated with post-stroke

physical activity: A systematic review and meta-analysis. Arch. Phys. Med. Rehabil. 2018, 99, 1876–1889. [CrossRef] [PubMed]
3. Weerdesteyn, V.; de Niet, M.; van Duijnhoven, H.J.; Geurts, A.C. Falls in individuals with stroke. J. Rehabil. Res. Dev. 2008, 45,

1195–1213. [CrossRef] [PubMed]
4. Michael, K.M.; Allen, J.K.; Macko, R.F. Reduced ambulatory activity after stroke: The role of balance, gait, and cardiovascular

fitness. Arch. Phys. Med. Rehabil. 2005, 86, 1552–1556. [CrossRef] [PubMed]
5. Perry, J.; Garrett, M.; Gronley, J.K.; Mulroy, S.J. Classification of walking handicap in the stroke population. Stroke 1995, 26,

982–989. [CrossRef] [PubMed]
6. Fulk, G.D.; He, Y.; Boyne, P.; Dunning, K. Predicting home and community walking activity poststroke. Stroke 2017, 48, 406–411.

[CrossRef] [PubMed]
7. Hsiao, H.; Awad, L.N.; Palmer, J.A.; Higginson, J.S.; Binder-Macleod, S.A. Contribution of paretic and nonparetic limb peak

propulsive forces to changes in walking speed in individuals poststroke. Neurorehabil. Neural Repair 2016, 30, 743–752. [CrossRef]
[PubMed]

8. Patterson, K.K.; Mansfield, A.; Biasin, L.; Brunton, K.; Inness, E.L.; McIlroy, W.E. Longitudinal changes in poststroke spatiotempo-
ral gait asymmetry over inpatient rehabilitation. Neurorehabil. Neural Repair 2015, 29, 153–162. [CrossRef] [PubMed]

9. Awad, L.N.; Palmer, J.A.; Pohlig, R.T.; Binder-Macleod, S.A.; Reisman, D.S. Walking speed and step length asymmetry modify the
energy cost of walking after stroke. Neurorehabil. Neural Repair 2015, 29, 416–423. [CrossRef]

10. Jørgensen, L.; Crabtree, N.J.; Reeve, J.; Jacobsen, B.K. Ambulatory level and asymmetrical weight bearing after stroke affects bone
loss in the upper and lower part of the femoral neck differently: Bone adaptation after decreased mechanical loading. Bone 2000,
27, 701–707. [CrossRef]

11. Kerrigan, D.C.; Frates, E.P.; Rogan, S.; Riley, P.O. Hip hiking and circumduction: Quantitative definitions. Am. J. Phys. Med.
Rehabil. 2000, 79, 247–252. [CrossRef]

12. Stanhope, V.A.; Knarr, B.A.; Reisman, D.S.; Higginson, J.S. Frontal plane compensatory strategies associated with self-selected
walking speed in individuals post-stroke. Clin. Biomech. 2014, 29, 518–522. [CrossRef]

13. Tyrell, C.M.; Roos, M.A.; Rudolph, K.S.; Reisman, D.S. Influence of systematic increases in treadmill walking speed on gait
kinematics after stroke. Phys. Ther. 2011, 91, 392–403. [CrossRef] [PubMed]

14. Mukaino, M.; Ohtsuka, K.; Tanikawa, H.; Matsuda, F.; Yamada, J.; Itoh, N.; Saitoh, E. Clinical-oriented three-dimensional gait
analysis method for evaluating gait disorder. J. Vis. Exp. 2018, 133, e57063. [CrossRef]

https://doi.org/10.2340/16501977-0114
https://www.ncbi.nlm.nih.gov/pubmed/18176733
https://doi.org/10.1016/j.apmr.2017.09.117
https://www.ncbi.nlm.nih.gov/pubmed/29056502
https://doi.org/10.1682/JRRD.2007.09.0145
https://www.ncbi.nlm.nih.gov/pubmed/19235120
https://doi.org/10.1016/j.apmr.2004.12.026
https://www.ncbi.nlm.nih.gov/pubmed/16084807
https://doi.org/10.1161/01.STR.26.6.982
https://www.ncbi.nlm.nih.gov/pubmed/7762050
https://doi.org/10.1161/STROKEAHA.116.015309
https://www.ncbi.nlm.nih.gov/pubmed/28057807
https://doi.org/10.1177/1545968315624780
https://www.ncbi.nlm.nih.gov/pubmed/26721869
https://doi.org/10.1177/1545968314533614
https://www.ncbi.nlm.nih.gov/pubmed/24826888
https://doi.org/10.1177/1545968314552528
https://doi.org/10.1016/S8756-3282(00)00374-4
https://doi.org/10.1097/00002060-200005000-00006
https://doi.org/10.1016/j.clinbiomech.2014.03.013
https://doi.org/10.2522/ptj.20090425
https://www.ncbi.nlm.nih.gov/pubmed/21252308
https://doi.org/10.3791/57063


