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Abstract: Background: Linear methods of analysis of variability are concerned with the
magnitude of variability and often consider deviations from a central mean as errors. The
utilization of nonlinear tools to examine variability allows for the exploration and measure-
ment of the patterns of variability displayed by the system. This methodology explores the
deterministic properties of biological signals, in this case, gait, or how previous iterations
within the gait cycle influence subsequent and future iterations. The nonlinear analysis
of gait variability of the joint angle time series has not been investigated in developing
children. Methods: We collected 3 min of treadmill walking data for 28 children between
the ages of 2 and 10 years old and analyzed their joint angle time series using nonlinear
methods of analysis (sample entropy, largest Lyapunov exponent, and recurrence quantifi-
cation analysis). Results: Our results indicate that the nonlinear variability of children’s gait
increases as children age. Interestingly, this contrasts with the findings from our previous
work that showed a decrease in linear variability as children age. The combination of a
decrease in linear variability, or a refined and improved stability of gait, as well as an in-
crease in nonlinear variability, or an increase in the sophistication and quality of movement
patterns, suggest an overall maturation of the neuromuscular system. Conclusions: Our
study indicate that there is a refining of gait with age and motor maturation. This refining
speaks to the overall multifaceted organization of systems that defines the maturation
of gait.

Keywords: biomechanics; variability; gait; nonlinear; children

1. Introduction
Researchers interested in the movement sciences have used linear methods to analyze

movement variability. When linear tools are utilized, the magnitude of variability becomes
the emphasis, while assuming that all repetitions of a behavior, such as gait cycles, are
independent from what has happened before or what will happen after [1]. Another way
to view variability in the world of movement science is through the lens of nonlinear
methods. Nonlinear methods focus on the structure of variability by scrutinizing patterns
in the variability across time. Nonlinear methods view the determinism within a series
of movements or how one movement influences the next, and so on. Both the magnitude
and structure of variability offer valuable information regarding movement and can differ
between persons [1]. Interestingly, some movements may fall within the same magnitude of
variability, but possess differences in the structure of the variability. This is a key distinction,
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as structure of variability has been associated with the health of biological systems. Healthy
systems are those that possess a certain amount of stability but remain adaptable [2]. Both
exceeding regularity across repetitions, with extremely periodic organization of variability,
as well as an absence of consistency, with random organization of variability, have been
linked to poor health [3,4]. The extrema of variability can be thought of as two ends of a
spectrum, but in the middle lives a deterministic but non-periodic pattern that provides a
balance between flexibility and stability of behavior. This middle state is associated with
maximum complexity, which is defined as the highly variable fluctuation in physiological
processes, resembling mathematical chaos [1].

The utilization of nonlinear tools allows for the exploration and measurement of the
patterns of variability displayed by the system. These nonlinear tools can be used to study
gait in humans [5–8]. Previous work investigating the progression and development of
the gait of healthy children has focused mostly on the spatiotemporal, kinematic, and
kinetic aspects of children’s gait, with little focus on variability. Of the investigations into
variability, there has been even less of a focus with an eye toward the nonlinear dynamics
and nonlinear variability. One particular study showed that the variability measures of the
spatiotemporal aspect of children’s gait, as well as the nonlinear measures of the dynamics
of gait in children, are age-dependent, and do not mature and become adult-like until after
10 years of age [9]. These results were in contradiction to the previously conceived notion
that children’s gait was mostly mature by the age of 4 years old [10]. In a previous study,
we indicated a lack of early maturation of spatiotemporal measures as well, utilizing both
linear and nonlinear methods [11]. The linear methods of variability (standard deviation
and coefficient of variation) proved to be extremely age-dependent, with younger children
exhibiting more variability than their older counterparts. Nonlinear measures also showed
differences with age, as regularity (entropy) and complexity (detrended fluctuation analysis
(DFA)) increased with age.

The use of entropy and DFA to analyze the spatiotemporal time series provided new
insight into the developmental trajectories of children’s gait, while paving the way for
further investigation into different aspects of children’s gait using nonlinear variability
methods [9]. A specific aspect of gait that nonlinear methods have been successful at
analyzing in adult gait is the joint angle time series during walking. Entropy, largest
Lyapunov exponent (LyE), and recurrence quantification analysis (RQA) have all been
used to analyze the joint angle time series of the lower extremity to describe gait variability
and gait variability changes [12–15]. Specifically, analyzing the joint angle time series with
nonlinear measures has enabled the detection of differences between adult walkers, with
and without pathology [8,12,14].

