Qualitative-Quantitative Assessment of Geodiversity of Western Samoa (SW Pacific) to Identify Places of Interest for Further Geoconservation, Geoeducation, and Geotourism Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Aim
2.2. Volcanic History of the Western Samoa Islands
2.3. Methodology
2.4. Equation
2.5. Example of Calculation and Creation
- (1)
- Required data:
- (a)
- DEM (Digital Elevation Model) needed for geomorphological assessment. In this project, SRTM 1-Arc-Second Global model [31] was downloaded through SRTM downloader (QGIS plugin).
- (b)
- Geological map of the territory and some additional information (if they are acceptable such as thematic maps).
- (2)
- (3)
- The grid (module in QGIS) was created with parameters 2.5 km horizontal spacing and 2.5 km vertical spacing according to the scale mentioned in previous section [31]. Then, the grid was cut according to the territory of research (clip tool in QGIS).
- (4)
- A slope model was created from SRTM to provide information about steepness measured in degrees, utilized to calculate geomorphological values (Table 1):
- (a)
- Gaussian filter is SAGA (System for Automated Geoscientific Analyses) (http://www.saga-gis.org/en/index.html (accessed on 29 September 2021)) [43] tool acceptable in QGIS, which can be utilized for smoothing the SRTM model.
- (b)
- (c)
- (5)
- The geological map [30] was transferred into QGIS and polygonised into a geological model:
- (a)
- (b)
- Transformation created polygonal files with associated values (Table 1).
- (c)
- (6)
- The equation of arithmetic average (Section 2.4) is acceptable in Zonal Statistic Tool of QGIS [42,48]. Hence, it was applied to the created grid vector file as impute layer and raster of geology (Step 5 (c)) and geomorphology (Step 4 (c)) for calculation of mean value of each region (grid cell). The result is presented in the next section (Figure 6 and Figure 7).
- (7)
- (8)
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gray, M. Geodiversity: Developing the paradigm. Proc. Geol. Assoc. 2008, 119, 287–298. [Google Scholar] [CrossRef]
- Gray, M. Geodiversity: The backbone of geoheritage and geoconservation. In Geoheritage; Elsevier: Amsterdam, The Netherland, 2018; pp. 13–25. [Google Scholar]
- Kozłowski, S. Postępy prac nad ochroną georóżnorodności w Polsce. Kosmos 2001, 50, 151–165. [Google Scholar]
- Kozłowski, S. Geodiversity. The concept and scope of geodiversity. Przegląd Geol. 2004, 52, 833–837. [Google Scholar]
- Serrano, E.; Ruiz-Flaño, P. Geodiversity: A theoretical and applied concept. Geogr. Helv. 2007, 62, 140–147. [Google Scholar] [CrossRef]
- Manosso, F.C.; de Nóbrega, M.T. Calculation of geodiversity from landscape units of the Cadeado range region in Paraná, Brazil. Geoheritage 2016, 8, 189–199. [Google Scholar] [CrossRef]
- Brocx, M.; Semeniuk, V. Geoheritage and geoconservation-history, definition, scope and scale. J. R. Soc. West. Aust. 2007, 90, 53–87. [Google Scholar]
- Cengiz, C.; Şahin, Ş.; Cengiz, B.; Başkır, M.B.; Keçecioğlu Dağlı, P. Evaluation of the Visitor Understanding of Coastal Geotourism and Geoheritage Potential Based on Sustainable Regional Development in Western Black Sea Region, Turkey. Sustainability 2021, 13, 11812. [Google Scholar] [CrossRef]
- Williams, M.A.; McHenry, M.T.; Boothroyd, A. Geoconservation and geotourism: Challenges and unifying themes. Geoheritage 2020, 12, 1–14. [Google Scholar] [CrossRef]
