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Abstract: This study investigates the biomechanical differences between typically developed (TD) in-
dividuals and those with contralateral hemiplegia (CH) using musculoskeletal modeling in OpenSim.
Ten TD participants and ten CH patients were analyzed for joint angles and external joint moments
around the three anatomical axes: frontal, sagittal, and transverse. The analysis focused on hip,
pelvis, lumbar, knee, ankle, and subtalar joint movements, leveraging MRI-derived bone length data
and gait analysis. Significant differences (p < 0.05) were observed in hip flexion, pelvis tilt, lumbar
extension, and ankle joint angles, highlighting the impact of hemiplegia on these specific joints.
However, parameters like hip adduction and rotation, knee moment, and subtalar joint dynamics
did not show significant differences, with p > 0.05. The comparison of joint angle and joint moment
correlations between TD and CH participants highlights diverse coordination patterns in CH. Joint
angles show significant shifts, such as HF and LR (−0.35 to −0.97) and PR and LR (0.22 to −0.78),
reflecting disrupted interactions, while others like HR and LR (0.42 to 0.75) exhibit stronger coupling
in CH individuals. Joint moments remain mostly stable, with HF and HA (0.54 to 0.53) and PR
and LR (−0.51 to −0.50) showing negligible changes. However, some moments, like KA and HF
(0.11 to −0.13) and PT and KA (0.75 to 0.67), reveal weakened or altered relationships. These findings
underscore biomechanical adaptations and compensatory strategies in CH patients, affecting joint
coordination. Overall, CH individuals exhibit stronger negative correlations, reflecting impaired
coordination. These findings provide insight into the musculoskeletal alterations in hemiplegic
patients, potentially guiding the development of targeted rehabilitation strategies.

Keywords: biomechanical differences; contralateral hemiplegia; musculoskeletal modeling; OpenSim;
gait analysis; significant differences; joint kinematics; joint moments; rehabilitation strategies

1. Introduction

Musculoskeletal models are computational representations of the human muscu-
loskeletal system designed to simulate the biomechanics of muscles, bones, and joints [1].
These models serve as critical tools in understanding human movement and diagnosing,
treating, and preventing various disorders [2,3]. They incorporate anatomical data and
dynamic principles to replicate the physical and physiological characteristics of the body,
providing insights into how different muscles and joints contribute to movement and
stability. Researchers and clinicians utilize these models to analyze complex movements,
assess musculoskeletal health, and develop rehabilitation strategies [4]. Musculoskeletal
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analysis shows promise as a valuable tool for forecasting outcomes in orthopedic surgeries
and fine-tuning assistive devices [5].

Changes in any aspect of natural brain activity can contribute to neurological condi-
tions such as cerebral palsy (CP) and stroke [6]. These conditions can impact the human
skeletal system both directly and indirectly, leading to various abnormalities. Cerebral
palsy manifests as a diverse clinical syndrome caused by brain injuries during prenatal or
neonatal periods, affecting muscle tone, movement, and motor abilities. Conversely, stroke
occurs when there is a sudden interruption or decrease in blood flow to the brain. After
a stroke, individuals may experience paralysis in different parts of the body, which may
lead to hemiplegia, paraplegia, or quadriplegia, depending on the affected limb. Contralat-
eral hemiplegia (CH) is a form of hemiplegia that affects one side of the body opposite
to the side of the brain or spinal cord injury that causes paralysis [7,8]. The severity of
contralateral hemiplegia can vary, and it significantly influences skeletal dimensions in
older adults [8,9], leading to leg length discrepancy (LLD). In several patient groups, LLD
has been linked to compensatory gait abnormalities and can lead to degenerative arthritis
in the lower extremities and spine [10,11]. The cause of LLD in CH is unclear, but it may
result from a brain injury affecting growth on the hemiplegic side or disuse of the limb.
Gait analysis shows that the hemiplegic foot bears less weight and generates less muscle
work than the unaffected side, reducing the load on the growth plates and impacting
limb development [11].

OpenSim, developed by Stanford University, is a widely used open-source software
that allows researchers to build, analyze, and visualize musculoskeletal models [12,13].
This tool was selected for the present study due to its extensive documentation, active
user community, and robust capabilities for simulating and analyzing musculoskeletal
dynamics, which align with the objectives of this research. Customizing the selection of
software according to specific study or application needs is crucial. The potential impact
of musculoskeletal modeling and simulation on patient care and reducing treatment costs
is substantial, examining causal connections in individuals with neurological and mus-
culoskeletal impairments and forecasting successful rehabilitation results. This enables
researchers to perform detailed biomechanical analyses and simulate the impact of different
interventions, facilitating the development of personalized treatment plans and improving
patient outcomes. OpenSim has been extensively applied in modeling lower-limb biome-
chanics, analyzing joint kinematics, and exploring the effects of various conditions on
human movement [14–17].

This study is rooted in the premise that contralateral hemiplegia (CH) introduces
significant biomechanical alterations in lower-limb joint kinematics and dynamics, which
can impact mobility and quality of life. While musculoskeletal modeling using OpenSim
provides a robust framework for analyzing these effects, previous research has not ade-
quately explored how CH affects joint coordination and its biomechanical implications
compared to typically developed (TD) individuals. This gap motivates our hypothesis that
CH disrupts joint angles and external moments in distinct patterns, warranting a systematic
investigation. By leveraging OpenSim’s advanced simulation tools, this research aims to
elucidate these biomechanical differences, establish statistical correlations, and propose
evidence-based rehabilitation strategies, thereby bridging the current knowledge gap in
post-hemiplegic musculoskeletal analysis. This study, specifically, delved into the impact
of CH on joint angles and moments in sagittal, frontal, and transverse planes, comparing
the findings to those of TD individuals. Ten patients diagnosed with CH, with a median
age of 46 years (ranging from 39 to 52 years), were included in this study. Additionally,
ten TD individuals with similar body characteristics were recruited as controls. The main
contributions of the work are as follows:

(i) To investigate biomechanical differences in joint angles and moments between con-
tralateral hemiplegia (CH) patients and typically developed (TD) individuals using
OpenSim tools.
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(ii) To analyze these differences statistically using mean absolute deviation, box plots,
t-tests, and correlation analysis and provide insights into joint coordination to guide
rehabilitation strategies.

