Spatial and Temporal Change of Land Cover in Protected Areas in Malawi: Implications for Conservation Management
Abstract
:1. Introduction
Protected Areas in Malawi
2. Materials and Methods
2.1. Study Area Description
2.2. Data Acquisition and Processing
2.3. Land Cover Change Analysis
2.4. Landscape Pattern Analysis
- Clumpiness index (CLUMPY = 0 when the patches are distributed randomly and approach 1 when the patch type is maximally aggregated),
- Landscape Shape Index (LSI increases without limit as the patch type becomes more disaggregated),
- Aggregation Index (AI = 0 when the patches are maximally disaggregated and equals 100 when the patches are maximally aggregated into a single compact patch),
- Patch Density (PD measures the number of patches/100 ha),
- Shannon’s Diversity Index (SHDI increases when the proportional distribution of area among patch types becomes more equitable), and
- Largest Patch Index (LPI = percentage of landscape occupied by the largest patch in the ecosystem).
2.5. Spatial Modelling of Vegetation Cover
3. Results
3.1. Image Classification
3.2. Transitions of Land Use/Cover Change
3.3. Landscape Composition and Configuration
3.4. Intensity and Spatial Pattern of Vegetation Cover
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferreira, I.J.M.; Bragion, G.D.R.; Ferreira, J.H.D.; Benedito, E.; Couto, E.V.D. Landscape pattern changes over 25 years across a hotspot zone in southern Brazil. South. For. J. For. Sci. 2019, 81, 175–184. [Google Scholar] [CrossRef]
- Hansen, A.J.; Neilson, R.P.; Dale, V.H.; Flather, C.H.; Iverson, L.R.; Currie, D.J.; Shafer, S.; Cook, R.; Bartlein, P.J. Global change in forests: Responses of species, communities, and biomes: Interactions between climate change and land use are projected to cause large shifts in biodiversity. BioScience 2001, 51, 765–779. [Google Scholar] [CrossRef]
- Wang, H.; Liu, X.; Zhao, C.; Chang, Y.; Liu, Y.; Zang, F. Spatial-temporal pattern analysis of landscape ecological risk assessment based on land use/land cover change in Baishuijiang National nature reserve in Gansu Province, China. Ecol. Indic. 2021, 124, 107454. [Google Scholar] [CrossRef]
- Xing, L.; Hu, M.; Wang, Y. Integrating ecosystem services value and uncertainty into regional ecological risk assessment: A case study of Hubei Province, Central China. Sci. Total Environ. 2020, 740, 140126. [Google Scholar] [CrossRef]
- Lin, J.C.; Su, S.J. Landscape Conservation as a Tool for Sustainability. In Geoparks of Taiwan; Springer: Berlin/Heidelberg, Germany, 2019; pp. 133–141. [Google Scholar]
- Sene-Harper, A.; Matarrita-Cascante, D.; Larson, L.R. Leveraging local livelihood strategies to support conservation and development in West Africa. Environ. Dev. 2018, 29, 16–28. [Google Scholar] [CrossRef]
- Serrano, O.; Kelleway, J.J.; Lovelock, C.; Lavery, P.S. Conservation of Blue Carbon Ecosystems for Climate Change Mitigation and Adaptation. In Coastal Wetlands; Elsevier: Amsterdam, The Netherlands, 2019; pp. 965–996. [Google Scholar]
- Ickowitz, A.; Powell, B.; Rowland, D.; Jones, A.; Sunderland, T. Agricultural intensification, dietary diversity, and markets in the global food security narrative. Glob. Food Secur. 2018, 20, 9–16. [Google Scholar] [CrossRef]
- Leitão, A.B.; Miller, J.; Ahern, J.; McGarigal, K. Measuring Landscapes: A Planner’s Handbook; Island Press: Washington, DC, USA, 2012. [Google Scholar]