- Ólafsdóttir, R.; Dowling, R. Geotourism and geoparks—A tool for geoconservation and rural development in vulnerable environments: A case study from Iceland. Geoheritage 2014, 6, 71–87. [Google Scholar] [CrossRef]
- Bentivenga, M.; Cavalcante, F.; Mastronuzzi, G.; Palladino, G.; Prosser, G. Geoheritage: The foundation for sustainable geotourism. Geoheritage 2019, 11, 1367–1369. [Google Scholar] [CrossRef] [Green Version]
- Zwoliński, Z.; Najwer, A.; Giardino, M. Methods for assessing geodiversity. In Geoheritage; Elsevier: Amsterdam, The Netherlands, 2018; pp. 27–52. [Google Scholar]
- Gray, M. Geodiversity: Valuing and Conserving Abiotic Nature, 2nd ed.; Wiley-Blackwell: Chichester, UK, 2013. [Google Scholar]
- Gordon, J.E.; Barron, H.F. The role of geodiversity in delivering ecosystem services and benefits in Scotland. Scott. J. Geol. 2013, 49, 41–58. [Google Scholar] [CrossRef] [Green Version]
- Cañadas, E.S.; Flaño, P.R. Geodiversidad: Concepto, evaluación y aplicación territorial: El caso de Tiermes Caracena (Soria). Boletín de la asociación de geógrafos españoles 2007, 45, 79–98. [Google Scholar]
- Brilha, J.; Gray, M.; Pereira, D.I.; Pereira, P. Geodiversity: An integrative review as a contribution to the sustainable management of the whole of nature. Environ. Sci. Policy 2018, 86, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Gray, M. Geodiversity and geoconservation: What, why, and how? In The George Wright Forum; George Wright Society: Houghton, MI, USA, 2005; Volume 22, pp. 4–12. ISSN1 0732-4715. Available online: http://www.georgewright.org/223.pdf (accessed on 5 September 2021)ISSN2 0732-4715.
- Zakharovskyi, V.; Németh, K. Quantitative-Qualitative Method for Quick Assessment of Geodiversity. Land 2021, 10, 946. [Google Scholar] [CrossRef]
- da Silva, M.L.N.; do Nascimento, M.A.L.; Mansur, K.L. Quantitative assessments of geodiversity in the area of the Seridó Geopark Project, Northeast Brazil: Grid and centroid analysis. Geoheritage 2019, 11, 1177–1186. [Google Scholar] [CrossRef]
- Dias, M.C.S.S.; Domingos, J.O.; dos Santos Costa, S.S.; do Nascimento, M.A.L.; da Silva, M.L.N.; Granjeiro, L.P.; de Lima Miranda, R.F. Geodiversity Index Map of Rio Grande do Norte State, Northeast Brazil: Cartography and Quantitative Assessment. Geoheritage 2021, 13, 1–15. [Google Scholar] [CrossRef]
- Pál, M.; Albert, G. Refinement Proposals for Geodiversity Assessment—A Case Study in the Bakony–Balaton UNESCO Global Geopark, Hungary. ISPRS Int. J. Geo-Inf. 2021, 10, 566. [Google Scholar] [CrossRef]
- Ferrando, A.; Faccini, F.; Paliaga, G.; Coratza, P. A quantitative GIS and AHP based analysis for geodiversity assessment and mapping. Sustainability 2021, 13, 10376. [Google Scholar] [CrossRef]
- Melelli, L. Geodiversity: A new quantitative index for natural protected areas enhancement. Geoj. Tour. Geosites 2014, 1, 27–37. [Google Scholar]
- Filocamo, F.; Di Paola, G.; Mastrobuono, L.; Rosskopf, C.M. MoGeo, a Mobile Application to Promote Geotourism in Molise Region (Southern Italy). Resources 2020, 9, 31. [Google Scholar] [CrossRef] [Green Version]
- Perotti, L.; Bollati, I.M.; Viani, C.; Zanoletti, E.; Caironi, V.; Pelfini, M.; Giardino, M. Fieldtrips and Virtual Tours as Geotourism Resources: Examples from the Sesia Val Grande UNESCO Global Geopark (NW Italy). Resources 2020, 9, 63. [Google Scholar] [CrossRef]
- Piacentini, T.; Miccadei, E.; Berardini, G.; Aratari, L.; De Ioris, A.; Calista, M.; Carabella, C.; d’Arielli, R.; Mancinelli, V.; Paglia, G. Geological tourist mapping of the mount serrone fault geosite (Gioia dei Marsi, central Apennines, Italy). J. Maps 2019, 15, 298–309. [Google Scholar] [CrossRef]