2. Materials and Methods
2.1. Data Collection

This study involved 10 individuals diagnosed with contralateral hemiplegia, with a
median age of 46 years (range: 39 to 52 years), a weight of 72.5 ± 5.5 kg, and a height of
1.75 ± 0.6 m. Among these participants, 7 were male and 3 were female. All were classified
as gross motor function classification scale (GMFCS) 2 and as type 1 or 2 in the Winters
classification based on sagittal plane kinematics from gait analysis [18]. Each individual had
a Wisconsin gait scale (WGS) [19] score greater than 28, as determined by a comprehensive
gait analysis that included 14 measurements conducted by the University of Wisconsin. In
addition, this study included 10 age-matched TD controls. Exclusion criteria for the control
group included a history of lower-extremity bone surgery or fractures and the presence
of metal implants that would contraindicate MRI examinations. Participants with intellec-
tual disability were also excluded. The measurements of pelvic, femur, tibia, talus, and
calcaneus lengths for all participants, as detailed in Table 1, were derived from existing high-
resolution MRI reports. These MRI records were sourced from medical imaging databases
and neuromuscular clinics of Sheosagar Paralysis and Polio Hospital in Bihar, India, en-
suring precision and consistency across all subjects. The data were critical for calculating
the relative differences in bone lengths between contralateral hemiplegia (CH) patients
and typically developed (TD) individuals. These relative differences were then used to
refine and adjust the scale factors in the OpenSim Gait2392 model, ensuring the models
accurately reflected the biomechanical characteristics of both groups. Ethical approval
was obtained for the use of these existing MRI reports, and informed consent was secured
from the respective participants, adhering to all relevant ethical guidelines for data usage.
Institutional review board approval was obtained from Indian Institute of Technology
Guwahati ethics committee for research involving both TD and affected individuals.

Table 1. Mean ± SD length of calcaneus, talus, tibia, femur, and pelvis for CH patients and TD controls.

Bone Length CH Affected (mm) Length TD (mm) Relative Difference for
Mean Length (%)

Calcaneous 42.3 ± 0.8 43.1 ± 0.9 98.1

Talus 32.1 ± 0.6 32.8 ± 0.8 97.8

Tibia 349.0 ± 3.6 377.12 ± 4.1 92.38

Femur 437.8 ± 5.8 455.7 ± 6.1 96.1

Pelvis 116.1 ± 1.3 115.6 ± 1.1 100.5

2.2. Adopted Methodolgy

The utilization of the Gait2392 model within OpenSim proved crucial for this research
study. This model includes lower-limb structures, as well as the head and torso, constituting
12 segments, 11 joints, and 92 muscle–tendon actuators. Specifically, it comprises 72 muscles
from the lower extremities and torso, facilitating a total of 23 degrees -of-freedom (DOF).
Subject-specific characteristics, such as a mass of 75.16 kg and a height of 1.8 m, were
specified [10]. Upon loading the scale file, OpenSim automatically generated scale factors
for various body parts based on a TD subject, aligning with the mean bone length values of
controls in the study. Since the standard deviations of bone lengths were minimal, indicating
limited variability within each group, the mean bone lengths of all subjects (TD and CH)
were used to alter the scale factors in OpenSim. This approach, while computationally
efficient, is also aligned with modeling practices for group-level analyses where participant
differences are small. Gait analysis was conducted through inverse kinematics and inverse
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dynamics, allowing for a thorough comparison of gait parameters between TD and CH
conditions. The detailed process for gait analysis in OpenSim, encompassing both TD and
CH conditions, is described below.

2.2.1. Model for TD Subjects

To start, the Gait2392 model was opened in OpenSim, where the scale tool was used to
import the Subject01-Setup-Scale.xml file—an accessible setup file offering insights into the
gait cycle of a typical TD model with details of virtual marker set and a tag to experimental
marker set in static pose. Subject01-Static.trc, having details of experimental markers
trajectories, was used to include the full marker set in static pose. The experimental marker
data were recorded by John et al. [20] using a six-camera motion capture system every
1/60 s intervals. Upon loading the files, a revised model Subject01-Simbody.osim appeared,
weighing 72.6 kg and featuring a total of 39 markers. Table 2 displays the scale factors for
different body segments on the right side, reflecting comparable measurements for the left
side under TD conditions. The manual scales provided insights into the scale adjustments
for the new model in comparison to the standard Gait2392 model.

Table 2. Scale Factor for TD model using OpenSim.

Bone Measurement Used Scale Factor

Calcaneus (R) Foot 1.027085

Talus (R) Shank 1.113978

Tibia (R) Manual scales * 0.988523

Femur (R) Manual scales 1.147240

Toes (R) Foot 1.027085

Pelvis Pelvis 1.024577
* Manual scales in italics represent the manual adjustments of scale factors over the Gait2392 model.