Utilizing these nonlinear measures for the investigation of joint angle time series
in children has not been examined. To further the understanding of children’s gait and
the development of children’s gait variability, nonlinear measures of analysis should be
utilized on the joint angle time series of children. Differences in the structure of variability
of the joint angle time series of children at different points in their development should
be identifiable using nonlinear tools of analysis. The use of nonlinear methods could shed
light on the potential control mechanisms being used and the refinement of gait throughout
development and will provide a launching point for the comparison of the natural trajectory
of gait development. This new information can be used to help understand various types
of pathological gait in children.

The purpose of this study was to assess the development of kinematic gait variability
in children from ages 2–10 years old using nonlinear methods of analysis. To do this, we
grouped children into four separate age groups consisting of 2–3-year-olds, 4–5-year-olds,
6–7-year-olds, and 8–10-year-olds. We then had them walk on the treadmill for three
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minutes. The joint angle time series of the lower extremity were then analyzed. We
hypothesized that as children aged, their gait variability will become more regular and
exhibit greater adaptability. We also hypothesized that with age, children will display less
stride-to-stride fluctuation in their gait.

2. Materials and Methods
2.1. Subjects

Our study involved 28 boys and girls split into four separate age groups. The age
groups consisted of 2–3-year-olds (n = 7), 4–5-year-olds (n = 7), 6–7-year-olds (n = 7), and
8–10-year-olds (n = 7) (Table 1). Power analysis was conducted to determine that groups
of four subjects were necessary to achieve adequate power. All participants provided
parental informed consent and child assent before any research activities commenced, as
approved by the university’s Institutional Review Board. Healthy children, free from any
musculoskeletal disorders, injuries, or developmental delays, were included in our study.

Table 1. Subject demographics by age group for participants.

2–3-Year-Olds
(N = 7)

4–5-Year-Olds
(N = 7)

6–7-Year-Olds
(N = 7)

8–10-Year-Olds
(N = 7)

Gender (male/female) 4/3 3/4 3/4 3/4
Age (months) 35.9 ± 7.3 58.57 ± 5.7 81.57 ± 6.37 115.6 ± 6.02
Body mass (kg) 13.67 ± 2.5 17.31 ± 1.4 25.99 ± 4.97 38.44 ± 5.23
Body height (m) 0.92 ± 0.08 1.04 ± 0.03 1.22 ± 0.06 1.38 ± 0.03
Onset of walking (months) 12.14 ± 0.69 12.57 ± 2.15 12.21 ± 1.30 13.29 ± 0.95
Walking speed (m) 0.56 ± 0.16 0.78 ± 0.14 0.92 ± 0.08 1.07 ± 0.11

Note: values are shown as mean ± standard deviation.

2.2. Experimental Procedures

All subjects were provided with tight-fitting athletic shorts to be worn during the
data collection process to ensure accurate marker placement for the motion capture system.
The subject’s shoe size was then determined, and they were provided with a standard
laboratory shoe (Nike Free 5.0). The lab-provided shoe was employed to eliminate potential
differences in footwear styles worn by the children, while also providing a normalized
control. The Nike Free 5.0 is considered a “minimalist” style shoe, which mostly mimics
barefoot conditions [16]. Study participants were given time to familiarize themselves
with the treadmill (Bertec Corp, Columbus, OH, USA) and the lab shoe, while a self-
selected comfortable walking speed was determined. Previous work has shown that
treadmill walking functions to reduce gait variability compared to overground walking [17].
However, this work analyzed spatiotemporal gait and not the variability of joint angle
kinematics. Treadmill walking was selected in comparison to overground walking because
of the requirement for a long time-series of unbroken data. Retro-reflective markers were
then placed on the subject at specific anatomical locations of the foot, shank, thigh, and
pelvis, according to the marker systems established by Nigg et al. [18] and Vaughan
et al. [19]. Lower extremity marker locations were acquired for one three-minute trial per
condition at 100 Hz using an eight-camera motion capture system (Vicon Motion Systems,
Oxford, UK). The participants performed the walking trials positioned 2 m in front of a
screen in a virtual reality environment. However, to simulate walking on a stationary
treadmill with static optic flow stimulation, a picture of the static room surround was
projected on the virtual reality screens. The two conditions consisted of at least 3 min of
walking at a self-selected comfortable walking speed while barefoot and while wearing
the lab-provided footwear. The data were left unfiltered so as not to affect or influence
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potential biological signals within the data. It has been shown that filtering the data can
lead to altered nonlinear results [20].