- Jin, X.; Jin, Y.; Mao, X. Ecological risk assessment of cities on the Tibetan Plateau based on land use/land cover changes—Case study of Delingha City. Ecol. Indic. 2019, 101, 185–191. [Google Scholar] [CrossRef]
- Zhang, W.; Chang, W.J.; Zhu, Z.C.; Hui, Z. Landscape ecological risk assessment of Chinese coastal cities based on land use change. Appl. Geogr. 2020, 117, 102174. [Google Scholar] [CrossRef]
- Lloret, F.; Calvo, E.; Pons, X.; Díaz-Delgado, R. Wildfires and landscape patterns in the Eastern Iberian Peninsula. Landsc. Ecol. 2002, 17, 745–759. [Google Scholar] [CrossRef] [Green Version]
- Finlayson, M.; Cruz, R.D.; Davidson, N.; Alder, J.; Cork, S.; de Groot, R.S.; Lévêque, C.; Milton, G.R.; Peterson, G. Millennium Ecosystem Assessment: Ecosystems and Human Well-Being: Wetlands and Water Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Heatherington, C.; Jorgensen, A.; Walker, S. Understanding landscape change in a former brownfield site. Landsc. Res. 2017, 44, 19–34. [Google Scholar] [CrossRef]
- Hessburg, P.; Salter, R.; Richmond, M.; Smith, B. Ecological subregions of the Interior Columbia Basin, USA. Appl. Veg. Sci. 2000, 3, 163–180. [Google Scholar] [CrossRef]
- Rautaray, S.K.; Ghosh, B.C.; Mittra, B.N. Effect of fly ash, organic wastes and chemical fertilizers on yield, nutrient uptake, heavy metal content and residual fertility in a rice–mustard cropping sequence under acid lateritic soils. Bioresour. Technol. 2003, 90, 275–283. [Google Scholar] [CrossRef]
- Larson, A.J.; Churchill, D. Tree spatial patterns in fire-frequent forests of western North America, including mechanisms of pattern formation and implications for designing fuel reduction and restoration treatments. For. Ecol. Manag. 2012, 267, 74–92. [Google Scholar] [CrossRef]
- UNEP-WCMC. Protected Area Profile for Africa from the World Database of Protected Areas. 2022. Available online: https://www.protectedplanet.net/ (accessed on 6 February 2022).
- Curry, C.J.; Davis, B.W.; Bertola, L.D.; White, P.A.; Murphy, W.J.; Derr, J.N. Spatiotemporal Genetic Diversity of Lions Reveals the Influence of Habitat Fragmentation across Africa. Mol. Biol. Evol. 2020, 38, 48–57. [Google Scholar] [CrossRef]
- Martins-Oliveira, A.T.; Zanin, M.; Canale, G.R.; da Costa, C.A.; Eisenlohr, P.V.; de Melo, F.C.S.A.; de Melo, F.R. A global review of the threats of mining on mid-sized and large mammals. J. Nat. Conserv. 2021, 62, 126025. [Google Scholar] [CrossRef]
- Mundia, C.N.; Murayama, Y. Analysis of Land Use/Cover Changes and Animal Population Dynamics in a Wildlife Sanctuary in East Africa. Remote Sens. 2009, 1, 952–997. [Google Scholar] [CrossRef] [Green Version]
- Kpienbaareh, D.; Kerr, R.B.; Luginaah, I.; Wang, J.; Lupafya, E.; Dakishoni, L.; Shumba, L. Spatial and Ecological Farmer Knowledge and Decision-Making about Ecosystem Services and Biodiversity. Land 2020, 9, 356. [Google Scholar] [CrossRef]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 2019, 236, 111402. [Google Scholar] [CrossRef]
- Herold, M.; Scepan, J.; Clarke, K.C. The Use of Remote Sensing and Landscape Metrics to Describe Structures and Changes in Urban Land Uses. Environ. Plan. A Econ. Space 2002, 34, 1443–1458. [Google Scholar] [CrossRef] [Green Version]