Following this, inverse kinematics were calculated using the scaled model via the
corresponding tool, as illustrated in Figure 1a. The Subject01-Setup-IK.xml file was loaded
with a tag to the experimental marker set as Subject01-Walk1.trc, and the program was
run within a defined time span of 0 to 2.5 s. Subject01-Walk1.trc was used to include
experimental marker data for a trial obtained from the motion capture system, along with
the time range of interest, as per the study by John et al. [20]. This generates a motion file,
Subject01-Walk1-IK.mot, having the time histories of generalized coordinates that describe
the movement of the TD model. The objective of the analysis was to assess the variation
in angles (including hip flexion, adduction, rotation, lumbar bending, extension, rotation,
knee angle, ankle angle, and subtalar joint angles) over the specified timeframe. After that,
inverse dynamics were calculated using the scaled model via the corresponding tool, as
illustrated in Figure 1b. Subject01-Setup-ID.xml, with a tag to inverse kinematics-based
motion file, was loaded. Moreover, an external loads setup file, Subject01-Walk1-GRF.xml,
was uploaded to measure and apply or model all external forces acting on a subject during
the motion to calculate accurate joint torques and forces [20,21]. This file includes the
name of the ground reaction force data file (Subject01-GRF.mot) as well as the names of
the bodies to which they are applied. Finally, the program was run within a predefined
time span of 0 to 2.5 s, and InverseDynamics-TD.sto file was saved to obtain the relevant
plots The objective of the analysis was to assess the changes in joint moments over the
specified timeframe.
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2.2.2. Model for CH-Affected Subjects

In the initial step of this study, the Gait2392 model was utilized within the OpenSim
platform. Similar to the approach for the TD model, the scale tool was used to load the
Subject01-Setup-Scale.xml file having a tag to experimental marker set (Subject01-Static.trc)
in static pose, resulting in the generation of the model with a mass of 72.6 kg and a total of
39 markers. Afterward, the relative differences from Table 1 were divided by 100, and the
resultant values were then multiplied by the respective scale factors listed in Table 2. This
procedure resulted in the development of an altered model depicting a CH state, Subject01-
Simbody-CH.osim, specifically designed to represent the CH condition. The modified scale
factors for the right side (R) were detailed in Table 3, while the scale factors for the left side
remained the same as those for the scaled TD model. Notably, from Table 3, it is evident
that all measurements, except those for the toes, were manually adjusted. The revised
scale file was stored and loaded under the name Subject01-setup-scale-CH.xml for future
reference, as illustrated in Figure 2a. Subsequently, the inverse kinematics tool was utilized
on the scaled model by loading the Subject01-Setup-IK.xml file with a tag to with a tag to
the experimental marker set as Subject01-Walk1.trc and running the program within the
designated time frame of 0 to 2.5 s. It is pertinent to mention that the experiment marker set,
Subject01-Walk1.trc, used here is the same as mentioned in Section 2.2.1. However, due to
the positional differences between CH’s virtual marker set and TD’s experimental marker
set, the program generates a new motion file, Subject01-Walk1-IK-CH.mot, having the time
histories of generalized coordinates that describe the movement of the CH model.

Following that, the gait kinematics of various body joints, such as hip flexion, hip
adduction, hip rotation, lumbar bending, lumbar extension, lumbar rotation, knee angle,
ankle angle, and subtalar angle joints, were examined using inverse kinematics for the CH
model. Inverse dynamics were calculated using the scaled model via the inverse dynamics
tool as shown in Figure 2b. Subject01-Setup-ID.xml, with a tag to inverse kinematics-based
motion file, was loaded. Moreover, similar to Section 2.2.1, external loads setup file,
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Subject01-Walk1-GRF.xml with a tag to Subject01-GRF.mot, was uploaded to measure and
apply or model all external forces acting on a subject during the motion to calculate accurate
joint torques and forces [20,21]. Finally, the program was run within a predefined time
span of 0 to 2.5 s, and the InverseDynamics-CH.sto file was saved to show the relevant plots.
The respective lower limb joint moments were obtained over the specified timeframe.

Table 3. Scale factor for CH model using OpenSim.

Bone Measurement Used Scale Factor

Calcaneus (R) Manual scales * 1.00757

Talus (R) Manual scales 1.08947

Tibia (R) Manual scales 0.913197

Femur (R) Manual scales 1.102497

Toes (R) Foot 1.027085

Pelvis Manual scales 1.029699
* Manual scales in italics represent the manual adjustments of scale factors over the Gait2392 modelmodel.
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Figure 3 elucidates the experimental markers (orange, light colored) for the mean
TD participant and the virtual markers (black, dark colored) for the mean CH patient
after scaling, representing key anatomical landmarks. The utility of these marker sets
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lies in their critical role in evaluating joint kinematics and dynamics using OpenSim,
derived from the relative differences between the marker sets. These relative differences
in marker positions were used to adjust the scale factors in the OpenSim Gait2392 model,
as shown in Tables 2 and 3, ensuring that the musculoskeletal models accurately reflected
the biomechanical characteristics of each group. The inverse kinematics (IK) and inverse
dynamics (ID) computations were then performed using these scaled models to analyze
and compare joint movements and forces between the TD and CH groups.
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3. Results and Discussions

This Section presents comprehensive results on the effect of altered leg length for joint
kinematics and dynamics post CH and compares with the kinematics and dynamics of TD
subjects. Moreover, it also discusses correlation analysis for joint angles and moments with
TD participants and CH-affected subjects.

3.1. Kinematics
3.1.1. Hip Joint

Hip flexion, as depicted in Figure 4a, showcases the absolute deviation between hip
joint angles of TD and CH (CH) conditions, with an absolute mean deviation of 8.04◦,
indicating notable differences in distribution. In the TD dataset, the median angle is 6.77◦

with an IQR from −11.59 to 19.08◦, while the CH dataset shows a higher median of 13.71◦

and an IQR from −2.39 to 26.76◦, suggesting increased variability and higher angles in CH
condition. Similarly, in hip adduction (Figure 4b), the absolute mean deviation is 0.48◦,
indicating relatively little difference between TD and CH conditions. The TD dataset shows
a median of −0.94◦ with an IQR from −4.11 to 3.58◦, while the CH dataset displays a
median of −1.41◦ with an IQR from −4.85 to 2.92◦. Furthermore, in hip rotation (Figure 4c),
the absolute mean deviation is 0.45◦, indicating a moderate difference between TD and
CH datasets. The TD dataset’s median angle is −4.35◦ with an IQR from −6.71 to 0.39◦,
whereas the CH dataset’s median is −3.69◦ with an IQR from −6.20 to 0.55◦.
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3.1.2. Pelvis Bone