2.3. Data Analysis

We computed the joint angle time series in the sagittal plane of the ankle, knee, and
hip joints utilizing Visual 3D software (C-Motion Inc., Germantown, MD, USA). Data
processing and analysis were conducted using custom Matlab scripts (The Mathworks
Inc., Natick, MA, USA). Lower extremity sagittal plane joint angles were analyzed because
most bipedal motion occurs in the sagittal plane during gait. Sample entropy (SE) was
calculated to determine the organization of the gait variability of each joint angle time
series. A lower value of SE alludes to more rigidity and regularity and thus, less variability
in the time series. A larger value of SE means more variability in the time series. The
structure of the gait variability during the walking trials was evaluated using the LyE.
The methodology of the LyE has been outlined in great detail by Wurdeman et al. in a
separate publication [13]. In brief, the LyE measures the exponential divergence of the
movement trajectories within a reconstructed state space [21]. Recurrence quantification
analysis (RQA) of the joint angle time was also performed. RQA is a method of nonlinear
data analysis for the investigation of dynamical systems. RQA quantifies the number and
duration of recurrences of a dynamical system presented by its phase space trajectory, and
it has been proven to be a good way to analyze the predictability and complexity of the
system. We evaluated the percent determinism (%Det) and mean line (MLine) for our
data. %Det is the percentage of recurrent points forming line segments parallel to the main
diagonal line. The presence of these lines reveals the existence of a deterministic structure.
MLine is the average length of all the line segments on the RQA plot. The MLine is a good
indicator of the predictability of the time series.

2.4. Statistical Analysis

A one-way ANOVA with four factors (four age groups) was performed to determine
the statistical significance for each of the dependent variables for the ankle, knee, and hip
joints angle time series, respectively. The dependent variables include SE, LyE, %Det, and
MLine. When significant effects were determined, post hoc comparisons were performed
using the Tukey method. Statistical analysis was completed in SPSS Statistics 29 (IBM
Corporation, Armonk, NY, USA).

3. Results
Mean and standard deviations of all variables can be found in Table 2. Significance

between the variables is denoted by symbols.

Table 2. Group means for sample entropy, largest Lyapunov exponent, and recurrence quantification
analysis for the 2–3, 4–5, 6–7, and 8–10-year-old groups.

2–3
(N = 7)

4–5
(N = 7)

6–7
(N = 7)

8–10
(N = 7) Sig.

Sample Entropy

Ankle 0.322 ± 0.016 0.315 ± 0.037 0.308 ± 0.045 0.282 ± 0.048
Hip 0.223 ± 0.025 0.226 ± 0.016 0.229 ± 0.016 0.195 ± 0.021 ∥¶

Knee 0.230 ± 0.017 0.233 ± 0.036 0.232 ± 0.043 0.261 ± 0.053

Largest Lyapunov Exponent

Ankle 1.06 ± 0.10 1.17 ± 0.10 1.28 ± 0.10 1.43 ± 0.08 †‡∥¶

Hip 0.60 ± 010 0.67 ± 0.13 0.75 ± 0.19 0.89 ± 0.15 ‡∥

Knee 1.11 ± 0.08 1.19 ± 0.08 1.24 ± 0.10 1.30 ± 0.10 †‡
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Table 2. Cont.

2–3
(N = 7)

4–5
(N = 7)

6–7
(N = 7)

8–10
(N = 7) Sig.