- Von Holdt, J.; Eckardt, F.D.; Baddock, M.C.; Wiggs, G.F.S. Assessing Landscape Dust Emission Potential Using Combined Ground-Based Measurements and Remote Sensing Data. J. Geophys. Res. Earth Surf. 2019, 124, 1080–1098. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Peng, J.; Feng, X.; He, G.; Fan, J. Fusion method for infrared and visible images by using non-negative sparse representation. Infrared Phys. Technol. 2014, 67, 477–489. [Google Scholar] [CrossRef]
- Cardille, J.A.; Turner, M.G. Understanding landscape metrics. In Learning Landscape Ecology; Gergel, S.E., Turner, M.G., Eds.; Springer: New York, NY, USA, 2017; pp. 45–63. [Google Scholar]
- Tarolli, P.; Rizzo, D.; Brancucci, G. Terraced Landscapes: Land Abandonment, Soil Degradation, and Suitable Management. In World Terraced Landscapes: History, Environment, Quality of Life; Springer: Berlin/Heidelberg, Germany, 2019; pp. 195–210. [Google Scholar]
- Liu, X.; Yu, L.; Si, Y.; Zhang, C.; Lu, H.; Yu, C.; Gong, P. Identifying patterns and hotspots of global land cover transitions using the ESA CCI Land Cover dataset. Remote Sens. Lett. 2018, 9, 972–981. [Google Scholar] [CrossRef]
- Potapov, P.; Hansen, M.C.; Kommareddy, I.; Kommareddy, A.; Turubanova, S.; Pickens, A.; Adusei, B.; Tyukavina, A.; Ying, Q. Landsat Analysis Ready Data for Global Land Cover and Land Cover Change Mapping. Remote Sens. 2020, 12, 426. [Google Scholar] [CrossRef] [Green Version]
- Gerard, F.; Petit, S.; Smith, G.; Thomson, A.; Brown, N.; Manchester, S.; Wadsworth, R.; Bugár, G.; Halada, L.; Bezák, P.; et al. Land cover change in Europe between 1950 and 2000 determined employing aerial photography. Prog. Phys. Geogr. Earth Environ. 2010, 34, 183–205. [Google Scholar] [CrossRef] [Green Version]
- Fry, J.A.; Coan, M.J.; Homer, C.G.; Meyer, D.K.; Wickham, J.D. Completion of the National Land Cover Database (NLCD) 1992–2001 land cover change retrofit product. US Geol. Surv. Open-File Rep. 2008, 1379, 18. [Google Scholar]
- Vittek, M.; Brink, A.; Donnay, F.; Simonetti, D.; Desclée, B. Land Cover Change Monitoring Using Landsat MSS/TM Satellite Image Data over West Africa between 1975 and 1990. Remote Sens. 2014, 6, 658–676. [Google Scholar] [CrossRef] [Green Version]
- Walpole, M.J.; Goodwin, H.J. Local attitudes towards conservation and tourism around Komodo National Park, Indonesia. Environ. Conserv. 2001, 28, 160–166. [Google Scholar] [CrossRef]
- Mkanda, F.X.; Munthali, S.M. Public attitudes and needs around Kasungu National Park, Malawi. Biodivers. Conserv. 1994, 3, 29–44. [Google Scholar] [CrossRef]
- Munthali, S.M.; Mughogho, D.E. Economic incentives for conservation: Beekeeping and Saturniidae caterpillar utilization by rural communities. Biodivers. Conserv. 1992, 1, 143–154. [Google Scholar] [CrossRef]
- Jachmann, H.; Bell, R.H.V. The assessment of elephant numbers and occupance by means of droppings counts in the Kasungu National Park, Malawi. Afr. J. Ecol. 1979, 17, 231–239. [Google Scholar] [CrossRef]
- Bhima, R.; Howard, J.; Nyanyale, S. The status of elephants in Kasungu National Park, Malawi, in 2003. IUCN 2003, 31. [Google Scholar]
- Mauambeta, D.D. Private investments to support protected areas: Experiences from Malawi. Institutions 2003. [Google Scholar]
- Government of Malawi. 2018 Population and Housing Census, Zomba. 2018. Available online: https://malawi.unfpa.org/sites/default/files/resource-pdf/2018CensusPreliminaryReport.pdf%0D (accessed on 6 February 2022).