Biomechanics 2024, 4 426

15. Clark, R.A.; Vernon, S.; Mentiplay, B.F.; Miller, K.J.; McGinley, J.L.; Pua, Y.H.; Paterson, K.; Bower, K.J. Instrumenting gait
assessment using the Kinect in people living with stroke: Reliability and association with balance tests. J. Neuroeng. Rehabil. 2015,
12, 15. [CrossRef] [PubMed]

16. Latorre, J.; Colomer, C.; Alcañiz, M.; Llorens, R. Gait analysis with the Kinect v2: Normative study with healthy individuals
and comprehensive study of its sensitivity, validity, and reliability in individuals with stroke. J. Neuroeng. Rehabil. 2019, 16, 97.
[CrossRef]

17. Lachat, E.; Macher, H.; Landes, T.; Grussenmeyer, P. Assessment and calibration of a RGB-D camera (Kinect v2 Sensor) towards a
potential use for close-range 3D modeling. Remote Sens. 2015, 7, 13070–13097. [CrossRef]

18. Usami, T.; Nishida, K.; Iguchi, H.; Okumura, T.; Sakai, H.; Ida, R.; Horiba, M.; Kashima, S.; Sahashi, K.; Asai, H.; et al. Evaluation
of lower extremity gait analysis using Kinect V2® tracking system. SICOT J. 2022, 8, 27. [CrossRef]

19. Eltoukhy, M.; Oh, J.; Kuenze, C.; Signorile, J. Improved kinect-based spatiotemporal and kinematic treadmill gait assessment.
Gait Posture 2017, 51, 77–83. [CrossRef]

20. Matsuda, F.; Mukaino, M.; Ohtsuka, K.; Tanikawa, H.; Tsuchiyama, K.; Teranishi, T.; Kanada, Y.; Kagaya, H.; Saitoh, E.
Biomechanical factors behind toe clearance during the swing phase in hemiparetic patients. Top. Stroke Rehabil. 2017, 24, 177–182.
[CrossRef]

21. Zissimopoulos, A.; Fatone, S.; Gard, S.A. Biomechanical and energetic effects of a stance-control orthotic knee joint. J. Rehabil. Res.
Dev. 2007, 44, 503–513. [CrossRef] [PubMed]

22. Akbas, T.; Prajapati, S.; Ziemnicki, D.; Tamma, P.; Gross, S.; Sulzer, J. Hip circumduction is not a compensation for reduced knee
flexion angle during gait. J. Biomech. 2019, 87, 150–156. [CrossRef] [PubMed]

23. Wang, Y.; Mukaino, M.; Ohtsuka, K.; Otaka, Y.; Tanikawa, H.; Matsuda, F.; Tsuchiyama, K.; Yamada, J.; Saitoh, E. Gait
characteristics of post-stroke hemiparetic patients with different walking speeds. Int. J. Rehabil. Res. 2020, 43, 69–75. [CrossRef]

24. Ferraris, C.; Cimolin, V.; Vismara, L.; Votta, V.; Amprimo, G.; Cremascoli, R.; Galli, M.; Nerino, R.; Mauro, A.; Priano, L.
Monitoring of gait parameters in post-stroke individuals: A feasibility study using RGB-D sensors. Sensors 2021, 21, 5945.
[CrossRef] [PubMed]

25. Learn Microsoft. Available online: https://learn.microsoft.com/ja-jp/azure/kinect-dk/body-joints (accessed on 14 May 2024).
26. Kurabayashi, J.; Mochimaru, M.; Kouchi, M. Validation of the estimation methods for the hip joint center. J. Soc. Biomech. 2003, 27,