- Miccadei, E.; Piacentini, T.; Esposito, G. Geomorphosites and geotourism in the parks of the Abruzzo region (Central Italy). Geoheritage 2011, 3, 233–251. [Google Scholar] [CrossRef]
- Bétard, F.; Peulvast, J.-P. Geodiversity hotspots: Concept, method and cartographic application for geoconservation purposes at a regional scale. Environ. Manag. 2019, 63, 822–834. [Google Scholar] [CrossRef] [PubMed]
- McDougall, I. Age of volcanism and its migration in the Samoa Islands. Geol. Mag. 2010, 147, 705–717. [Google Scholar] [CrossRef]
- Kear, D. Geological notes on western Samoa. N. Z. J. Geol. Geophys. 1967, 10, 1446–1451. [Google Scholar] [CrossRef]
- Eros, U. USGS EROS Archive—Digital Elevation—Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global. 2015. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-srtm-1 (accessed on 5 September 2021).
- Gray, M. Geodiversity: Valuing and Conserving Abiotic Nature; John Wiley & Sons: Hoboken, NJ, USA, 2004; pp. 1–433. ISBN 978-0-470-74215-0. [Google Scholar]
- Gray, M. Geoheritage 1. Geodiversity: A new paradigm for valuing and conserving geoheritage. Geosci. Can. 2008, 35, 51–59. [Google Scholar]
- Davis, W.M. The geomorphic cycle. Geomorphic J. 1899, 14, 481–504. [Google Scholar] [CrossRef]
- Davis, W.M. Peneplains and the geographical cycle. Bull. Geol. Soc. Am. 1922, 33, 587–598. [Google Scholar] [CrossRef]
- Davis, W.M. The geographical cycle. In Climatic Geomorphology; Springer: Heidelberg, Germany, 1973; pp. 19–50. [Google Scholar]
- Blatt, H.; Jones, R.L. Proportions of exposed igneous, metamorphic, and sedimentary rocks. Geol. Soc. Am. Bull. 1975, 86, 1085–1088. [Google Scholar] [CrossRef]
- Dolan, M.F. Calculation of Slope Angle from Bathymetry Data Using GIS-Effects of Computation Algorithm, Data Resolution and Analysis Scale; NGU Report 2012.041; Geologi for Samfunnet—Geology for Society (Norges geologiske undersøkelse—Geological Survey of Norway): Trondheim, Norway, 2012; p. 45. [Google Scholar]
- Albut, S. Estimation of Slope Length (L) And Slope Steepness Factor (S) of RUSLE Equation by QGIS. Int. J. Res. Eng. Sci. 2020, 8, 43–48. [Google Scholar]
- Kim, K.W. The comparison of visibility measurement between image-based visual range, human eye-based visual range, and meteorological optical range. Atmos. Environ. 2018, 190, 74–86. [Google Scholar] [CrossRef]
- Tobias, M.M.; Mandel, A.I. Literature Mapper: A QGIS Plugin for Georeferencing Citations in Zotero. Air Soil Water Res. 2021, 14, 11786221211009209. [Google Scholar] [CrossRef]
- Baghdadi, N.; Mallet, C.; Zribi, M. QGIS and Generic Tools; John Wiley & Sons hichester: West Sussex, UK, 2018; Volume 1. [Google Scholar]
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for automated geoscientific analyses (SAGA) v. 2.1. 4. Geosci. Model Dev. 2015, 8, 1991–2007. [Google Scholar] [CrossRef] [Green Version]
- Schillaci, C.; Braun, A. Terrain Analysis and Landform Recognition; Geomorphological Techniques—Chapter 2, Section 4.2; British Society for Geomorphology: London, UK, 2015; pp. 1–18. ISSN 2047-0371. [Google Scholar]
- Zevenbergen, L.W.; Thorne, C.R. Quantitative analysis of land surface topography. Earth Surf. Process. Landf. 1987, 12, 47–56. [Google Scholar] [CrossRef]
- Reuter, H.; Nelson, A. Geomorphometry in ESRI packages. Dev. Soil Sci. 2009, 33, 269–291. [Google Scholar]
- GRASS GIS 7.2.1svn Reference Manual. Available online: http://wgbis.ces.iisc.ernet.in/grass/grass72/manuals/ (accessed on 31 August 2021).
