A Spatial Analysis Approach for Urban Flood Occurrence and Flood Impact Based on Geomorphological, Meteorological, and Hydrological Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodological Scene
2.2. Factor Selection and Visualization
3. Results and Discussion
3.1. Analysis in GIS; Assumptions and Uncertainties
3.2. Regression Analysis
4. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wannous, C.; Velasquez, G. United Nations Office for Disaster Risk Reduction (UNISDR)—UNISDR’s Contribution to Science and Technology for Disaster Risk Reduction and the Role of the International Consortium on Landslides (ICL). In Advancing Culture of Living with Landslides, Proceedings of the Workshop on World Landslide Forum, Ljubljana, Slovenia, 29 May–2 June 2017; Sassa, K., Mikoš, M., Yin, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 109–115. [Google Scholar]
- Chen, Y.; Zhou, H.; Zhang, H.; Du, G.; Zhou, J. Urban Flood Risk Warning under Rapid Urbanization. Environ. Res. 2015, 139, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Hammond, M.J.; Chen, A.S.; Djordjević, S.; Butler, D.; Mark, O. Urban Flood Impact Assessment: A State-of-the-Art Review. Urban Water J. 2015, 12, 14–29. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C. Impacts of Urbanization on Surface Runoff of the Dardenne Creek Watershed, St. Charles County, Missouri. Phys. Geogr. 2009, 30, 556–573. [Google Scholar] [CrossRef]
- O’Driscoll, M.; Clinton, S.; Jefferson, A.; Manda, A.; McMillan, S. Urbanization Effects on Watershed Hydrology and In-Stream Processes in the Southern United States. Water 2010, 2, 605–648. [Google Scholar] [CrossRef]
- Weng, Q. Modeling Urban Growth Effects on Surface Runoff with the Integration of Remote Sensing and GIS. Environ. Manag. 2001, 28, 737–748. [Google Scholar] [CrossRef] [PubMed]
- Vieux, B.E.; Bedient, P.B. Assessing Urban Hydrologic Prediction Accuracy through Event Reconstruction. J. Hydrol. 2004, 299, 217–236. [Google Scholar] [CrossRef]
- Llasat, M.C.; Llasat-Botija, M.; Barnolas, M.; López, L.; Altava-Ortiz, V. An Analysis of the Evolution of Hydrometeorological Extremes in Newspapers: The Case of Catalonia, 1982–2006. Nat. Hazards Earth Syst. Sci. 2009, 9, 1201–1212. [Google Scholar] [CrossRef]
- Amaro, J.; Gayà, M.; Aran, M.; Llasat, M.C. Preliminary Results of the Social Impact Research Group of MEDEX: The Request Database (2000–2002) of Two Meteorological Services. Nat. Hazards Earth Syst. Sci. 2010, 10, 2643–2652. [Google Scholar] [CrossRef]
- Pérez-Morales, A.; Romero-Díaz, A.; Illán-Fernandez, E. Chapter 22—Rainfall, Anthropogenic Soil Sealing, and Floods. An Example from Southeastern Spain. In Precipitation; Rodrigo-Comino, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 499–520. ISBN 978-0-12-822699-5. [Google Scholar]
- Merz, B.; Disse, M.; Günther, K.; Schumann, A. Outcomes of the RIMAX Programme: Risk Management of Extreme Flood Events. Nat. Hazards Earth Syst. Sci. 2010. Available online: https://nhess.copernicus.org/articles/nhess-special_issue77-preface.pdf (accessed on 20 June 2022).