28–36. [CrossRef]
27. Tokuda, K.; Anan, M.; Takahashi, M.; Sawada, T.; Tanimoto, K.; Kito, N.; Shinkoda, K. Biomechanical mechanism of lateral trunk

lean gait for knee osteoarthritis patients. J. Biomech. 2018, 66, 10–17. [CrossRef]
28. Kagami, S.; Mochimaru, M.; Ehara, Y.; Miyata, N.; Nishiwaki, K.; Kanade, T.; Inoue, H. Measurement and comparison of

humanoid H7 walking with human being. Robot. Auton. Syst. 2004, 48, 177–187. [CrossRef]
29. Mizuta, N.; Hasui, N.; Kai, T.; Inui, Y.; Sato, M.; Ohnishi, S.; Taguchi, J.; Nakatani, T. Characteristics of limb kinematics in the gait

disorders of post-stroke patients. Sci. Rep. 2024, 14, 3082. [CrossRef] [PubMed]
30. Winter, D.A.; Quanbury, A.O.; Hobson, D.A.; Sidwall, H.G.; Reimer, G.; Trenholm, B.G.; Steinke, T.; Shlosser, H. Kinematics of

normal locomotion—A statistical study based on T.V. data. J. Biomech. 1974, 7, 479–486. [CrossRef]
31. Clark, R.A.; Bower, K.J.; Mentiplay, B.F.; Paterson, K.; Pua, Y.H. Concurrent validity of the Microsoft Kinect for assessment of

spatiotemporal gait variables. J. Biomech. 2013, 46, 2722–2725. [CrossRef]
32. Mentiplay, B.F.; Perraton, L.G.; Bower, K.J.; Pua, Y.H.; McGaw, R.; Heywood, S.; Clark, R.A. Gait assessment using the Microsoft

Xbox One Kinect: Concurrent validity and inter-day reliability of spatiotemporal and kinematic variables. J. Biomech. 2015, 48,
2166–2170. [CrossRef] [PubMed]

33. French, M.A.; Koller, C.; Arch, E.S. Comparison of three kinematic gait event detection methods during overground and treadmill
walking for individuals post stroke. J. Biomech. 2020, 99, 109481. [CrossRef] [PubMed]

34. Zeni, J.A., Jr.; Richards, J.G.; Higginson, J.S. Two simple methods for determining gait events during treadmill and overground
walking using kinematic data. Gait Posture 2008, 27, 710–714. [CrossRef] [PubMed]

35. Matsuzawa, Y.; Miyazaki, T.; Takeshita, Y.; Higashi, N.; Hayashi, H.; Araki, S.; Nakatsuji, S.; Fukunaga, S.; Kawada, M.; Kiyama,
R. Effect of leg extension angle on knee flexion angle during swing phase in post-stroke gait. Medicina 2021, 57, 1222. [CrossRef]
[PubMed]

36. Hof, A.L.; Gazendam, M.G.; Sinke, W.E. The condition for dynamic stability. J. Biomech. 2005, 38, 1–8. [CrossRef] [PubMed]
37. Tanikawa, H.; Ohtsuka, K.; Mukaino, M.; Inagaki, K.; Matsuda, F.; Teranishi, T.; Kanada, Y.; Kagaya, H.; Saitoh, E. Quantitative

assessment of retropulsion of the hip, excessive hip external rotation, and excessive lateral shift of the trunk over the unaffected
side in hemiplegia using three-dimensional treadmill gait analysis. Top. Stroke Rehabil. 2016, 23, 311–317. [CrossRef]

38. Itoh, N.; Kagaya, H.; Saitoh, E.; Ohtsuka, K.; Yamada, J.; Tanikawa, H.; Tanabe, S.; Itoh, N.; Aoki, T.; Kanada, Y. Quantitative
assessment of circumduction, hip hiking, and forefoot contact gait using lissajous figures. Jpn. J. Compr. Rehabil. Sci. 2012, 3, 78–84.
[CrossRef]

39. Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr.
Med. 2016, 15, 155–163. [CrossRef] [PubMed]

40. Pfister, A.; West, A.M.; Bronner, S.; Noah, J.A. Comparative abilities of Microsoft Kinect and Vicon 3D motion capture for gait
analysis. J. Med. Eng. Technol. 2014, 38, 274–280. [CrossRef]

