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Article

Amplification in Time and Dilution in Space: Partitioning
Spatiotemporal Processes to Assess the Role of Avian-Host
Phylodiversity in Shaping Eastern Equine Encephalitis
Virus Distribution
John M. Humphreys

Pest Management Research Unit, Agricultural Research Service, US Department of Agriculture, 1500 N. Central
Avenue, Sidney, MT 59270, USA; john.humphreys@usda.gov

Abstract: Eastern equine encephalitis virus (EEEv) is an arthropod-borne virus and the causative
agent of neurologic disease in humans, horses, poultry, and wildlife. Although EEEv is known
to be transmitted in cycles involving avian hosts and ornithophilic mosquitoes, there is ongoing
debate about the role avian-host phylodiversity plays in diluting or amplifying virus prevalence
across geographic space and through time. This study leveraged seventeen years of non-human
EEEv detections to quantify possible EEEv dilution and amplification effects in response to avian-
host phylodiversity. In assessing EEEv and avian-host diversity relationships, comparisons were
performed to illustrate how modeling decisions aimed at capturing spatial patterns, temporal trends,
and space–time interactions impacted results and the interpretations drawn from those results.
Principal findings indicated that increased avian phylodiversity promotes EEEv dilution across
geographic space, but this dilution effect is scale-dependent and masked by amplification effects
that occur through time. Findings further demonstrated that the decisions made when modeling
complex spatiotemporal dynamics can readily contribute to contrasting statistical outcomes and
results misinterpretation, even when arithmetic and mathematics are strictly correct.

Keywords: eastern equine encephalitis; dilution effect; amplification effect; passerine; phylogenetics;
disease biogeography; causal analysis

1. Introduction

Eastern equine encephalitis virus (EEEv) is an arthropod-borne virus (arbovirus)
and the causative agent of eastern equine encephalitis (EEE) disease in humans, horses,
poultry, and wildlife [1–3]. EEEv infection in livestock occurs more frequently than in
humans, with horses being particularly vulnerable to disease. Between 2006 and 2020, the
eastern United States (US) averaged more than 150 horse EEE cases annually, with infected
horses exhibiting symptoms that ranged from fever and impaired vision to paralysis,
convulsions, and death [4]. Although more rare, human mortality resulting from EEE
disease can be as high as 30% and persons with the disease may exhibit long-term neurologic
ailment [5]. Human EEE incidence is closely associated with horse outbreaks and recent
evidence suggests that the geographic range of EEEv may be expanding further north and
contributing to increased virus infection rates in both humans and horses [1,6]. Because
EEEv poses a growing challenge to livestock and public health, research describing EEEv
spatiotemporal distribution is needed to improve disease surveillance and better anticipate
future outbreaks.

EEEv is transmitted in cycles involving avian hosts and ornithophilic mosquitoes, with
birds in the Order Passeriformes serving as principal virus reservoirs in the transmission
process [2,7–9]. Humans, horses, and other mammals exhibit a low viremic response
to infection and are, therefore, considered incidental or “dead end” hosts in the EEEv
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cycle [10–13]. Unlike other bird-mediated zoonotic viruses, such as avian influenza [14–16],
environmental contamination is not recognized as a major component of EEEv transmission;
thus, the EEEv ecological niche is better described by passerine occurrence and community
composition than it is by the ambient climate or environmental conditions external to birds.
Given their obligate role in virus transmission, passerine hosts are key to understanding
EEEv distribution and prevalence at the landscape scale.

Passerines are the largest and most diverse group of birds in the US and exhibit move-
ment behavior that ranges from local dispersal to transcontinental migration, frustrating
attempts at selecting any single species as an archetypal arbovirus reservoir [17,18]. Be-
cause individual bird species are nested in ecological communities where they interact with
other hosts and non-hosts (i.e., disease contact processes), migration and dispersal serve
to further complicate analysis, as bird movement bridges local communities with those at
distance, thus, shaping virus prevalence at the local scale and transmission at the landscape
scale [18–20]. Stated differently, transiting birds physically transport EEEv between differ-
ent localities while simultaneously shifting host-community composition and diversity at
both the departure and arrival sites. As host composition and diversity change at a location,
so too does the total number of vector-hosts contacts, the proportion of those contacts that
link vectors with competent avian species, and overall virus prevalence [21,22].