Recurrence Quantification Analysis
%Determinism

Ankle 73.2 ± 9.9 78.8 ± 5.6 83.6 ± 6.2 86.9 ± 4.2 †‡

Hip 76.9 ± 6.7 80.9 ± 2.4 90.5 ± 4.9 95.7 ± 2.2 †‡§∥
Knee 71.5 ± 9.8 76.1 ± 13.5 77.5 ± 15.3 83.9 ± 5.3

Mean Line

Ankle 2.51 ± 0.24 2.55 ± 0.44 2.60 ± 0.27 3.06 ± 0.40 ‡

Hip 4.87 ± 1.75 5.31 ± 1.04 5.91 ± 1.41 6.10 ± 1.44
Knee 2.10 ± 0.59 2.66 ± 0.59 2.60 ± 0.39 3.51 ± 1.21 ‡

Note: values are shown as mean ± standard deviation. Special characters for the following represent a p < 0.05,
significant differences between groups 2–3 and 4–5. † p < 0.05, significant differences between groups 2–3 and 6–7.
‡ p < 0.05, significant differences between groups 2–3 and 8–10. § p < 0.05, significant differences between groups
4–5 and 6–7. ∥ p < 0.05, significant differences between groups 4–5 and 8–10. ¶ p < 0.05, significant differences
between groups 6–7 and 8–10.

To see if the results were age-dependent and not a function of biomechanical changes
related to growth, we investigated the linear relationship between both age and leg length
and age and gait speed. In the present study, both leg length (r = 0.966 p < 0.001) and
gait speed (r = 0.839 p < 0.001) increased linearly with age. Thus, we also conducted
comparisons while normalizing the dependent variables with respect to both leg length
and gait speed.

3.1. Sample Entropy of Joint Angle Time Series

The results for the SE analysis are shown in Figure 1. There was only a significant
effect of age for the SE of the hip joint time series F (3,24) = 4.296, p = 0.015. Specifically,
post hoc comparisons revealed that the 8–10-year-old group exhibited significantly greater
SE at the hip compared to both the 4–5-year-old group (p = 0.04) and the 6–7-year-old group
(p = 0.019). The SE for the ankle and knee joint angle time series did not produce an effect
(p > 0.05). There was a significant linear trend of age for SE at the hip (r = 0.394, p < 0.05), as
well as at the knee (r = 0.481, p < 0.05), but not at the ankle (p > 0.05).

Figure 1. Violin and box plots showing the distribution of the sample entropy of the ankle, hip, and
knee joint time series. Data are reported for the age groups.

Normalized comparisons for SE showed a significant effect at both the hip F (3,24) = 29.51,
p < 0.001, and knee F (3,24) = 10.17, p < 0.001, joints. Post hoc comparisons at the hip joint
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showed that the normalized SE of the hip joint angle time series decreased with age.
Specifically, the 2–3-year-old group showed the greatest SE, and it was significantly greater
than that of all other age groups (p < 0.05). The 4–5-year-old group exhibited significantly
greater SE than did the 6–7-year-old group and the 8–10-year-old group (p < 0.05). The
results for the 6–7-year-old group were also significantly greater than for the 8–10-year-old
group (p < 0.05). Post hoc comparisons at the knee joint showed that the normalized
SE of the knee joint angle time series also significantly decreased with age, except for in
the 6–7-year-old group and 8–10-year-old group (p < 0.05). Specifically, the 2–3-year-old
group exhibited a significantly greater normalized SE at the knee compared to that of the
4–5-year-old, 6–7-year-old, and 8–10-year-old groups (p < 0.05). The 4–5-year-old group
showed a significantly greater normalized SE at the knee than did the 6–7-year-old group
and the 8–10-year-old group (p < 0.05), but there was no significant difference between the
6–7-year-old and the 8–10-year-old groups (p > 0.05).