In pelvis tilt, as illustrated in Figure 5a, the absolute mean deviation of 8.0193◦ under-
scores significant variability between TD and CH conditions, supported by pronounced
distribution disparities evident in box plot analysis. TD pelvis tilt data exhibit a median
of −4.89◦ with an interquartile range (IQR) from 4.54◦ to 5.35◦, implying a tighter spread,
whereas the CH dataset displays a median of −3.18◦ with an IQR from −3.51◦ to −2.62◦,
indicating a comparably narrow distribution. In pelvis rotation, depicted in Figure 5b,
the absolute mean deviation of 0.25◦ suggests minimal variation between TD and CH
(CH) individuals, corroborated by the analogous patterns observed in box plot analysis.
TD pelvis rotation data portray a median of −0.64◦ with an IQR from −3.55◦ to 1.43◦,
indicating moderate dispersion, while the CH dataset showcases a median of −0.55◦ with
an IQR from −3.69◦ to 1.97◦, suggesting moderate to substantial dispersion.
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3.1.3. Lumbar Joint

Lumbar extension (Figure 6a) shows a larger absolute mean deviation of 1.4161◦,
indicating substantial differences in distribution between TD and CH angles. For TD
lumbar extension, the median is −15.88◦, with an IQR from −15.19◦ to −16.58◦, indicating
moderate spread, while the CH dataset exhibits a median of 17.52◦ with an IQR from
−16.65◦ to −17.95◦, representing a narrower spread. In lumbar rotation (Figure 6b), the
absolute mean deviation of 0.39◦ suggests relatively little difference between TD and CH
individuals, with TD lumbar rotation data showing a median of −2.07◦ and an IQR from
−6.01◦ to 2.59◦, indicating wider spread, while the CH dataset displays a median of −2.22◦

and an IQR from −6.32◦ to 2.55◦, suggesting a moderate to substantial dispersion. In lumbar
bending, as depicted in Figure 6c, the absolute mean deviation of 0.7844◦ underscores
significant differences between TD and CH conditions, with notable distribution variations
observed in box plot analysis. For TD lumbar bending, the median angle is −0.12◦ with an
interquartile range (IQR) from −2.75◦ to 2.32◦, while the CH dataset shows a median of
0.09◦ with an IQR from −2.35◦ to 2.45◦, suggesting relatively narrow spread. These results
underscore the complex biomechanical differences between TD and CH states in lumbar
bending, extension, and rotation, emphasizing the importance of statistical analyses in
clarifying these subtleties.
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3.1.4. Knee Joint Angle

The knee joint angle in the sagittal plane for both TD and CH (CH) conditions is
depicted in Figure 7. Moreover, it illustrates the absolute deviation between the knee
joint angles of TD and CH (CH) conditions. The absolute mean deviation between TD
and CH knee joint angles is computed to be 1.378◦. The relatively small absolute mean
deviation suggests that, on average, the disparities in knee joint angles between TD and CH
conditions are minimal. Box plot analysis comparing TD and CH knee joint angles reveals
distinct distribution patterns. For TD knee joint angles, the median is −18.84◦, indicating
the central tendency of the data. The interquartile range (IQR) spans from the lower quartile
of −38.71◦ to the upper quartile of −8.51◦, indicating a concentrated distribution of values.
The upper whisker reaches 0.97◦, while the lower whisker extends to −69.76◦, suggesting a
relatively symmetrical distribution with a moderate spread of data. In contrast, CH knee
joint angles exhibit a median of −18.91◦, indicating a similar central tendency to the TD
group. The IQR extends from the lower quartile of −37.95◦ to the upper quartile of −9.53◦,
showcasing a comparable concentrated distribution. The upper whisker reaches 1.35◦, and
the lower whisker extends to −70.46◦, reflecting a symmetrical distribution with a slightly
wider spread compared to the TD condition. Overall, the box plots visually illustrate
similarities in central tendencies and distributions between TD and CH knee joint angles.
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3.1.5. Ankle Joint Angle

Figure 8 displays the ankle joint angles for both TD and CH (CH) conditions in
the sagittal plane. Moreover, the disparity in ankle joint angles is depicted in Figure 8,
demonstrating the absolute deviation between the TD and CH (CH) ankle joint angles. The
absolute mean deviation, measuring the average absolute difference in ankle joint angles
between TD and CH conditions, is calculated to be 4.51◦. The relatively large absolute
mean deviation suggests that, on average, substantial differences exist in ankle joint angles
between TD and CH conditions. Box plot analysis comparing TD and CH ankle joint angles
reveals significant distribution differences, as demonstrated in Figure 8. In the TD ankle
joint angle dataset, the median is 2.68◦, with an interquartile range (IQR) from 0.94◦ to
9.4◦, indicating a concentrated distribution. The upper whisker extends to 16.02◦, while the
lower whisker reaches −8.84◦, reflecting moderate variability. This suggests a relatively
symmetrical distribution with a noticeable spread of data. Conversely, the CH ankle joint
angles display a distinct distribution, with a median of 8.23◦ and an IQR from 4.60◦ to 13.3◦.
The upper whisker reaches 20.62◦, and the lower whisker extends to −1.4◦, indicating a
broader spread and a potential skewness towards higher angles (less ankle plantarflexion).
In summary, the box plots visually depict considerable discrepancies in ankle joint angles
between TD and CH conditions, with the statistical analysis bolstering the conclusion of a
substantial dissimilarity. These findings emphasize the significance of incorporating both
visual representation and statistical testing to comprehensively comprehend the variations
in ankle joint angles between the two groups.
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3.1.6. Subtalar Joint Angle