The generality of host phylodiversity and pathogen interactions across different dis-
ease systems and spatial-temporal scales is an active topic for debate in ecology [23–26].
Diversity–pathogen relationships have been variably argued as exhibiting a “dilution ef-
fect,“ in which increased diversity reduces prevalence, transmission rates, and disease
risk [27,28], or as showing an “amplification effect” by which increased diversity con-
tributes to elevated pathogen numbers [21,29]. Empirical and experimental evidence has
been advanced in support of both dilution and amplification effects in a wide variety of
disease systems [25,26]; however, missing from the debate is discussion of how dilution or
amplification effects are statistically identified, quantified, and reported.

Modeling approaches that evaluate complex disease systems as snapshots in time
or place are insufficient to infer epidemiologic processes that occur dynamically [30]. As
described by Abellan et al. [31], static models that consider the spatial dimension in the
absence of temporal change may provide some limited insight into disease risk factors that
are stationary or constant; however, such methods are inadequate for determining short-
term, time-variable, or emergent risks. In the EEEv system, pathogen prevalence varies both
spatially and temporally as avian hosts move throughout their territorial range or relocate
viruses as part of annual migration. To assess disease prevalence, it is necessary to explicitly
model these spatial and temporal trends, as well as any correlations or interactions that
may exist between them [32]. The decisions researchers make when selecting methods
or modeling techniques have major implications for what results are produced and how
those results are ultimately interpreted [33,34]. Although there can be endless debate about
what goes into a model and how model results are interpreted, it is clear that analyses
that leverage spatially and temporally structured data to quantify complex ecological
dynamics without careful consideration of model spatiotemporal covariates are prone to
misinterpretation, even when arithmetic and mathematics are strictly correct.

The current study has two major objectives. First, because EEEv poses a growing
challenge to livestock and public health across the entirety of the eastern US, seventeen
years of non-human EEEv detections are applied to quantify the correspondence of virus
prevalence to passerine-host phylodiversity. The second study objective is to assess how the
modeling of spatial patterns, temporal trends, and space–time interactions under different
statistical implementations changes results and how those results are interpreted with
respect to possible dilution and amplification effects in the EEEv system.
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2. Materials and Methods
2.1. Study Domain and Virus Data

The study domain for analysis included the twenty-six US states located east of the
Mississippi River, plus the geographically contiguous states of Louisiana and Arkansas
found immediately west of the Mississippi River. This study domain exhibited a total
areal extent of approximately 2.5 million km2 and was inclusive of 1746 county-level
jurisdictional units that defined the minimum spatial resolution for analysis. Counties were
chosen as the resolution for modeling due to virus detection data being available at the
county level. Study observation data were obtained from the Centers for Disease Control
and Prevention (CDC) [35] and consisted of all non-human EEEv detections documented
during the seventeen year period 2003–2019. Virus detection data included attributes
reflecting the count of confirmed EEEv detections reported within each county, the host
species from which the virus was collected, and the date of virus collection. For the current
study, virus-collection dates were aggregated to weekly time steps. Annual counts of EEEv
detection are shown in Figure 1 and are color coded to distinguish samples collected from
mosquito, mammal (primarily Equidae), sentinel chicken, or wild-bird hosts. ArboNET is a
passive surveillance system. It is dependent on clinicians considering the diagnosis of an
arboviral disease and obtaining the appropriate diagnostic test, and reporting of laboratory-
confirmed cases to public health authorities. Diagnosis and reporting are incomplete, and
the incidence of arboviral diseases is underestimated.

Figure 1. EEEv detections in non-human hosts. Bar graph depicts the annual number of EEEv
detections for the seventeen-year period of record (2003–2019). Horizontal axis lists detection year
and vertical axis gives count of total EEEv detections. Vertical bars are color-coded to indicate EEEv
detections made from mosquito, mammal, sentinel chicken, and wild-bird hosts.

2.2. Climate Data

Daily total precipitation and maximum temperature grids (4 km2 resolution) for the US
(2003–2019) were acquired from the PRISM Climate Group [36] and averaged (temperature)
or summed (precipitation) to weekly increments to correspond with week-based EEEv
observations. Weekly temperature and precipitation grids were then averaged to the county
level, to match the spatial resolution of EEEv detections.
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2.3. Avian-Host Occurrence and Phylodiversity

Avian occurrences recorded in the Cornell Lab of Ornithology eBird database [37] were
spatially filtered to study area boundaries and then cross-referenced with those species included
in the Global Phylogeny of Birds [38] (https://birdtree.org/, accessed on 5 July 2022) to identify
the passerines (Order Passeriformes) found in both the study domain and global phylogeny.
Passerine locations and observation dates were next matched to EEEv detection data to identify
each species’ presence or absence within each county during each week of the year. To help
reduce rare species numbers, a minimum of two species-specific bird observations were required
to qualify as a presence for a given county and week. The resulting avian-community matrices
were used to calculate total species richness by county and week, as well as to index interspecies
branch lengths from the phylogeny to estimate phylodiversity.