- Diakakis, M.; Deligiannakis, G.; Pallikarakis, A.; Skordoulis, M. Factors Controlling the Spatial Distribution of Flash Flooding in the Complex Environment of a Metropolitan Urban Area. The Case of Athens 2013 Flash Flood Event. Int. J. Disaster Risk Reduct. 2016, 18, 171–180. [Google Scholar] [CrossRef]
- Norbiato, D.; Borga, M.; Degli Esposti, S.; Gaume, E.; Anquetin, S. Flash Flood Warning Based on Rainfall Thresholds and Soil Moisture Conditions: An Assessment for Gauged and Ungauged Basins. J. Hydrol. 2008, 362, 274–290. [Google Scholar] [CrossRef]
- Bracken, L.J.; Cox, N.J.; Shannon, J. The relationship between rainfall inputs and flood generation in south–east Spain. Hydrol. Processes: Int. J. 2008, 22, 683–696. [Google Scholar] [CrossRef]
- Cannon, S.H.; Gartner, J.E.; Wilson, R.C.; Bowers, J.C.; Laber, J.L. Storm rainfall conditions for floods and debris flows from recently burned areas in southwestern Colorado and southern California. Geomorphology 2008, 96, 250–269. [Google Scholar] [CrossRef]
- Fowler, A.M.; Hennessy, K.J. Potential impacts of global warming on the frequency and magnitude of heavy precipitation. Nat. Hazards 1995, 11, 283–303. [Google Scholar] [CrossRef]
- Alexander, G.N. Effect of catchment area on flood magnitude. J. Hydrol. 1972, 16, 225–240. [Google Scholar] [CrossRef]
- Beven, K.J.; Wood, E.F.; Sivapalan, M. On hydrological heterogeneity—catchment morphology and catchment response. J. Hydrol. 1988, 100, 353–375. [Google Scholar] [CrossRef]
- Moussa, R. On morphometric properties of basins, scale effects and hydrological response. Hydrol. Processes 2003, 17, 33–58. [Google Scholar] [CrossRef]
- Patton, P.C. Drainage basin morphometry and floods. In Flood Geomorphology; Baker, V.R., Kocher, R.C., Patton, P.C., Eds.; Wiley-Interscience: New York, NY, USA, 1988; pp. 51–64. [Google Scholar]
- Blanco-Vogt, A.; Schanze, J. Assessment of the physical flood susceptibility of buildings on a large scale–conceptual and methodological frameworks. Nat. Hazards Earth Syst. Sci. 2014, 14, 2105–2117. [Google Scholar] [CrossRef]
- Kelman, I. Physical Flood Vulnerability of Residential Properties in Coastal, Eastern England. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 2002. [Google Scholar]
- Papaioannou, G.; Vasiliades, L.; Loukas, A. Multi-Criteria Analysis Framework for Potential Flood Prone Areas Mapping. Water Resour Manag. 2015, 29, 399–418. [Google Scholar] [CrossRef]
- Khosravi, K.; Nohani, E.; Maroufinia, E.; Pourghasemi, H.R. A GIS-Based Flood Susceptibility Assessment and Its Mapping in Iran: A Comparison between Frequency Ratio and Weights-of-Evidence Bivariate Statistical Models with Multi-Criteria Decision-Making Technique. Nat. Hazards 2016, 83, 947–987. [Google Scholar] [CrossRef]
- Feloni, E.; Mousadis, I.; Baltas, E. Flood Vulnerability Assessment Using a GIS-Based Multi-Criteria Approach—The Case of Attica Region. J. Flood Risk Manag. 2020, 13, e12563. [Google Scholar] [CrossRef] [Green Version]
- Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Spatial Prediction of Flood Susceptible Areas Using Rule Based Decision Tree (DT) and a Novel Ensemble Bivariate and Multivariate Statistical Models in GIS. J. Hydrol. 2013, 504, 69–79. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Lee, M.-J.; Pradhan, B.; Jebur, M.N.; Lee, S. Flood Susceptibility Mapping Using Integrated Bivariate and Multivariate Statistical Models. Environ. Earth Sci. 2014, 72, 4001–4015. [Google Scholar] [CrossRef]
- Samela, C.; Albano, R.; Sole, A.; Manfreda, S. A GIS Tool for Cost-Effective Delineation of Flood-Prone Areas. Comput. Environ. Urban Syst. 2018, 70, 43–52. [Google Scholar] [CrossRef]
- Albano, R.; Samela, C.; Crăciun, I.; Manfreda, S.; Adamowski, J.; Sole, A.; Sivertun, Å.; Ozunu, A. Large Scale Flood Risk Mapping in Data Scarce Environments: An Application for Romania. Water 2020, 12, 1834. [Google Scholar] [CrossRef]
- Smith, K.; Ward, R. Mitigating and Managing Flood Losses. In Floods: Physical Processes and Human Impacts; Wiley: Hoboken, NJ, USA, 1998. [Google Scholar]
- Lee, M.-J.; Kang, J.; Jeon, S. Application of Frequency Ratio Model and Validation for Predictive Flooded Area Susceptibility Mapping Using GIS. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 895–898. [Google Scholar]
- Pradhan, B.; Oh, H.-J.; Buchroithner, M. Weights-of-Evidence Model Applied to Landslide Susceptibility Mapping in a Tropical Hilly Area. Geomat. Nat. Hazards Risk 2010, 1, 199–223. [Google Scholar] [CrossRef]
- Pradhan, B. Flood Susceptible Mapping and Risk Area Delineation Using Logistic Regression, GIS and Remote Sensing. J. Spat. Hydrol. 2010, 9, 1–18. [Google Scholar]
- ESRI. ArcGIS Desktop: Release 10; Environmental Systems Research Institute: Redlands, CA, USA, 2011. [Google Scholar]
- IBM Corp. IBM SPSS Statistics for Windows, Version 28.0; IBM Corp: Armonk, NY, USA, 2021. [Google Scholar]
- Olaya, V.F. A Gentle Introduction to Saga GIS; The SAGA User Group EV: Göttingen, Germany, 2004. [Google Scholar]
- European Environment Agency (EEA). Mapping the Impacts of Natural Hazards and Technological Accidents in Europe: An Overview of the Last Decade; Report 13/2010; European Environment Agency: Luxembourg, 2010.