Figure 9 depicts the subtalar joint for both TD and CH conditions in the sagittal plane.
The disparity in subtalar joint is illustrated in Figure 9, showcasing the absolute deviation
between the TD and CH subtalar joint. The absolute mean deviation, quantifying the
average absolute difference in subtalar joint between TD and CH conditions, is determined
to be 3.98 × 10−7◦. This significantly small absolute mean deviation implies much less
variability in the subtalar joint measurements between TD and CH individuals. The box plot
analysis comparing TD and CH subtalar joints reveals significant distribution differences,
as illustrated in Figure 9. In the TD subtalar joint data, the median is −1.52 × 10−6◦, with
an IQR from −3.38 × 10−6◦ to −7.25 × 10−7◦, which implies a more compact distribution
(narrow spread), indicating that the data points are closely grouped together. The upper
whisker extends to 3.25 × 10−6◦, and the lower whisker reaches −7.36 × 10−6◦. Most of
the data are probably tightly clustered within a narrow range, implying minimal variability.
However, the existence of outliers or extreme values beyond the whiskers may hint at
some degree of variability in the dataset. Conversely, the CH subtalar joint angles exhibit a
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different distribution, with a median of −1.27 × 10−6◦ and an IQR from −3.10 × 10−6◦ to
−4.22 × 10−6◦, which suggests that the data are spread across relatively narrow range. The
upper whisker reaches −3.60 × 10−6◦, and the lower whisker extends to −7.12 × 10−6◦,
showing limited variability.
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Consolidating all the above outcomes in Table 4 and performing t-test, the p-values
highlight significant and non-significant biomechanical differences in joint movements be-
tween typically developed (TD) and contralateral hemiplegia (CH) participants. Statistically
significant differences (p < 0.05) were observed in hip flexion, pelvis tilt, lumbar extension,
lumbar bending, and ankle flexion, indicating meaningful disparities in these motions
between the two groups. These findings suggest altered kinematics in CH individuals,
likely reflecting compensatory mechanisms or impaired coordination. On the other hand,
motions such as hip adduction, hip rotation, pelvis rotation, lumbar rotation, knee flexion,
and subtalar flexion exhibited p > 0.05, indicating no statistically significant differences
between TD and CH groups for these parameters. These results provide insight into specific
joints and motions where CH significantly impacts biomechanics, while others remain
relatively unaffected, thus guiding targeted interventions and rehabilitation strategies.

Table 4. Statistical outcomes for TD and CH gait kinematics.

Joint and Motion Median (TD) IQR
(TD) Median (CH) IQR

(CH) p-Value

Hip Joint

Hip Flexion 6.77◦ 11.59–19.08◦ 13.71◦ −2.39–26.76◦ <0.05 *

Hip Adduction −0.94◦ −4.11–3.58◦ −1.41◦ −4.84–2.91◦ >0.05

Hip Rotation −4.34◦ −6.71–0.39◦ −3.69◦ −6.20–0.56◦ >0.05

Pelvis Bone

Pelvis Rotation −0.65◦ −3.55–1.43◦ −0.54◦ −3.69–1.97◦ >0.05

Pelvis Tilt −4.89◦ 4.54–5.35◦ −3.18◦ −3.51–−2.62◦ <0.05

Lumbar Joint

Lumbar Extension −15.88◦ −15.19–−16.57◦ −17.52◦ −16.65–−17.95◦ <0.05

Lumbar Rotation −2.08◦ −6.01–2.59◦ −2.22◦ −6.32–2.55◦ >0.05

Lumbar Bending −0.12◦ −2.75–2.32◦ 0.09◦ −2.35–2.45◦ <0.05

Knee Joint

Knee Flexion −18.84◦ −38.71–−8.51◦ −18.91◦ −37.95–−9.53◦ >0.05
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Table 4. Cont.

Joint and Motion Median (TD) IQR
(TD) Median (CH) IQR

(CH) p-Value

Ankle Joint

Ankle Flexion 2.68◦ 0.94–9.4◦ 8.23◦ 4.60–13.32◦ <0.05

Subtalar Joint

Subtalar Flexion −1.52 × 10−6◦ −3.38 × 10−6–−7.25 × 10−7◦ −1.27 × 10−6◦ −3.10 × 10−6–−4.22 × 10−6◦ >0.05

* Bold numerals in the last column represent the statistical significant conditions with significance level of 0.05.

3.2. Correlation Analysis for Joint Kinematics

The heatmaps provided represent correlation matrices between various joint kine-
matic parameters for both TD and CH subjects. The joint parameters measured include hip
flexion (HF), hip abduction (HA), hip rotation (HR), pelvis rotation (PR), pelvis tilt (PT),
lumbar extension (LE), lumbar rotation (LR), lumbar bending (LB), knee angle (KA), ankle
angle (AA), and subtalar angle (SA). The use of correlation matrices complements the box-
plots and statistical analysis by offering a comprehensive view of kinematics interactions,
which is crucial for understanding angular-position-related compensatory mechanisms in
CH individuals.

The comparison of joint angle correlations between TD participants and CH patients, as
shown in Figure 10, highlights significant differences, reflecting altered motor coordination
and movement patterns in CH patients. For instance, the correlation between HF and LR
changes from −0.35 in TD participants to −0.97 in CH patients, indicating a much stronger
interdependence in CH. Similarly, the correlation between HR and LR increases from 0.42
in TD to 0.75 in CH, suggesting a closer relationship between these joint movements in CH
patients. A striking shift is observed in the correlation between PR and LR, which changes
from 0.22 in TD to −0.78 in CH, highlighting significant disruptions in their interaction.
The negative sign represents that these movements occur in almost opposite phases in
CH participants compared to TD. Other notable differences further emphasize altered
biomechanics in CH patients. For example, the correlation between PT and LR increases
from 0.01 in TD subjects to 0.31 in CH individuals. Additionally, the previously strong
relationship between LR and LB, which is 1.00 in TD participants, weakens to 0.48 in
CH patients.