Avian phylodiversity was estimated by trimming the time−calibrated global phy-
logeny to the study-domain species pool (207 species) before sampling this subset from
a pseudo−posterior distribution [38]. Bootstrap replicate trees (1000) were then summa-
rized as a maximum clade credibility tree using TreeAnnotator (http://beast.community/
treeannotator, accessed on 5 July 2022) and the BEAST 2 package [39].

Avian-host phylodiversity (PD) was calculated using the consensus tree and avian-
community matrices. To judge statistical importance and departures from species-pool
averages, PD estimates were compared to a null model derived from 999 consensus-tree
random permutations using the picante package [40].

2.4. Statistical Analysis

Bayesian spatiotemporal models were adopted to evaluate the relationship between
EEEv detections and avian-host phylodiversity. A central objective of analysis was to assess
how different implementations of spatial, temporal, and space–time interaction effects
altered results and ultimately changed how those results were interpreted with respect to
possible dilution effects. Drawing from a causal analysis perspective, the directed acyclic
graph (DAG) shown in Figure 2 summarizes principal assumptions and hypotheses under-
lying statistical-model development. Although causal inference is often misunderstood as a
procedure only applied to experimental or clinical research, it is appropriate for evaluation
of observational data used in ecological and epidemiological studies [41–44].

As illustrated in the graphical heuristic (Figure 2), avian-host diversity (HD) is hypoth-
esized to exhibit a causal relationship to “true” virus prevalence (V) in the environment.
This hypothesis is illustrated by an arrow from HD (the cause) to V (the effect). Because
true or actual prevalence is unobserved and unknown, reported virus detections (D) are
used to approximate actual prevalence with concurrent estimation of unobserved error
arising from spatial (S), temporal (T), and space–time interactions (I). Estimation of S, T,
and I effects are the focus of this study. Although prevalence is assumed to be a function of
avian-host diversity, it is also hypothesized that average exposure (E) rates and “common
cause” confounds such as temperature (TMP) and precipitation (PPT) intercede in the
causal chain to bias effect estimation. Given the potential for climate-linked confounds,
models were also adjusted for TMP and PPT.

Although several different statistical formulations were compared to evaluate S, T,
and I effects, the general template for all models was of the form,

Yst ∼ Poisson(λst) (1)

λst = Estρst (2)

log(ρst) = ηst (3)

ηst = α + βxXst + us + υs + γt + φt + δst, (4)

where the number of EEEv detections (Yst) in county s (s = 1, 2, 3, . . . , 1746) during week t
(t = 1, 2, 3, . . . , 52) followed a Poisson distribution with a mean λst (Equation (1)). When
modeling disease case counts, the mean rate can be estimated as the product of the expected
case number Est (calculated from standardized incidence and population size) and the

https://birdtree.org/
http://beast.community/treeannotator
http://beast.community/treeannotator
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disease rate or relative risk ρst. However, because the current study assessed virus counts
rather than disease cases, Est was instead interpreted as an environmental exposure (E in
Figure 2) and assumed proportional to the geographic area (km2) of county s (Equation (2)).
This use of Est can be understood as indicating that, while holding all environmental
influences constant (e.g., temperature, precipitation, host availability), the null expectation
is that larger counties will have a greater number of virus counts than do smaller counties.

Figure 2. Graphical model of avian-host diversity relationships to EEEv. Directed acyclic graph
(DAG) nodes symbolize observed and unobserved aspects of the diversity-EEEv system with arrows
indicating hypothesized causal relationships. Nodes represent host diversity (HD), true EEEv
prevalence (V) in the environment, and human documented EEEv detections (D). Also included
in the heuristic are spatial (S), temporal (T), and space–time interaction (I) processes, as well as,
temperature (TMP), precipitation (PPT), and exposure (E) effects. Nodes shown with dashed borders
(gray shading) signify unobserved variables that must be estimated through statistical modeling,
whereas nodes with solid borders indicate variables with available data proxies.