3.2. Lyapunov Exponent of Joint Angle Time Series

The results for the LyE analysis are shown in Figure 2. There were significant effects
of age group for the LyE of the ankle joint time series F (3,24) = 19.686, p < 0.001, the hip
joint time series F (3,24) = 4.958, p = 0.008, and the knee joint time series F (3,24) = 6.151,
p = 0.003. Post hoc comparisons at the ankle joint indicate that the 2–3-year-old group
exhibited significantly lower LyE compared to that of the 6–7-year-old group (p = 0.001)
and the 8–10-year-old group (p < 0.001). The 4–5-year-old group showed significantly
lower LyE values compared to those of the 8–10-year-old group (p < 0.001), while LyE of
the 6–7-year-old group was also significantly lower than that of the 8–10-year-old group
(p = 0.032). At the hip joint, post hoc comparisons showed that LyE of the 8–10-year-old
group was significantly greater than that of both the 2–3-year-old group (p = 0.006) and
the 4–5-year-old group (p = 0.048). At the knee joint, LyE was significantly lower for the
2–3-year-old group compared to that of both the 6–7-year-old group (p = 0.043) and the
8–10-year-old group (p = 0.002). There were no significant differences in LyE for the other
group comparisons at the respective joints. There was a significant linear effect of age on
LyE at the ankle (r = 0.374, p = 0.05), at the hip (r = 0.470, p < 0.05), and at the knee (r = 0.445,
p < 0.05).

Figure 2. Violin and box plots showing the distribution of the largest Lyapunov exponent of the
ankle, hip, and knee joint time series. Data are reported for the age groups.

Normalized comparisons for LyE showed that a significant effect remained for the
ankle F (3,24) = 7.592, p = 0.001, and knee F (3,24) = 17.533, p < 0.001, joint angle time series.
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Post hoc comparisons for the normalized LyE at the ankle revealed that the 2–3-year-old
group exhibited a significantly lower normalized LyE than did the 6–7-year-old and 8–10-
year-old groups (p < 0.05). The 4–5-year-old group also displayed a significantly lower
normalized LyE at the ankle compared to that of the 6–7-year-old and 8–10-year-old groups
(p < 0.05). There were no differences between the 2–3-year-old group and the 4–5-year-old
group or the 6–7-year-old group and the 8–10-year-old group (p > 0.05) for the normalized
LyE at the ankle. At the knee joint, post hoc comparisons showed that the normalized LyE
significantly decreased with age. Specifically, the 2–3-year-old group showed a significantly
greater normalized LyE compared to that of the 4–5-year-old, the 6–7-year-old, and the
8–10-year-old groups (p < 0.05). The 4–5-year-old group showed a significantly greater
normalized LyE at the knee compared to that of both the 6–7-year-old and the 8–10-year-old
groups (p < 0.05). There were no significant differences between the 2–3-year-old group
and the 4–5-year-old group or the 6–7-year-old group and the 8–10-year-old group.

3.3. Recurrence Quantification Analysis of Joint Angle Time Series

The results for the RQA analysis are shown in Figure 3. There was a significant effect
for %Det of the joint angle time series at the ankle F (3,24) = 5.326, p = 0.006. Specifically, post
hoc tests showed that the 2–3-year-old group exhibited significantly less %Det than did both
the 6–7-year-old group (p = 0.040) and the 8–10-year-old group (p = 0.005). No significant
differences were found between the other age groups. There was also a significant effect
for %Det at the hip joint F (3,24) = 26.072, p < 0.001. Specifically, post hoc tests show that
the 2–3-year-old group showed a significantly lower %Det at the hip compared to both the
6–7-year-old group (p < 0.001) and the 8–10-year-old group (p < 0.001). The 4–5-year-old
group also showed a significantly lower %Det than either the 6–7-year-old group (p = 0.003)
or the 8–10-year-old group (p < 0.001). There were no other significant differences at the
hip joint for %Det between groups. At the knee joint, there was not a significant effect for
%Det. There was a significant linear trend for %Det of the ankle (r = 0.628, p < 0.05) and the
hip (r = 0.864, p < 0.05), but not at the knee (p > 0.05).