- Bryant, R.L. Power, knowledge and political ecology in the third world: A review. Prog. Phys. Geogr. 1998, 22, 79–94. [Google Scholar] [CrossRef]
- Bryant, R.L.; Bailey, S. Third World Political Ecology; Routledge: New York, NY, USA, 1997. [Google Scholar]
- McCarthy, N.; Brubaker, J.; De La Fuente, A. Vulnerability to Poverty in Rural Malawi; World Bank: Washington, DC, USA, 2016. [Google Scholar]
- Mukhopadhyay, S.; Bouwman, H. Multi-actor collaboration in platform-based ecosystem: Opportunities and challenges. J. Inf. Technol. Case Appl. Res. 2018, 20, 47–54. [Google Scholar] [CrossRef]
- Theu, R. Poverty and Overpopulation Worsen Poaching; National Publications Limited: Blantyre, Malawi, 2006. [Google Scholar]
- Hamel, R. Drought-Ravaged Malawi Faces Largest Humanitarian Emergency in its History; Social Science in Humanitarian Action Platform: Brighton, UK, 2016. [Google Scholar]
- Jachmann, H.; Bell RH, V. Utilization by elephants of the Brachystegia woodlands of the Kasungu National Park, Malawi. Afr. J. Ecol. 1985, 23, 245–258. [Google Scholar] [CrossRef]
- Bell, R.H.V. Wildlife management in Malawi. In Problems in Managemenf of Locally Abundant Wild Mammals; Jewel, P.A., Holt, S.J., Eds.; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Mkanda, F.X. The effects of prescribed burning on soil and vegetation in Kasungu National Park, Malawi. Nyala 1993, 17, 17–22. [Google Scholar]
- Davis, R.S.; Stone, E.L.; Gentle, L.K.; Mgoola, W.O.; Uzal, A.; Yarnell, R.W. Spatial partial identity model reveals low densities of leopard and spotted hyaena in a miombo woodland. J. Zool. 2020, 313, 43–53. [Google Scholar] [CrossRef]
- Warnatzsch, E.A.; Reay, D.S. Temperature and precipitation change in Malawi: Evaluation of CORDEX-Africa climate simulations for climate change impact assessments and adaptation planning. Sci. Total Environ. 2018, 654, 378–392. [Google Scholar] [CrossRef]
- Jewell, P.A. Problems in Management of Locally Abundant Wild Mammals; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Costantini, M.L.; Zaccarelli, N.; Mandrone, S.; Rossi, D.; Calizza, E.; Rossi, L. NDVI spatial pattern and the potential fragility of mixed forested areas in volcanic lake watersheds. For. Ecol. Manag. 2012, 285, 133–141. [Google Scholar] [CrossRef]
- Kpienbaareh, D.; Sun, X.; Wang, J.; Luginaah, I.; Kerr, R.B.; Lupafya, E.; Dakishoni, L. Crop Type and Land Cover Mapping in Northern Malawi Using the Integration of Sentinel-1, Sentinel-2, and PlanetScope Satellite Data. Remote Sens. 2021, 13, 700. [Google Scholar] [CrossRef]
- Doepke, F. Spatially coinciding objects. Ratio 1982, 24, 45–60. [Google Scholar]
- Jiang, H.; Lu, N.; Yao, L. A High-Fidelity Haze Removal Method Based on HOT for Visible Remote Sensing Images. Remote Sens. 2016, 8, 844. [Google Scholar] [CrossRef] [Green Version]
- Chander, G.; Markham, B. Revised landsat-5 tm radiometric calibration procedures and postcalibration dynamic ranges. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2674–2677. [Google Scholar] [CrossRef] [Green Version]
- Poursanidis, D.; Chrysoulakis, N.; Mitraka, Z. Landsat 8 vs. Landsat 5: A comparison based on urban and peri-urban land cover mapping. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 259–269. [Google Scholar] [CrossRef]
- Falcucci, A.; Maiorano, L.; Boitani, L. Changes in land-use/land-cover patterns in Italy and their implications for biodiversity conservation. Landsc. Ecol. 2007, 22, 617–631. [Google Scholar] [CrossRef]
- Anderson, J.R. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; US Government Printing Office: Washington, DC, USA, 1976; Volume 964. [Google Scholar]
- Allaby, M. A Dictionary of Plant Sciences; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Ye, P. Fuzzy K-means algorithms based on membership function improvement. Chang. Inst. Technol. 2007. [Google Scholar]
- Bezdek, J.C. Pattern Recognition with Fuzzy Objective Function Algorithms; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Haque, M.I.; Basak, R. Land cover change detection using GIS and remote sensing techniques: A spatio-temporal study on Tanguar Haor, Sunamganj, Bangladesh. Egypt. J. Remote Sens. Sp. Sci. 2017, 20, 251–263. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- McGarigal, K.; Cushman, S.A.; Ene, E. Spatial Pattern Analysis Program for Categorical and Continuous Maps. 2012. Available online: http://www.umass.edu/landeco/research/fragstats/fragstatshtml (accessed on 6 February 2022).