- Jung, M. LecoS-A QGIS Plugin for Automated Landscape Ecology Analysis; PeerJ PrePrints: San Diego, CA, USA, 2013; p. 10. [Google Scholar] [CrossRef]
Main Values of Geodiversity | Additional Values of Geodiversity | ||||||
---|---|---|---|---|---|---|---|
Values (5-point system) | Elements of Geodiversity | ||||||
Morphology | Geology | Additional features for assessment | Volcano | Hydrology | |||
Slope degree | Rock type and ages (Right column for Samoa) | Eruptive centres | Coastal sections | ||||
1 (the lowest) | 0–7.5 | The rock type values are no applicable for the Western Samoa region: all are Extrusive rocks, the highest value—5 | Alluvium (Holocene) | The mark is applicable for the areas of spreading, with the lowest value—1 | Quality system | ||
2 (low) | 7.5–22.5 | Mulifanua | 0.5 | Sand beaches | |||
3 (middle) | 22.5–45 | Lefaga | 0.75 | Shallow water sand with rocks | |||
4 (high) | 45–67.5 | Puapua and Fagaloa | 1 | Hard rock cliffs and reefs | |||
5 (the highest) | 67.5–90 | Aopo and Vini Tuff |
Eras | Crystalline | Sedimentary | No. of Usable Data Points | |||
---|---|---|---|---|---|---|
Extrusive | Intrusive | Metamorphic and “Precambrian” | Total | |||
Cenozoic | 4 | 0 | 0 | 4 | 33 | 290 |
Mesozoic | 2 | 1 | 1 | 4 | 18 | 177 |
Palaeozoic | 1 | 1 | <1 | 2 | 13 | 117 |
Precambrian | 0 | 6 | 15 | 21 | 1 | 173 |
Age unknown | 1 | 1 | 1 | 3 | 1 | 26 |
Total | 8 | 9 | 17 | 34 | 66 | 783 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zakharovskyi, V.; Németh, K. Qualitative-Quantitative Assessment of Geodiversity of Western Samoa (SW Pacific) to Identify Places of Interest for Further Geoconservation, Geoeducation, and Geotourism Development. Geographies 2021, 1, 362-380. https://doi.org/10.3390/geographies1030020
Zakharovskyi V, Németh K. Qualitative-Quantitative Assessment of Geodiversity of Western Samoa (SW Pacific) to Identify Places of Interest for Further Geoconservation, Geoeducation, and Geotourism Development. Geographies. 2021; 1(3):362-380. https://doi.org/10.3390/geographies1030020
Chicago/Turabian StyleZakharovskyi, Vladyslav, and Károly Németh. 2021. "Qualitative-Quantitative Assessment of Geodiversity of Western Samoa (SW Pacific) to Identify Places of Interest for Further Geoconservation, Geoeducation, and Geotourism Development" Geographies 1, no. 3: 362-380. https://doi.org/10.3390/geographies1030020
APA StyleZakharovskyi, V., & Németh, K. (2021). Qualitative-Quantitative Assessment of Geodiversity of Western Samoa (SW Pacific) to Identify Places of Interest for Further Geoconservation, Geoeducation, and Geotourism Development. Geographies, 1(3), 362-380. https://doi.org/10.3390/geographies1030020