https://doi.org/10.1186/s12984-015-0006-8
https://www.ncbi.nlm.nih.gov/pubmed/25884838
https://doi.org/10.1186/s12984-019-0568-y
https://doi.org/10.3390/rs71013070
https://doi.org/10.1051/sicotj/2022027
https://doi.org/10.1016/j.gaitpost.2016.10.001
https://doi.org/10.1080/10749357.2016.1234192
https://doi.org/10.1682/JRRD.2006.09.0124
https://www.ncbi.nlm.nih.gov/pubmed/18247247
https://doi.org/10.1016/j.jbiomech.2019.02.026
https://www.ncbi.nlm.nih.gov/pubmed/30876735
https://doi.org/10.1097/MRR.0000000000000391
https://doi.org/10.3390/s21175945
https://www.ncbi.nlm.nih.gov/pubmed/34502836
https://learn.microsoft.com/ja-jp/azure/kinect-dk/body-joints
https://doi.org/10.3951/sobim.27.29
https://doi.org/10.1016/j.jbiomech.2017.10.016
https://doi.org/10.1016/j.robot.2004.07.006
https://doi.org/10.1038/s41598-024-53616-w
https://www.ncbi.nlm.nih.gov/pubmed/38321081
https://doi.org/10.1016/0021-9290(74)90082-7
https://doi.org/10.1016/j.jbiomech.2013.08.011
https://doi.org/10.1016/j.jbiomech.2015.05.021
https://www.ncbi.nlm.nih.gov/pubmed/26065332
https://doi.org/10.1016/j.jbiomech.2019.109481
https://www.ncbi.nlm.nih.gov/pubmed/31718818
https://doi.org/10.1016/j.gaitpost.2007.07.007
https://www.ncbi.nlm.nih.gov/pubmed/17723303
https://doi.org/10.3390/medicina57111222
https://www.ncbi.nlm.nih.gov/pubmed/34833440
https://doi.org/10.1016/j.jbiomech.2004.03.025
https://www.ncbi.nlm.nih.gov/pubmed/15519333
https://doi.org/10.1080/10749357.2016.1156361
https://doi.org/10.11336/jjcrs.3.78
https://doi.org/10.1016/j.jcm.2016.02.012
https://www.ncbi.nlm.nih.gov/pubmed/27330520
https://doi.org/10.3109/03091902.2014.909540


Biomechanics 2024, 4 427

41. Xu, X.; McGorry, R.W.; Chou, L.S.; Lin, J.H.; Chang, C.C. Accuracy of the Microsoft Kinect for measuring gait parameters during
treadmill walking. Gait Posture 2015, 42, 145–151. [CrossRef]

42. Ma, Y.; Mithraratne, K.; Wilson, N.C.; Wang, X.; Ma, Y.; Zhang, Y. The validity and reliability of a kinect v2-based gait analysis
system for children with cerebral palsy. Sensors 2019, 19, 1660. [CrossRef]

43. Tamura, H.; Tanaka, R.; Kawanishi, H. Reliability of a markerless motion capture system to measure the trunk, hip and knee
angle during walking on a flatland and a treadmill. J. Biomech. 2020, 109, 109929. [CrossRef]

44. Stratford, P.W.; Goldsmith, C.H. Use of the standard error as a reliability index of interest: An applied example using elbow flexor
strength data. Phys. Ther. 1997, 77, 745–750. [CrossRef] [PubMed]

45. Akbas, T.; Neptune, R.R.; Sulzer, J. Neuromusculoskeletal simulation reveals abnormal rectus femoris-gluteus medius coupling in
post-stroke gait. Front. Neurol. 2019, 10, 301. [CrossRef] [PubMed]

46. Hall, A.L.; Peterson, C.L.; Kautz, S.A.; Neptune, R.R. Relationships between muscle contributions to walking subtasks and
functional walking status in persons with post-stroke hemiparesis. Clin. Biomech. 2011, 26, 509–515. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.gaitpost.2015.05.002
https://doi.org/10.3390/s19071660
https://doi.org/10.1016/j.jbiomech.2020.109929
https://doi.org/10.1093/ptj/77.7.745
https://www.ncbi.nlm.nih.gov/pubmed/9225846
https://doi.org/10.3389/fneur.2019.00301
https://www.ncbi.nlm.nih.gov/pubmed/31001189
https://doi.org/10.1016/j.clinbiomech.2010.12.010
https://www.ncbi.nlm.nih.gov/pubmed/21251738

	Introduction 
	Materials and Methods 
	Participants 
	Experimental Procedure 
	Data Collection 
	Failed Trial of Gait Analysis Using Depth-Sensor-Based 3DMA 
	Data Reduction and Analysis 
	Spatiotemporal Variables 
	Trunk and Lower Limb Kinematics 
	Whole-Body Kinematics 
	Definition of Abnormal Gait Patterns 
	Statistical Analysis 

	Results 
	Walking Speed in Each Condition 
	Concurrent Validity of Abnormal Gait Patterns 
	Concurrent Validity of Spatiotemporal Variables 
	Concurrent Validity of Trunk and Lower Limb Kinematics 
	Concurrent Validity of Whole-Body Kinematics 

	Discussion 
	Conclusions 
	References