In conclusion, the observed differences in joint angle correlations between TD par-
ticipants and CH patients provide valuable insights into the altered motor coordination
and biomechanical interactions in individuals with cerebral palsy. The significant shifts,
such as the stronger coupling between certain joint pairs like HR and LR or the disrupted
interactions between PR and LR, reflect compensatory mechanisms or neuromuscular
impairments characteristic of CH patients. These findings underscore the complexity of
motor control alterations in cerebral palsy and highlight the need for targeted rehabilitation
strategies that address these specific joint dependencies.

3.3. Joint Dynamics
3.3.1. Hip Joint

Figure 11a shows hip flexion dynamics for TD and CH conditions in the sagittal plane,
illustrating the absolute deviation between them. The box plot reveals the median TD hip
flexion as −37.47 Nm, with an IQR from −44.81 Nm to 12.99 Nm. The upper and lower
whiskers extend to 26.75 Nm and −83.87 Nm, respectively, indicating wide variability.
For CH hip flexion, the median is −37.57 Nm, with an IQR from −45.82 Nm to 12.1 Nm,
and whiskers extending to 31.81 Nm and −88.64 Nm, showing slightly greater variability.
The p-value of 0.88 indicates no significant difference between TD and CH conditions.
Figure 11b shows hip adduction dynamics for both conditions, also displaying the absolute
deviation. The box plot reveals the median TD hip adduction as −9.22 Nm, with an
IQR from −35.19 Nm to −0.48 Nm. The whiskers extend to 26.39 Nm and −52.12 Nm,
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indicating wide variability. CH hip adduction has a median of −11.64 Nm, with an
IQR from −36.46 Nm to 1.05 Nm, and whiskers extending to 24.88 Nm and −53.75 Nm,
showing slightly greater variability. The p-value of 0.72 indicates no significant difference.
Figure 11c shows hip rotation dynamics for both conditions, along with the illustration
of the absolute deviation. The box plot reveals the median TD hip rotation as −0.99 Nm,
with an IQR from −4.21 Nm to 1.55 Nm. The whiskers extend to 7.25 Nm and −12.84 Nm,
indicating some variability. CH hip rotation has a median of −0.97 Nm, with an IQR
from −4.05 Nm to 1.22 Nm, and whiskers extending to 7.70 Nm and −11.96 Nm, showing
slightly less variability.
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3.3.2. Pelvis Bone

Figure 12a depicts the pelvis rotation and tilt dynamics for both TD and CH conditions
in the sagittal plane. The TD pelvis rotation, shown in Figure 12a, reveals a median of
−0.35 Nm, with an IQR from −6.70 Nm to 5.81 Nm for TD pelvis rotation. The whiskers
extend to 16.41 Nm and −16.85 Nm, indicating some variability within the dataset. Con-
versely, the CH pelvis rotation angles have a median of −0.83 Nm and an IQR from
−7.48 Nm to 6.20 Nm. The whiskers extend to 17.31 Nm and −16.50 Nm, indicating
slightly greater variability. The TD pelvis tilt, as shown in Figure 12b, presents a median of
38.71 Nm, with an IQR from 26.06 Nm to 47.12 Nm. The upper whisker extends to 57.59 Nm,
and the lower whisker reaches −5.51 Nm, indicating considerable variability. The CH
pelvis tilt angles exhibit a median of 43.62 Nm and an IQR from 31.71 Nm to 54.39 Nm. The
upper whisker reaches 73.05 Nm, and the lower whisker extends to −1.66 Nm, indicating
slightly greater variability in the CH dataset.

Biomechanics 2024, 5, FOR PEER REVIEW 15 
 

 

 
Figure 12. Comparison between TD and CH pelvis: (a) rotation moment, absolute deviation and 
box-plot; (b) tilt moment, absolute deviation and box-plot plot (* represents the differences are sta-
tistically significant). 

3.3.3. Lumbar Joint 
Figure 13a depicts lumbar extension dynamics. The box plot shows the median TD 

lumbar extension as 68.92 Nm, with an IQR from 58.54 Nm to 76.95 Nm, and whiskers 
extending to 85.90 Nm and 44.31 Nm. CH lumbar extension has a median of 74.38 Nm, an 
IQR from 62.89 Nm to 82.90 Nm, and whiskers extending to 93.98 Nm and 47.09 Nm, 
indicating significant differences. Similarly, Figure 13b illustrates lumbar rotation dynam-
ics, showing the absolute deviation. The box plot reveals the median TD lumbar rotation 
as 0.88 Nm, with an IQR from −2.05 Nm to 2.72 Nm, and whiskers extending to 4.94 Nm 
and −3.54 Nm. CH lumbar rotation has a median of 0.87 Nm, an IQR from −2.29 Nm to 
3.07 Nm, and whiskers extending to 5.64 Nm and −4.09 Nm. Figure 13c depicts the lumbar 
bending dynamics for both TD and CH conditions in the sagittal plane, showcasing the 
absolute deviation between them. The box plot analysis reveals the median TD lumbar 
bending as 5.22 Nm, with an IQR from −2.53 Nm to 15.26 Nm, and whiskers extending to 
41.96 Nm and −29.23 Nm, indicating considerable variability. CH lumbar bending has a 
median of 5.99 Nm, an IQR from −3.30 Nm to 16.89 Nm, and whiskers extending to 47.19 
Nm and −33.60 Nm, showing slightly greater variability. 