- Gustafson, E.J. Minireview: Quantifying Landscape Spatial Pattern: What Is the State of the Art? Ecosystems 1998, 1, 143–156. [Google Scholar] [CrossRef]
- Riitters, K.H.; O’Neill, R.V.; Hunsaker, C.T.; Wickham, J.D.; Yankee, D.H.; Timmins, S.P.; Jones, K.B.; Jackson, B.L. A factor analysis of landscape pattern and structure metrics. Landsc. Ecol. 1995, 10, 23–39. [Google Scholar] [CrossRef]
- Appiah, J.O.; Agyemang-Duah, W.; Sobeng, A.K.; Kpienbaareh, D. Analysing patterns of forest cover change and related land uses in the Tano-Offin forest reserve in Ghana: Implications for forest policy and land management. Trees For. People 2021, 5, 100105. [Google Scholar] [CrossRef]
- Badora, K.; Wróbel, R. Changes in the Spatial Structure of the Landscape of Isolated Forest Complexes in the 19th and 20th Centuries and Their Potential Effects on Supporting Ecosystem Services Related to the Protection of Biodiversity Using the Example of the Niemodlin Forests (SW Poland). Sustainability 2020, 12, 4237. [Google Scholar]
- De Vreese, R.; Leys, M.; Fontaine, C.M.; Dendoncker, N. Social mapping of perceived ecosystem services supply–The role of social landscape metrics and social hotspots for integrated ecosystem services assessment, landscape planning and management. Ecol. Indic. 2016, 66, 517–533. [Google Scholar] [CrossRef]
- Qi, J.; Kerr, Y.; Chehbouni, A. External factor consideration in vegetation index development. In Proceedings of 6th International Symposium on Physical Measurements and Signatures in Remote Sensing; PII: S0034-4257(96)00248-9|Elsevier Enhanced Reader; 1994; pp. 723–730. Available online: https://ntrs.nasa.gov/citations/19950010656 (accessed on 14 December 2021).
- Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- De Jong, R.; De Bruin, S.; De Wit, A.; Schaepman, M.E.; Dent, D.L. Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sens. Environ. 2011, 115, 692–702. [Google Scholar] [CrossRef] [Green Version]
- Griffith, J.A.; Martinko, E.A.; Whistler, J.L.; Price, K.P. Interrelationships among landscapes, NDVI, and stream water quality in the US Central Plains. Ecol. Appl. 2002, 12, 1702–1718. [Google Scholar] [CrossRef]
- Zurlini, G.; Zaccarelli, N.; Petrosillo, I. Indicating retrospective resilience of multi-scale patterns of real habitats in a landscape. Ecol. Indic. 2006, 6, 184–204. [Google Scholar] [CrossRef]
- Daggers, T.D.; Herman, P.; Van Der Wal, D. Seasonal and Spatial Variability in Patchiness of Microphytobenthos on Intertidal Flats From Sentinel-2 Satellite Imagery. Front. Mar. Sci. 2020, 7, 392. [Google Scholar] [CrossRef]
- Waters, N. Tobler’s first law of geography. Int. Encycl. Geogr. People Earth Environ. Technol. 2016, 1–15. [Google Scholar]
- Schabenberger, O.; Gotway, C.A. Statistical Methods for Spatial Data Analysis; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Smith, T.E. Notebook on spatial data analysis. Lect. Note. 2016. Available online: http://www.seas.upenn.edu/~ese502/#notebook (accessed on 14 December 2021).