Normalized comparisons for %Det showed there were significant effects for the ankle F
(3,24) = 14.076, p < 0.001, hip F (3,24) = 30.874, p < 0.001, and knee F (3,24) = 10.518, p < 0.001
joints. Specifically, at the ankle joint, normalized %Det was significantly greater for the
2–3-year-old group than for the 6–7-year-old group and the 8–10-year-old group (p < 0.05).
The 4–5-year-old group also showed significantly greater normalized %Det compared to
the 6–7-year-old-group and the 8–10-year-old group (p < 0.05), but it was not different
from that of the 2–3-year-old group. There were also no differences for normalized %Det
at the ankle for the 6–7-year-old and 8–10-year-old groups (p > 0.05). At the hip joint,
normalized %Det was significantly greater in the 2–3-year-old groups than in all three other
groups (p < 0.05). The 4–5-year-old group also showed significantly greater normalized
%Det than did the 6–7-year-old group and the 8–10-year-old group (p < 0.05), but there was
no difference between the 6–7-year-old group and the 8–10-year-old group (p > 0.05). At the
knee joint, normalize %Det was significantly greater in the 2–3-year-old group than in the
6–7-year-old group and the 8–10-year-old group (p < 0.05), but the 2–3-year-old group did
not differ from from the 4–5-year-old group. The 4–5-year-old group showed significantly
greater %Det at the knee joint than did the 6–7-year-old group and the 8–10-year-old group
(p < 0.05), while the results for the 6–7-year-old group and the 8–10-year-old group did not
differ (p > 0.05).
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Figure 3. Violin and box plots showing the distribution of the recurrence quantification analysis
(%Determinism, mean line) of the ankle, hip, and knee joint time series. Data are reported for the
age groups.

There was a significant effect for MLine at the ankle joint F (3,24) = 3.773, p = 0.024.
Specifically, post hoc tests showed that the 8–10-year-old group had a significantly greater
MLine at the ankle joint compared to that of the 2–3-year-old group (p = 0.031). There were
no other significant group differences for ankle MLine. There was not a significant effect for
MLine at the hip joint (p > 0.05). There was a significant effect for MLine at the knee joint
F (3,24) = 4.175, p = 0.016. Specifically, post hoc comparisons show that the 8–10-year-old
group displayed a significantly greater MLine at the knee joint compared to that of the
2–3-year-old group (p = 0.010). No other significant differences existed between groups
for MLine at the knee joint. There was a significant linear trend for MLine at the ankle
(r = 0.489, p < 0.05) and the knee (r = 0.645, p < 0.05) but not at the hip joint (p > 0.05).

The normalized comparisons for MLine revealed a significant effect at the ankle joint
F (3,24) = 11.826, p < 0.001. Post hoc comparisons of the normalized MLine at the ankle joint
revealed that the 2–3-year-old group exhibited a significantly greater normalized MLine
compared to that of the 4–5-year-old, 6–7-year-old, and 8–10-year-old groups (p < 0.05).
The 4–5-year-olds also showed a significantly greater normalized MLine compared to that
of the 6–7-year-old and the 8–10-year-old groups (p < 0.05). There was not a significant
difference between the 6–7-year-old and the 8–10-year-old groups (p > 0.05).

4. Discussion
The purpose of our study was to assess the development of joint kinematic gait

variability in typically developing children using nonlinear methods of analysis. We
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specifically wanted to investigate the joint angle time series of the lower extremities of
children, at various developmental stages, while walking. Previous studies had investigated
the spatiotemporal aspect of children’s gait throughout development using nonlinear
methods, but little emphasis has been placed on the joint angle time series of walking.
We hypothesized that there would be an age effect on the gait variability of children.
Specifically, as children aged, their gait variability would become more regular and more
stable, as well as exhibit less stride-to-stride fluctuation.

Our hypotheses were partially supported for this study. Similar to results obtained
by analysis of the spatiotemporal aspect of children’s gait variability [8,10], the nonlinear
analysis of the joint angle time series showed that the structure of gait variability in children
is age-dependent. There was an age effect on the LyE and %Det of the joint angle time series
at the ankle, hip, and knee. All three joints showed an increase with age, from youngest to
oldest, for both the LyE and %Det. Neither the SE or MLine showed the same pattern of
results or possessed the same significant differences. This is especially interesting because
the SE of the stride time and stride length time series was age-dependent in the results of
previous work [10]. Our results indicated a significant age effect on the nonlinear variability
of the joint angle time series, even after normalizing for both leg length and gait speed to
account for the natural differences in children due to growth and physical variations.