The logarithm of the mean EEEv detection rate (Equation (3)) is described by a linear
predictor ηst that includes an intercept (α) for the domain average and βx terms representing
estimated coefficients for temperature (β1), precipitation (β2), and PD (β3) implemented
as linear effects (Xst). Spatiotemporal effects in the linear predictor included a structured
spatial component (us), a county-specific unstructured effect (υs), a structured temporal
effect (γt), an unstructured time effect (φt), and an effect to capture interaction between
space and time (δst). The structured spatial effect (us) followed a Besag–York–Mollié
formulation (BYM; Besag et al., 1991) that approximated a Gaussian–Markov random field
with counties considered conditionally independent unless adjoined as neighbors. The
BYM can be generalized as

ui|uj 6=i ∼ Normal

(
1
Ni

n

∑
i=j

aijuj,
σ2

u
Ni

)

where the mean (ui) and variance ( σ2
u

Ni
) for county i depend on the number of neighbors (Ni).

To determine if county i and county j were neighbors (aij = 1) or not neighbors (aij = 0),
an adjacency matrix (neighborhood graph) was constructed using the spdep package [45]
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with neighbor contiguity based on a “queen” configuration that required only one shared
boundary point between counties to qualify as neighbors. Spatiotemporal effects were
assigned weakly informative penalizing complexity priors [46–48] with parameters p1 = 1
and p2 = 0.001 and enforced zero mean constraints. Sensitivity for p1 was evaluated in
simplified models (10 time steps, no fixed effects) in 0.1 increments over the range 0.2 to
1.0 with no substantive change in the latent random field estimates. All fixed effects were
assigned vague zero mean normal priors with a 0.0001 precision.

County-specific spatial variation (υs) and unstructured time (φt) were specified as
Gaussian exchangeable priors (independent and identically distributed random effects).
Structured time (γt) was dynamically modeled as a second-order random walk where the
current time step was based on the prior two steps plus incremental variance (σ2

γ) and an
enforced sum-to-zero constraint, more formally:

γt|γt−1, γt−2 ∼ Normal(2γt−1 + γt−2, σ2
γ)

The space–time interaction term δst signified a Gaussian distributed vector with a
precision matrix given as τδRδ, where the structure matrix Rδ identified the specific type
of space–time dependence between the elements in δst as scaled by τδ [49]. Given the
four spatial and temporal components in Equation (4), Rδ can be factorized as any of four
different space–time combinations to specify four types of interaction [32]. More simply, the
matrices that encode the spatial and temporal effects can be paired and multiplied together
using four, unique combinations of structured and unstructured effects. Multiplying two
matrices of arbitrary size is referred to as the Kronecker product and symbolized as

⊗
.

Table 1 summarises interaction types and notates the space–time Kronecker products.

Table 1. Space–time interaction type summary. First column labels the interaction type, second
column lists spatial and temporal terms from Equation (4) relevant to the interaction type, third
column notates the Kronecker product (

⊗
), and fourth column narratively describes spatial and

temporal matrices. Unstructured spatial and temporal matrices are symbolized with the notation I
(identity matrix) and structured matrices are shown as R.

Interaction Parameters Rδ Description

Type I υs and φt Iυ
⊗

Iφ Unstructured space, unstructured time
Type II υs and γt Iυ

⊗
Rγ Unstructured space, structured time

Type III us and φt Ru
⊗

Iφ Structured space, unstructured time
Type IV us and γt Ru

⊗
Rγ Structured space, structured time

Due to high dimensionality (52 time steps), spatiotemporal models were run on a
high-performance computing system (USDA SCINet https://scinet.usda.gov/, accessed
on 5 July 2022) using integrated nested Laplace approximation [50–52] and the PARDISO
(parallel sparse direct linear solver) [53–55].

2.5. Model Evaluation and Comparison

Fifteen models were constructed to evaluate EEEv and avian-host phylodiversity
under different S, T, and I assumptions. In addition to implementing the full model
described in Section 2.4 with Type I, II, III, and IV interactions (4 models), several simplified
formulations were developed to assess individual spatial and temporal effects, spatial and
temporal effect combinations in the absence of interaction, and fixed effects without any
spatiotemporal covariates (7 models). An additional four models were developed (one for
each interaction type) using a modified version of the structured spatial field presented in
Section 2.4, which permitted week-specific spatial autocorrelation estimation.