- Webster, R.; Oliver, M.A. Geostatistics for Environmental Scientists; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Cambardella, C.A.; Moorman, T.B.; Novak, J.M.; Parkin, T.B.; Karlen, D.L.; Turco, R.F.; Konopka, A.E. Field-Scale Variability of Soil Properties in Central Iowa Soils. Soil Sci. Soc. Am. J. 1994, 58, 1501–1511. [Google Scholar] [CrossRef]
- Kpienbaareh, D.; Appiah, J.O. A geospatial approach to assessing land change in the built-up landscape of Wa Municipality of Ghana. Geogr. Tidsskr. J. Geogr. 2019, 119, 1–15. [Google Scholar] [CrossRef]
- Magliulo, P.; Cusano, A.; Russo, F. Land-Use Changes in the Sele River Basin Landscape (Southern Italy) between 1960 and 2012: Comparisons and Implications for Soil Erosion Assessment. Geographies 2021, 1, 315–332. [Google Scholar] [CrossRef]
- Nagendra, H.; Lucas, R.; Honrado, J.P.; Jongman, R.H.; Tarantino, C.; Adamo, M.; Mairota, P. Remote sensing for conservation monitoring: Assessing protected areas, habitat extent, habitat condition, species diversity, and threats. Ecol. Indic. 2013, 33, 45–59. [Google Scholar] [CrossRef]
- Newton, A.C.; Hill, R.A.; Echeverría, C.; Golicher, D.; Benayas, J.M.R.; Cayuela, L.; Hinsley, S.A. Remote sensing and the future of landscape ecology. Prog. Phys. Geogr. Earth Environ. 2009, 33, 528–546. [Google Scholar] [CrossRef] [Green Version]
- Government of Malawi. National Forest Policy. 2016. Available online: https://www.dof.gov.mw/storage/app/media/Policies%20and%20Strategies/National%20Forest%20Policy%202016.pdf (accessed on 6 February 2022).
- Gaveau, D.L.A.; Epting, J.; Lyne, O.; Linkie, M.; Kumara, I.; Kanninen, M.; Leader-Williams, N. Evaluating whether protected areas reduce tropical deforestation in Sumatra. J. Biogeogr. 2009, 36, 2165–2175. [Google Scholar] [CrossRef]
- Van der Hoek, Y. The potential of protected areas to halt deforestation in Ecuador. Environ. Conserv. 2017, 44, 124–130. [Google Scholar] [CrossRef]
- Kamoto, J.; Clarkson, G.; Dorward, P.; Shepherd, D. Doing more harm than good? Community based natural resource management and the neglect of local institutions in policy development. Land Use Policy 2013, 35, 293–301. [Google Scholar] [CrossRef] [Green Version]
- Munthali, M.G.; Davis, N.; Adeola, A.M.; Botai, J.O.; Kamwi, J.M.; Chisale, H.L.; Orimoogunje, O.O. Local Perception of Drivers of Land-Use and Land-Cover Change Dynamics across Dedza District, Central Malawi Region. Sustainability 2019, 11, 832. [Google Scholar] [CrossRef] [Green Version]
- Ngwira, S.; Watanabe, T. An Analysis of the Causes of Deforestation in Malawi: A Case of Mwazisi. Land 2019, 8, 48. [Google Scholar] [CrossRef] [Green Version]
- Zulu, L.C.; Richardson, R. Charcoal, livelihoods, and poverty reduction: Evidence from sub-Saharan Africa. Energy Sustain. Dev. 2013, 17, 127–137. [Google Scholar] [CrossRef]
- Djenontin, I.N.; Zulu, L.C. The quest for context-relevant governance of agro-forest landscape restoration in Central Malawi: Insights from local processes. For. Policy Econ. 2021, 131, 102555. [Google Scholar] [CrossRef]
- Lindsey, P.A.; Balme, G.; Becker, M.; Begg, C.; Bento, C.; Bocchino, C.; Dickman, A.; Diggle, R.W.; Eves, H.; Henschel, P.; et al. The bushmeat trade in African savannas: Impacts, drivers, and possible solutions. Biol. Conserv. 2013, 160, 80–96. [Google Scholar] [CrossRef] [Green Version]
- AWF. Land Conservation. 2018. Available online: https://www.awf.org/sites/default/files/public/media/Resources_0/Facts%2520%2526amp%253B%2520Brochures/2018_Factsheet_Land_Conservation_English.pdf (accessed on 6 February 2022).