Interestingly, the direction of the age-dependency of the spatiotemporal variables of
previous work contrasts with many of the results found in this study using the kinematic
variables. The variability of the spatiotemporal variables decreased with age, while the
variability of the kinematic variables increased as the children got older. These results could
point to a hierarchy of behaviors to accomplish the desired goal of walking. To achieve the
most stable gait, spatiotemporal variability may need to be minimized. Thus, as children
age, the variability within their spatiotemporal gait decreases. How they accomplish this
may be explained by the increase in their kinematic variability. Using the framework of
dynamical systems theory [21], altering the parameter of kinematic variability, or in this
case, increasing the complexity of the overall movement patterns, results in less variability
in the spatiotemporal variables and an increased stability of gait.

As expected, our results indicate that gait variability and the structure of gait variability
are continually changing throughout development in children and are extremely age-
dependent. The LyE is able to examine the quality and structure of movement patterns
and movement stability [12] and in this case, the joint angles of gait in children. Larger
magnitudes of LyE indicate greater attractor divergence of the gait patterns and can be
equated with maturing control of the motor system. As our groups increased in age
from 2 to 10 years old, the LyE also increased. This was evident at the ankle, hip, and
knee joints, respectively. As children gain more walking experience, the quality of their
movements become more refined, exhibiting more stable, yet complex, movements. As
children age, their gait variability may be becoming more chaotic, but it is also becoming
more deterministic as well.

In our study, the RQA measure of %Det proved to also increase as children aged. Like
the LyE outcomes, the %Det results span across all three joints of the lower extremity. %Det
can be interpreted as a decrease in variability as a system becomes more deterministic. This
seems to contradict and go against the premise of this study. However, when coupled
with the LyE results, the overall results of our study agree with the theory of optimal
movement variability. The theory of optimal movement variability posits that there is a
sweet spot of sorts for movement variability. Too much or too little variability is unfavorable
and detrimental to the system, as evidenced by a connection with unhealthy systems.
Interpreting our results using this theoretical basis shows that the time series is increasingly
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diverging, while also becoming more deterministic. This behavior shows the complexity
and sophistication of the development of movement trajectories.

As children get older and gain more experience walking, their neuromuscular systems
and overall motor control are also maturing [22]. The combination of the maturation of the
systems and gained experience leads to an overall better organization of movements [9,10].
The increase in divergent patterns, as well as increased determinism, makes for a more
robust movement system that is capable of dealing with small perturbations without
flaw. When we get older and become more experienced walkers, we can navigate our
environment with ease. Small increases in rise or bumps in a path that could elicit falls in
the youngest of walkers are hardly noticed by the more adept, experienced walker.

Our results provide a blueprint for the developmental trajectory of gait variability in
typically developing children. Investigations into the maturation of gait and the devel-
opment of movement pathology in children can be weighed against our results to better
understand how pathology affects gait variability. This information can then be used to
further understand the mechanisms underlying that pathology and aid and assist with
the creation of therapies and new movement strategies to eventually overcome pathology.
Future studies should consider exploration into the development of neuromuscular control
utilizing the combination of nonlinear methods of analysis of children’s gait and other
measures, such as electromyography. A multifaceted approach to researching the develop-
ment of motor control in children, utilizing nonlinear analysis, could shed light on many
of the unknowns regarding how children self-organize and how their motor movements
develop organically throughout childhood. Limitations to our study include the children’s
potential lack of experience walking on the treadmill. Although all four groups were
equally inexperienced walking on a treadmill, to minimize this effect, all participants were
given an acclimation period of walking until comfort was perceived. Another limitation is
that the children were provided with the specific footwear used for this study to control
for varying types of shoes that the children currently wore. The effect of the new shoe was
minimized through the acclimation period on the treadmill.

5. Conclusions
In conclusion, we set out to investigate the development of gait variability in children

by analyzing the stride-to-stride dynamics of the joint angle times series. Our study
was able to advance the understanding of the developmental trajectory of children’s gait
variability by utilizing nonlinear methods of analysis. Children’s gait becomes more refined
with age, gaining sophistication by increasing adaptability, as well as organization. Walking
experience alone is not the driving force, as many systems within the developing child are
maturing. This type of investigation merely scratches the surface regarding obtaining a full
understanding of the maturation dynamics of children’s gait. A multifaceted approach to
understanding motor control should be utilized in future research.
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