Although formal prediction was not a goal of the current study, all models were com-
pared using the deviance information criterion (DIC), Watanabe–Akaike information crite-
rion (WAIC), and the log-conditional predictive ordinate (lCPO) [56,57] to highlight relative
change in explained variation. The DIC was calculated following Spiegelhalter et al. [58],

https://scinet.usda.gov/
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but using deviance at the latent field posterior mean and at hyperparameter posterior
modes rather than the posterior means of all parameters [49]. Although the DIC and
WAIC function similarly, there was concern that the DIC might under-assess complexity in
models; therefore, both the DIC and WAIC were compared. The WAIC is a fully Bayesian
criterion based on within-sample predictive scoring [56,59]. The lCPO is a leave-one-out
cross validation metric. Improved parsimony is evidenced by lower scores for the DIC,
WAIC, and lCPO.

3. Results

Avian-community phylogenetics, when combined with documented passerine-occurrence
information, enabled avian-host phylodiversity (PD) to be dynamically mapped for the
entire study area in weekly time steps (Figure 3). As shown in Figure 3, the average
relatedness among avian-host communities was found to vary across the study area and
through time, as species composition changed throughout the year. When matched to
times and locations with confirmed EEEv detections, the overall distribution shown by the
graphed detections encapsulate the EEE outbreak season (Figure 4). Figure 4 also highlights
that a latitudinal break in EEEv–PD relationships exists at approximately 37.5◦ N latitude
(the state of Virginia). The latitudinal break in EEEv–PD correspondence suggests that
late-season EEEv detections northward of the break were associated with relatively high
PD, whereas points below the break were mostly associated with lower PD.

PD
3

‐3

0

2

‐2

‐1

1

Week 10 Week 12 Week 16 Week 18Week 14

Week 20 Week 22 Week 26 Week 28Week 24

Week 30 Week 32 Week 36 Week 38Week 34

Week 40 Week 42 Week 46 Week 48Week 44

Figure 3. Estimated avian-host phylodiversity. Maps depict the study domain for select weeks of
the year and are color-coded according to legend at right to indicate relative phylodiversity (PD) by
county and week. PD values have been scaled and centered to show relative phylogenetic clustering
with blue colors (higher than expected relatedness, lower mean genetic distances) and phylogenetic
over-dispersion with red colors (lower than expected relatedness, higher mean genetic distances).
Note that PD varies across geographic space and through time, as avian community composition
varies throughout the year. Maps for each week of the year and video animations depicting PD
changes through time can be viewed with other supporting information at this article’s data repository
site (Video 1, https://osf.io/tw2e9/, accessed on 7 July 2022).

https://osf.io/tw2e9/
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Figure 4. Comparison of reported EEEv detections to avian-host phylodiversity. Figure graphs
reported EEEv detections by geographic latitude (vertical axis) and week of year (horizontal axis)
with coincident avian-host phylodiversity (PD). Each graph point represents an individual county
and is color-coded according to inset legend (top left) to show the PD estimated for the county and
week of virus detection. Points are sized to illustrate the approximate number of virus detections for
that county and week. Latitudes were calculated from county geographic centers and all points were
subject to 5% jittering to reduce overlap. Data cover the period 2003–2019; therefore, counties may be
represented multiple times (i.e., the same county but in different years).

Remapping phylogenetically clustered areas (negative values from Figure 3) along
coastal portions of the study area aided in visualizing how possible dilution effects may
drive EEEv distributions during the primary EEE season (Figure 5). Figure 5 illustrates that
southern Georgia, the Florida Panhandle (the western-most portion of state), and other
locations along the Gulf of Mexico exhibit strong avian-host phylogenetic clustering at
the beginning of the EEE outbreak season (locations shown with dark tones in Week 18
panel, early May) and that these clustered areas expand laterally and northward as the
EEE season progresses through late summer and fall (Week 44, late October). The overall
spatiotemporal trend suggested by host phylogenetic clustering is one of movement and
diffusion from southern locations to northern locations, such that New England avian
communities become more genetically similar at the end of summer and early fall. To
better illustrate the information in Figure 5, larger weekly maps and video animations are
provided with other supporting information at this article’s data repository site (Video 2,
https://osf.io/tw2e9/, accessed on 7 July 2022).