- Ntshanga, N.K.; Procheş, S.; Slingsby, J.A. Assessing the threat of landscape transformation and habitat fragmentation in a global biodiversity hotspot. Austral Ecol. 2021, 46, 1052–1069. [Google Scholar] [CrossRef]
- Poodat, F.; Arrowsmith, C.; Fraser, D.; Gordon, A. Prioritizing Urban Habitats for Connectivity Conservation: Integrating Centrality and Ecological Metrics. Environ. Manag. 2015, 56, 664–674. [Google Scholar] [CrossRef]
- Ji, L.; Peters, A.J. Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote Sens. Environ. 2003, 87, 85–98. [Google Scholar] [CrossRef]
- Doherty, T.S.; Hays, G.C.; Driscoll, D.A. Human disturbance causes widespread disruption of animal movement. Nat. Ecol. Evol. 2021, 5, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Atauri, J.A.; de Lucio, J.V. The role of landscape structure in species richness distribution of birds, amphibians, reptiles and lepidopterans in Mediterranean landscapes. Landsc. Ecol. 2001, 16, 147–159. [Google Scholar] [CrossRef]
- Tucker, M.A.; Böhning-Gaese, K.; Fagan, W.F.; Fryxell, J.M.; Van Moorter, B.; Alberts, S.C.; Ali, A.H.; Allen, A.M.; Attias, N.; Avgar, T.; et al. Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science 2018, 359, 466–469. [Google Scholar] [CrossRef] [Green Version]
- Burkey, T.V. Extinction in Nature Reserves: The Effect of Fragmentation and the Importance of Migration between Reserve Fragments. Oikos 1989, 55, 75–81. [Google Scholar] [CrossRef]
- Everatt, K.T.; Moore, J.F.; Kerley, G.I. Africa’s apex predator, the lion, is limited by interference and exploitative competition with humans. Glob. Ecol. Conserv. 2019, 20, e00758. [Google Scholar] [CrossRef]
- Rafiq, K.; Jordan, N.; Wilson, A.M.; McNutt, J.W.; Hayward, M.W.; Meloro, C.; Wich, S.A.; Golabek, K.A. Spatio-temporal factors impacting encounter occurrences between leopards and other large African predators. J. Zool. 2019, 310, 191–200. [Google Scholar] [CrossRef]
- Robinson, R.; Crick, H.; Learmonth, J.A.; Maclean, I.; Thomas, C.D.; Bairlein, F.; Forchhammer, M.C.; Francis, C.M.; Gill, J.A.; Godley, B.; et al. Travelling through a warming world: Climate change and migratory species. Endanger. Species Res. 2009, 7, 87–99. [Google Scholar] [CrossRef]
- Tauber, M.J.; Tauber, C.A.; Masaki, S. Seasonal Adaptations of Insects; Oxford University Press on Demand: Oxford, UK, 1986. [Google Scholar]
- Van Velden, J.L.; Wilson, K.; Lindsey, P.A.; McCallum, H.; Moyo, B.H.Z.; Biggs, D. Bushmeat hunting and consumption is a pervasive issue in African savannahs: Insights from four protected areas in Malawi. Biodivers. Conserv. 2020, 29, 1443–1464. [Google Scholar] [CrossRef]
- Zuidema, P.A.; Sayer, J.A.; Dijkman, W. Forest fragmentation and biodiversity: The case for intermediate-sized conservation areas. Environ. Conserv. 1996, 23, 290–297. [Google Scholar] [CrossRef]
- Liu, J.; Coomes, D.A.; Gibson, L.; Hu, G.; Liu, J.; Luo, Y.; Wu, C.; Yu, M. Forest fragmentation in China and its effect on biodiversity. Biol. Rev. 2019, 94, 1636–1657. [Google Scholar] [CrossRef]
- Wilson, M.C.; Chen, X.Y.; Corlett, R.T.; Didham, R.K.; Ding, P.; Holt, R.D.; Holyoak, M.; Hu, G.; Hughes, A.C.; Jiang, L.; et al. Habitat fragmentation and biodiversity conservation: Key findings and future challenges. Landsc. Ecol. 2016, 31, 219–227. [Google Scholar] [CrossRef] [Green Version]
- Grignolio, S.; Merli, E.; Bongi, P.; Ciuti, S.; Apollonio, M. Effects of hunting with hounds on a non-target species living on the edge of a protected area. Biol. Conserv. 2011, 144, 641–649. [Google Scholar] [CrossRef]