 
Figure 13. Comparison between TD and CH Lumbar: (a) extension moment, absolute deviation and 
box-plot; (b) rotation moment, absolute deviation and box-plot; and (c) bending moment, absolute 
deviation and box-plot (* represents the differences are statistically significant). 
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box-plot; (b) tilt moment, absolute deviation and box-plot plot (* represents the differences are
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3.3.3. Lumbar Joint

Figure 13a depicts lumbar extension dynamics. The box plot shows the median TD
lumbar extension as 68.92 Nm, with an IQR from 58.54 Nm to 76.95 Nm, and whiskers
extending to 85.90 Nm and 44.31 Nm. CH lumbar extension has a median of 74.38 Nm,
an IQR from 62.89 Nm to 82.90 Nm, and whiskers extending to 93.98 Nm and 47.09 Nm,
indicating significant differences. Similarly, Figure 13b illustrates lumbar rotation dynamics,
showing the absolute deviation. The box plot reveals the median TD lumbar rotation as
0.88 Nm, with an IQR from −2.05 Nm to 2.72 Nm, and whiskers extending to 4.94 Nm
and −3.54 Nm. CH lumbar rotation has a median of 0.87 Nm, an IQR from −2.29 Nm to
3.07 Nm, and whiskers extending to 5.64 Nm and −4.09 Nm. Figure 13c depicts the lumbar
bending dynamics for both TD and CH conditions in the sagittal plane, showcasing the
absolute deviation between them. The box plot analysis reveals the median TD lumbar
bending as 5.22 Nm, with an IQR from −2.53 Nm to 15.26 Nm, and whiskers extending
to 41.96 Nm and −29.23 Nm, indicating considerable variability. CH lumbar bending has
a median of 5.99 Nm, an IQR from −3.30 Nm to 16.89 Nm, and whiskers extending to
47.19 Nm and −33.60 Nm, showing slightly greater variability.
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3.3.4. Knee Moment

Figure 14 illustrates the knee moment dynamics for both TD and CH conditions.
The disparity in knee moment characteristics is depicted in Figure 14, showcasing the
absolute deviation between the TD and CH knee moment values. The box plot analysis
comparing TD and CH knee moments reveals distribution differences, as demonstrated
in Figure 14. In the TD knee moment data, the median is −6.91 Nm, with an IQR from
−21.53 Nm to 4.08 Nm, indicating a moderate distribution, suggesting that the data points
are somewhat spread out. The upper whisker extends to 22.38 Nm, and the lower whisker
reaches −34.71 Nm, indicating some variability within the dataset. Conversely, the CH
knee moment values exhibit a similar distribution with a median of −4.07 Nm and an IQR
from −19.44 Nm to 4.08 Nm, suggesting that the data are spread across a similar range. The
upper whisker reaches 35.76 Nm, and the lower whisker extends to −33.17 Nm, indicating
slightly greater variability in the CH dataset.
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3.3.5. Ankle Moment

Figure 15 illustrates the ankle moment dynamics for both TD and CH conditions. The
disparity in ankle moment characteristics is depicted in Figure 15, showcasing the absolute
deviation between the TD and CH ankle moment values. The box plot analysis comparing
TD and CH ankle moments reveals distribution differences, as demonstrated in Figure 15.
In the TD ankle moment data, the median is −39.14 Nm, with an interquartile range (IQR)
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from −96.09 to 0.84 Nm, indicating a wide distribution and suggesting that the data points
are spread out. The upper whisker extends to 2.41 Nm, and the lower whisker reaches
−146.85 Nm, indicating considerable variability within the dataset. Conversely, the CH
ankle moments exhibit a similar distribution with a median of −26.22 Nm and an IQR
from −90.24 to 0.95 Nm, suggesting that the data are spread across a similar range. The
upper whisker reaches 2.99 Nm, and the lower whisker extends to −140.68 Nm, indicating
slightly greater variability in the CH dataset.
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3.3.6. Subtalar Moment

Figure 16 depicts the subtalar joint dynamics for both TD and CH conditions. The
disparity in subtalar joint characteristics is illustrated in Figure 16, showcasing the absolute
deviation between the TD and CH subtalar joint angles. The box plot analysis comparing
TD and CH subtalar joint angles reveals distribution differences, as illustrated in Figure 16.
In the TD subtalar joint data, the median is 10.44 Nm, with an IQR from −0.20 to 14.23 Nm,
indicating a relatively moderate distribution, suggesting that the data points are somewhat
spread out. The upper whisker extends to 23.63 Nm, and the lower whisker reaches
−1.33 Nm, indicating some variability within the dataset. Conversely, the CH subtalar joint
angles exhibit a similar distribution with a median of 10.49 Nm and an IQR from −0.20 to
15.31 Nm, suggesting that the data are spread across a similar range. The upper whisker
reaches 23.86 Nm, and the lower whisker extends to −1.20 Nm, indicating slightly greater
variability in the CH dataset.
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The p-values, consolidating for the above outcomes in Table 5, derived from the
gait dynamics analysis provide insights into the statistical significance of differences in
joint moments between typically developed (TD) individuals and contralateral hemiplegia
(CH) patients. For most joint motions, including hip flexion, hip adduction, hip rotation,
pelvis rotation, lumbar rotation, lumbar bending, knee flexion, ankle flexion, and subtalar
flexion, p > 0.05 indicates no significant differences in median joint moments between the
two groups. However, significant differences (p < 0.05) were observed in pelvis tilt and
lumbar extension moments, suggesting that these motions exhibit notable biomechanical
disparities between TD and CH groups. These findings emphasize the importance of
focusing on pelvis and lumbar dynamics for understanding the altered mechanics in CH
patients, while the lack of significant differences in other motions may indicate comparable
behavior across groups for these specific joint moments.

Table 5. Statistical outcomes for TD and CH gait dynamics.