Model comparison revealed that Model 15, which included all spatiotemporal effects
(Equation (4)) and a Type-IV space–time interaction, exhibited the best overall parsimony,
as judged by the DIC, WAIC, and lCPO (Table 2). A Type-IV interaction was also identified
as outperforming other interaction types among those models with structured spatial
effects not indexed by time (Models 8–11). Despite the additional model complexity
created by adding spatiotemporal effects, model comparison also demonstrated that models
with spatiotemporal effects exhibited greater parsimony than the fixed-effects-only model
(Model 1). The DIC, WAIC, and lCPO for all models are detailed in Table 2.

https://osf.io/tw2e9/
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Figure 5. Avian-host phylogenetic clustering. Maps depict coastal portions of the study domain
during the primary EEE outbreak season. Counties are color-coded according to legend at bottom to
indicate the relative intensity of avian-host phylogenetic clustering, with darker tones signifying that
host communities are more genetically similar than expected by chance. Note strong phylogenetic
clustering along the Gulf of Mexico near the beginning of the EEE outbreak season (Week 18, early
May) with lateral and northward diffusion through late summer and fall (Week 44, late October).
Maps for each week of the year and video animations depicting phylogenetic clustering changes
through time can be viewed with other supporting information at this article’s data repository site
(Video 2, https://osf.io/tw2e9/, accessed on 7 July 2022).

Table 2. Model parsimony metrics. Deviance information criterion (DIC), Watanabe–Akaike informa-
tion criterion (WAIC), and log-conditional predictive ordinate (lCPO) for all models. Lower scores
indicate improved parsimony for all three comparison metrics. Description provided in the Effects
column at far right lists model terms as presented in Equation (4) and interaction types summarized
in Table 1 (Section 2.4) . Note that Models 4 and 5 included time as a simple factor variable (Time f act)
and that Models 12–15 include a structured spatial component (ust) indexed by space (s) and time (s),
indicating week-specific spatial field realizations. Model 15 included Type-IV space–time interaction
and exhibited the best parsimony.

Model DIC WAIC lCPO Effects

Model 1 491,489 491,489 2.7 α + βxXst
Model 2 476,292 476,317 2.6 α + βxXst + us + υs
Model 3 418,939 418,940 2.3 α + βxXst + γt
Model 4 418,937 418,939 2.3 α + βxXst + Time f act
Model 5 418,738 407,029 2.2 α + βxXst + us + υs + Time f act
Model 6 401,792 401,816 2.2 α + βxXst + us + υs + γt
Model 7 401,787 401,807 2.2 α + βxXst + us + υs + γt + φt

Model 8 401,600 401,141 2.2 α + βxXst + us + υs + γt + φt + δst (Type I)
Model 9 395,877 397,125 1.9 α + βxXst + us + υs + γt + φt + δst (Type II)
Model 10 391,159 392,244 1.9 α + βxXst + us + υs + γt + φt + δst (Type III)
Model 11 205,194 214,075 1.2 α + βxXst + us + υs + γt + φt + δst (Type IV)

Model 12 63,062 59,098 0.9 α + βxXst + ust + υs + γt + φt + δst (Type I)
Model 13 61,498 59,839 0.8 α + βxXst + ust + υs + γt + φt + δst (Type II)
Model 14 58,181 50,866 0.9 α + βxXst + ust + υs + γt + φt + δst (Type III)
Model 15 58,074 50,635 0.8 α + βxXst + ust + υs + γt + φt + δst (Type IV)

EEEv counts, as predicted by the best performing model (Model 15), are shown for
select weeks of the year in Figure 6. The overall pattern of predicted EEEv counts suggested
a trend in which viruses were restricted to southern latitudes and coastal regions prior
to Week 10 (early March), moved northward through Week 36 (early September), and
then receded southward and towards coasts by Week 44 (early November). Counties in

https://osf.io/tw2e9/
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Peninsular Florida were predicted to have viruses throughout the majority of the year; how-
ever, the number of viruses increased sharply from Week 18 through Week 40. Individual
maps for each week of the year and video animations depicting data shown in Figure 6 are
provided with other supporting information at this article’s data repository site (Video 3,
https://osf.io/tw2e9/, accessed on 7 July 2022).

100+

0

50

75

25

Viruses

Week 10 Week 12 Week 16 Week 18Week 14

Week 20 Week 22 Week 26 Week 28Week 24

Week 30 Week 32 Week 36 Week 38Week 34

Week 40 Week 42 Week 46 Week 48Week 44

Figure 6. Predicted EEEv counts. Maps depict the study domain for select weeks of the year and
are color-coded according to legend at right to indicate the the number of EEEv predicted by county
and week. Predictions were made using the best performing model (Model 15, Table 2). Maps
for each week of the year and video animations depicting changes in virus prevalence through
time can be viewed with other supporting information at this article’s data repository site (Video 3,
https://osf.io/tw2e9/, accessed on 7 July 2022).