- Agrawal, A. Adaptive management in transboundary protected areas: The Bialowieza National Park and Biosphere Reserve as a case study. Environ. Conserv. 2000, 27, 326–333. [Google Scholar] [CrossRef]
- Jones, D.A.; Hansen, A.J.; Bly, K.; Doherty, K.; Verschuyl, J.; Paugh, J.I.; Carle, R.; Story, S.J. Monitoring land use and cover around parks: A conceptual approach. Remote Sens. Environ. 2009, 113, 1346–1356. [Google Scholar] [CrossRef]
Sensor Type | Acquisition Date | Scene ID | Sun Elevation |
---|---|---|---|
Landsat 8 OLI/TIRS | 31 July 2018 | LC81690692018212LGN00 | 46.57 |
Landsat 5 TM | 3 July 2008 | LT51690692008185JSA00 | 40.03 |
Landsat 5 TM | 21 July 1997 | LT51690691997202JSA00 | 41.62 |
Classes | 1997 | 2008 | 2018 | |||
---|---|---|---|---|---|---|
Producer’s Accuracy | User’s Accuracy | Producer’s Accuracy | User’s Accuracy | Producer’s Accuracy | User’s Accuracy | |
Forest | 0.88 | 0.97 | 0.86 | 0.95 | 0.96 | 0.92 |
Shrubs | 0.88 | 0.71 | 0.91 | 0.81 | 0.88 | 0.95 |
Bare land | 0.95 | 0.91 | 0.91 | 0.90 | 0.92 | 0.86 |
Water | 0.97 | 1.00 | 0.97 | 1.00 | 1.00 | 1.00 |
Overall accuracy | 0.92 | 0.90 | 0.93 | |||
Kappa coefficient | 0.87 | 0.86 | 0.89 |
Column ID | |||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
Row ID | From Class | To Class | 1997 to 2008 | 2008 to 2018 | Overall Change (1997 to 2018) |
1 | Forest | Shrubs | 145.21 | 384.30 | 531.31 |
2 * | Forest | Forest | 849.22 | 608.96 | 583.19 |
3 | Bare land | Shrubs | 251.23 | 325.09 | 321.37 |
4 | Forest | Bare land | 276.12 | 68.02 | 156.04 |
5 * | Bare land | Bare land | 617.58 | 530.31 | 571.62 |
6 * | Shrubs | Shrubs | 26.41 | 216.06 | 72.75 |
7 | Shrubs | Bare land | 67.28 | 167.31 | 37.98 |
8 | Shrubs | Forest | 102.84 | 39.48 | 85.78 |
9 | Bare land | Forest | 109.22 | 105.58 | 85.04 |
10 | Water | Bare land | 0.04 | 0.04 | 0.05 |
Total | 2445.14 | 2445.14 | 2445.14 |
Metrics | 1997 | 2008 | 2018 |
---|---|---|---|
Clumpiness (CLUMPY) | 0.60 | 0.70 | 0.73 |
Aggregation index (AI) | 79.86 | 84.12 | 95.80 |
Patch density (PD) | 25.86 | 21.14 | 16.61 |
Largest patch index (LPI) | 38.11 | 52.76 | 67.70 |
Landscape shape index (LSI) | 167.40 | 132.27 | 97.65 |
Shannon’s Diversity Index (SHDI) | 0.69 | 0.68 | 0.62 |
Year | Range (m) | Nugget (C0) | Sill (C0 + C) | C0/(C0 + C) | Autocorrelation |
---|---|---|---|---|---|
1997 | 1131.47 | 0.0258 | 1.080 | 0.023 | Strong |
2008 | 1001.02 | 0.297 | 0.584 | 0.509 | Medium |
2018 | 1147.90 | 9.16 × 10−4 | 0.507 | 0.002 | Strong |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kpienbaareh, D.; Batung, E.S.; Luginaah, I. Spatial and Temporal Change of Land Cover in Protected Areas in Malawi: Implications for Conservation Management. Geographies 2022, 2, 68-86. https://doi.org/10.3390/geographies2010006
Kpienbaareh D, Batung ES, Luginaah I. Spatial and Temporal Change of Land Cover in Protected Areas in Malawi: Implications for Conservation Management. Geographies. 2022; 2(1):68-86. https://doi.org/10.3390/geographies2010006
Chicago/Turabian StyleKpienbaareh, Daniel, Evans Sumabe Batung, and Isaac Luginaah. 2022. "Spatial and Temporal Change of Land Cover in Protected Areas in Malawi: Implications for Conservation Management" Geographies 2, no. 1: 68-86. https://doi.org/10.3390/geographies2010006
APA StyleKpienbaareh, D., Batung, E. S., & Luginaah, I. (2022). Spatial and Temporal Change of Land Cover in Protected Areas in Malawi: Implications for Conservation Management. Geographies, 2(1), 68-86. https://doi.org/10.3390/geographies2010006