Joint and Motion Median (TD), Nm
IQR
(TD),
Nm

Median (CH),
Nm

IQR
(CH), Nm p-Value

Hip Joint

Hip Flexion −37.47 −44.81–12.99 −37.58 −45.82–12.14 >0.05

Hip Adduction −9.22 −35.19–−0.48 −11.64 −36.461–1.05 >0.05

Hip Rotation −0.99 −4.20–1.55 −0.97 −4.05–1.22 >0.05

Pelvis Bone

Pelvis Rotation −0.36 −6.70–5.81 −0.83 −7.48–6.20 >0.05

Pelvis Tilt 38.71 26.06–47.12 43.62 31.71–54.39 <0.05

Lumbar Joint

Lumbar Extension 68.92 58.54–76.95 74.38 62.89–82.90 <0.05

Lumbar Rotation 0.88 −2.05–2.72 0.871 −2.29–3.07 >0.05

Lumbar Bending 5.22 −2.53–15.26 5.98 −3.30–16.89 >0.05

Knee Joint

Knee Flexion −6.91 −21.53–4.08 −4.07 −19.44–4.08 >0.05

Ankle Joint

Ankle Flexion −39.14 −96.09–0.84 −26.22 −90.24–0.95 >0.05

Subtalar Joint

Subtalar Flexion 10.44 −0.20–14.23 10.49 −0.20–15.31 >0.05

Bold numerals in the last column represent the statistical significant conditions with significance level of 0.05.

3.4. Correlation Analysis for Joint Dynamics

The heatmaps of correlation matrices between joint dynamic parameters for TD
(Figure 17a) and CH subjects (Figure 17b) reveal both similarities and differences in joint
moment interactions. While some relationships remain stable, others show noticeable shifts,
particularly in the coupling or decoupling of joint dynamics. The use of correlation matrices
complements the boxplots and statistical analysis by offering a comprehensive view of
dynamic interactions, which is crucial for understanding moment-related compensatory
mechanisms in CH individuals.
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The comparison of joint moment correlations between TD participants and CH patients
reveals mostly stable interactions, with marginal differences in joint coordination patterns.
For instance, the correlation between HF and HA remains consistent across both groups
(0.54 in TD and 0.53 in CH), indicating preserved interaction between these joints. Similarly,
the relationship between PR and LR remains stable, with correlations of −0.51 for TD
participants and −0.50 for CH patients. The correlation between HF and LR also shows
negligible change, shifting from 0.70 in TD to 0.71 in CH. These findings suggest that
certain joint interactions, such as those involving HF, PR, and LR, are preserved regardless
of health status. On the other hand, some joint correlations exhibit an increase in CH
patients, indicating stronger coupling in certain movement patterns. For example, the
correlation between AA and HR shows a slight increment, rising from 0.48 in TD to 0.52
in CH. Similar trends are observed in the correlations between HF and HR (−0.10 to
−0.17), LB and KA (−0.27 to −0.39), HA and PT (0.33 to 0.40), and HA and SA (−0.75
to −0.82). A notable change is seen in the correlation between KA and HF, which shifts
from 0.11 in TD to −0.13 in CH, reflecting altered coupling dynamics, potentially driven by
compensatory strategies during movement. However, this inverse relationship suggests
that these joints may operate in opposite phases during the gait cycle in CH patients, likely
due to biomechanical or neuromuscular adaptations. Conversely, a few correlations show a
decrease in CH patients, indicating weaker relationships in joint coordination. For example,
the correlation between PT and KA reduces from 0.75 in TD to 0.67 in CH, suggesting
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diminished interaction between these joints. Similarly, the correlations between SA and LB
(−0.43 to −0.39), PT and HF (0.31 to 0.24), AA and HF (0.50 to 0.41), and AA and LB (0.27
to 0.21) all decrease in CH patients, pointing to weaker joint coordination and potentially
altered interaction.

Overall, while certain joint interactions remain stable across TD and CH participants,
others exhibit notable changes, reflecting the nuanced effects of cerebral palsy on joint
coordination. Increased correlations in specific joint pairs suggest compensatory strategies
to maintain functional movement, whereas decreased correlations highlight weakened
relationships that may impair coordination. These shifts in joint interactions highlight how
health conditions can significantly impact the biomechanical relationships between joints
during motion.

4. Conclusions

This study investigated biomechanical differences in joint angles and moments be-
tween contralateral hemiplegia (CH) patients and typically developed (TD) individuals
across various planes. Using OpenSim’s inverse kinematics and inverse dynamics tools,
lower limb joint angles and moments have been computed and compared. Statistical
methods such as mean absolute deviation, box plots, t-tests, and correlation analysis were
applied to identify significant differences. Significant differences were observed in certain
joint kinematics, particularly in hip and pelvis movements. Hip flexion, pelvic tilt, lum-
bar extension, and ankle joint angles showed significant differences (p < 0.05) between
TD and hemiplegic subjects, indicating altered biomechanics. In contrast, hip adduction,
hip rotation, pelvis rotation, lumbar rotation, lumbar bending, knee, and subtalar joint
angles and dynamics showed no significant differences (p > 0.05). Pelvic dynamics were
mixed, with significant tilt but no notable change in rotation. The differences in joint
angle correlations between TD and CH participants reveal altered motor coordination and
biomechanical interactions in cerebral palsy. Stronger coupling in some joint pairs, like HR
and LR, and disrupted interactions, such as PR and LR, reflect compensatory mechanisms
and neuromuscular impairments in CH. While some joint interactions (moments) remain
stable, others show marginal to moderate correlation shifts, highlighting the complexity
of motor control in hemiplegia. These findings highlighted OpenSim’s ability to identify
biomechanical changes in hemiplegic patients, and are pivotal for understanding compen-
satory mechanisms in CH patients and provide foundational data to inform rehabilitation
strategies aimed at restoring normal joint function and coordination.

This study has limitations, including the use of mean bone lengths for scaling in
OpenSim models instead of subject-specific models, which may reduce the granularity
of the analysis. The absence of real-time motion capture and ground reaction force data
also limits the evaluation of dynamic interactions, and the relatively small, less diverse
sample size may affect the generalizability of the findings. Future work should address
these limitations by developing personalized musculoskeletal models to better understand
joint dynamics in hemiplegic patients, particularly in the hip, pelvis, and lumbar regions.
Integrating real-time motion analysis with OpenSim could enhance rehabilitation strategies,
especially for pelvic tilt and lumbar extension, while expanding the study to include a
larger, more diverse cohort would provide a broader understanding of hemiplegia’s impact
and support tailored interventions for recovery.
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