All models estimated temperature and precipitation to have a positive effect on EEEv
occurrence. The average coefficient for temperature was 4.07 (0.03 sd, (3.89, 4.35) 95% CI)
and the average coefficient for precipitation was 0.05 (0.01 sd, (0.04, 0.06) 95% CI). Al-
though models uniformly indicated a positive relationship for climate effects, coefficient
magnitudes and polarity (positive or negative sign) estimated for PD varied by model
and the specific implementation of spatiotemporal effects. Figure 7 plots the posterior
densities for PD as estimated by all models. PD effects from all models were judged to be
statistically important based on 95% credible intervals excluding zero; however, Models
3–5, Model 7, and Models 8–11 suggested a positive relationship between PD and EEEv
(i.e., an amplification effect), whereas Models 1–2, Model 6, and Models 12–15 suggested a
negative EEEv–PD correspondence consistent with a dilution effect.

https://osf.io/tw2e9/
https://osf.io/tw2e9/
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Figure 7. Estimated avian-host phylodiversity effects. Figure illustrates the magnitude and polarity
of avian-host-phylodiversity (PD) coefficients as estimated by all evaluated models. Horizontal
axes list the estimated coefficient magnitude and the vertical line intersecting zero indicates polarity
(positive or negative sign). Panel A shows PD estimates produced by Models 1–7, Panel B provides
PD estimates given by Models 8–11, and Panel C shows PD estimates from Models 12–15. Posterior
densities in Panel A are color-coded according to legend at immediate right; posterior densities in
Panels B and C share the color scheme at bottom right, which corresponds to the spatiotemporal
interaction type used in each model. Note that PD effects from all models were judged as statistically
important based on 95% credible intervals excluding zero. Results from Models 3–5, 7, and 8–11
suggest a positive relationship between PD and EEEv (amplification effect), whereas Models 1–2, 6,
and 12–15 suggest a negative EEEv–PD correspondence (dilution effect).

Comparison of EEEv counts and PD through time indicated that EEEv rates appear
to be positively correlated with changes in host phyodiversity between weeks 5–20 of the
year, during which time both show increasing trends, as well as between weeks 40–52,
when both show decreasing trends (Figure 8). Additionally, temporal PD trends were also
suggestive of shifts in avian community composition associated with the spring and fall
seasonal bird migrations. These findings are explored further in the discussion section.
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Figure 8. EEEv and host-phylodiversity temporal comparison. Numbered values listed on horizontal
axes give week of year and abbreviations approximate month. Solid curvilinear line corresponds
to left vertical axis and depicts smoothed EEEv rate (counts, log scale) with parallel dashed lines
signifying 95% credible interval for estimate. Vertical bars correspond to right vertical axis and
show weekly average avian-host phylodiversity (one-dimensional version of estimates illustrated in
Figure 3) with relative phylogenetic clustering (higher than expected relatedness, lower mean genetic
distances) in blue and phylogenetic over-dispersion (lower than expected relatedness, higher mean
genetic distances) in red. Figure is annotated to emphasize periods of over-dispersion associated
with seasonal bird migrations and peak EEEv prevalence. EEEv rates are positively correlated to
changes in phylodiversity between weeks 5–20 (both show increasing trends) and between weeks
40–52 (both show decreasing trends).

4. Discussion

The principal conclusion drawn from the above analysis is that EEEv intra-annual
variability shows a scale-dependent dilution effect such that virus prevalence is compar-
atively less at locations of elevated passerine phylodiversity (over-dispersion) than at
places exhibiting phylogenetic clustering (decreased phylodiversity). Importantly, however,
dilution effects observed in geographic space may be statistically masked by apparent
amplification effects that transpire in the temporal dimension as increasing virus detections
are made in concert with passerine-host movements and migrations. The general pattern
suggested by these results is that, while the EEE outbreak season progresses from spring to
summer, recently overwintered passerines move from thermally buffered coastal areas and
southerly portions of the study domain to inland and more northern localities, effectively
diffusing viruses and redistributing avian diversity from relatively concentrated winter
habitats to more expansive foraging and breeding grounds throughout the eastern US
(Figures 3 and 8). In the US, passerines lacking cold-tolerance traits migrate to southern
latitudes and coastal areas in winter to evade heavy snowfall and extreme low temper-
atures [60]. From the perspective of inland and northern locations, spring brings both
migrant influx and elevated virus detection rates, giving the impression of an amplification
effect; however, this amplification may only be apparent because, although virus detections
increase moving into the height of the outbreak season, these detections largely consist
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of initial virus introductions rather than host amplification (replication). When the EEE
outbreak season and eastern US are viewed as a whole, EEEv peak prevalence is actually
observed 15–20 weeks following the height of the spring migration, prior to the fall migra-
tion, and during a period associated with the passerine breeding season and community
phylogenetic clustering (Figures 5 and 8). Assuming passerine physiologic traits, behav-
iors, and niches at least partially mediate transmission processes and are correlated with
interspecies relatedness (i.e., phylogenetic conservatism sensu Wiens and Graham [61]),
phylogenetically clustered communities afford greater opportunity for virus sharing, host
switching, and spillover than do over-dispersed communities.

Several crucial caveats must be made regarding the interpretation of the modeling
results. The finding of an EEEv dilution effect was based on the domain-wide, average
influence of passerine phylodiversity as estimated for the period 2002–2019. EEEv–PD
correspondence assessed over different geographic extents or using other time windows
may reach a different conclusion, irrespective of the specific statistical implementation
adopted for analysis. As a case in point, large portions of New England showed high
EEEv abundances in late summer (after Week 35, Figure 6), a time period actively trending
towards decreased passerine PD (Figure 3) but still exhibiting above average levels of
phylogenetic over-dispersion (Figure 4). Had these New England regions been modeled
independently of the reminder of the EEEv range, model results would have indicated an
amplification effect and drawn the opposite conclusion than that presented here for the
Eastern US in its entirety.

Regarding New England specifically, other studies have reported a similar late-season
dynamic in response to increased EEEv detections in migratory passerines [7], elevated
EEEv seroprevalance among late-summer passerine hatchlings [62], large mosquito broods
at the end of summer [63], and other late-season passerine-mosquito interactions [64,65].
Although the scope of the current study is insufficient to confirm any of these mechanisms
precisely, it does corroborate the existence of a late-season New England dynamic partly
out of sync with EEEv in the eastern US as a whole. For example, the proportion of New-
England counties experiencing host-phylogenetic clustering was found to sharply increase
at the end of summer, suggesting a rapid upswing in bird movement northward from
central Atlantic states and locations further south (Figure 5, last two panels at right). In
addition to the possible increased proliferation of the virus among less phylogenetically
distant species, late-season migrant influx may also introduce new viruses. Consistent with
several genetic studies [66–68], this analysis lends macroecological support to the notion
of passerine communities moving the virus from source locations in southern Georgia,
Mississippi, and the Florida Panhandle to virus sinks in New England.

Finally, models based on stationary spatial patterns (Models 8–11, Figure 7), incorporating
smooth temporal trends in the absence of spatial effects (Models 3–4, Figure 7), or implementing
time as a simple factor variable (Model 5, Figure 7) would have drawn different conclusions than
made here for EEEv–PD relationships. In fact, models constructed under these assumptions
produced the opposite results, indicating an amplification effect rather than a dilution effect.
This finding highlights that spatiotemporal analysis of complex ecological data can be prone to
misinterpretation and that decisions researchers make when implementing spatial and temporal
covariates have major implications for results and how those results are interpreted. Although
the current study emphasized the need to exercise caution in choosing model inputs and
interpreting outputs, it was limited by incomplete and uneven virus observation data and
would have benefited from the inclusion of additional facets of the EEEv system, particularly,
vector mosquito-occurrence data.

5. Conclusions

This study applied seventeen years of non-human EEEv detections to quantify dilution
and amplification effects in response to passerine-host phylodiversity. Results indicated
that increased avian phylodiversity promotes EEEv dilution across geographic space, but
observed virus-dilution effects are scale-dependent and may be concealed by concurrent
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amplification effects that occur through the height of the summer outbreak season. Findings
further demonstrated that statistical modeling decisions related to how spatial, temporal,
and space–time interaction effects are included in analysis have major impacts on model
outcomes and can lead to results misinterpretation even when arithmetic and mathematics
are technically correct. Recent evidence suggests that the geographic range of EEEv may be
expanding and contributing to increased virus infection rates in humans, livestock, and
wildlife; therefore, it is imperative that the interconnections between people, animals, and
the shared environment be recognized to improve EEEv surveillance and better anticipate
future EEE disease outbreaks from a One Health perspective.
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