- SCS, U.S. Urban Hydrology for Small Watersheds, Technical Release No. 55 (TR-55); US Department of Agriculture, US Government Printing Office: Washington, DC, USA, 1986. [Google Scholar]
- Georganta, C.; Feloni, E.; Nastos, P.; Baltas, E. Critical Rainfall Thresholds as a Tool for Urban Flood Identification in Attica Region, Greece. Atmosphere 2022, 13, 698. [Google Scholar] [CrossRef]
- NHESS—The Role of Different Factors Related to Social Impact of Heavy Rain Events: Considerations about the Intensity Thresholds in Densely Populated Areas. Available online: https://nhess.copernicus.org/articles/14/1843/2014/ (accessed on 8 March 2022).
- Kohler, M.A.; Linsley, R.K. Predicting the Runoff from Storm Rainfall; U.S. Department of Commerce, Weather Bureau: Melbourne, Germany, 1951. [Google Scholar]
- Cordery, I. Antecedent Wetness for Design Flood Estimation. Civ. Eng. Trans. Instig. Eng. Aust. CE12 1970, 2, 181–184. [Google Scholar]
- Hill, P.; Graszkiewicz, Z.; Loveridge, M.; Nathan, R.; Scorah, M. Analysis of Loss Values for Australian Rural Catchments to Underpin ARR Guidance. In Proceedings of the 36th Hydrology and Water Resources Symposium, Hobart, Australia, 7–10 December 2015. [Google Scholar]
- Baltas, E.A.; Panagos, D.S.; Mimikou, M.A. An Approach for the Estimation of Hydrometeorological Variables towards the Determination of Z-R Coefficients. Environ. Process. 2015, 2, 751–759. [Google Scholar] [CrossRef]
- Ly, S.; Charles, C.; Degré, A. Different Methods for Spatial Interpolation of Rainfall Data for Operational Hydrology and Hydrological Modeling at Watershed Scale: A Review. Biotechnol. Agron. Soc. Environ. 2013, 17, 2. [Google Scholar]
- Earls, J.; Dixon, B. Spatial Interpolation of Rainfall Data Using ArcGIS: A Comparative Study. In Proceedings of the Proceedings of the 27th Annual ESRI International User Conference, San Diego, CA, USA, 4–8 August 2007; Volume 31, pp. 1–9.
- Menard, S. Logistic Regression: From Introductory to Advanced Concepts and Applications; SAGE: Thousand Oaks, CA, USA, 2010; ISBN 978-1-4129-7483-7. [Google Scholar]
- Curtis, A.; Duval-Diop, D.; Novak, J. Identifying Spatial Patterns of Recovery and Abandonment in the Post-Katrina Holy Cross Neighborhood of New Orleans. Cartogr. Geogr. Inf. Sci. 2010, 37, 45–56. [Google Scholar] [CrossRef]
Statistics Per Factor | DEM | SSL | FLA | SSO | CNcomp | STR | HOFD | VDCN | Case |
---|---|---|---|---|---|---|---|---|---|
Mean | 102.14 | 3.50 | 11,530.84 | 70.70 | 96.25 | 163.68 | 142.04 | 2.77 | Not Flooded Cells, 400 m grid |
St.dev. | 65.96 | 3.47 | 30,815.04 | 26.78 | 4.12 | 103.72 | 57.49 | 5.32 | |
CV | 0.65 | 0.99 | 2.67 | 0.38 | 0.04 | 0.63 | 0.40 | 1.92 | |
Mean | 76.14 | 3.29 | 16,950.85 | 80.92 | 97.66 | 159.41 | 146.23 | 2.23 | Flooded Cells, 400 m grid |
St.dev. | 49.97 | 2.61 | 48,827.91 | 19.00 | 2.49 | 106.60 | 57.05 | 4.24 | |
CV | 0.66 | 0.79 | 2.88 | 0.23 | 0.03 | 0.67 | 0.39 | 1.89 | |
Mean | 73.24 | 2.63 | 19,567.97 | 78.94 | 97.52 | 154.35 | 133.41 | 1.69 | Not Flooded Cells, 1000 m grid |
St.dev. | 56.44 | 1.67 | 26,576.03 | 16.68 | 1.69 | 60.63 | 37.59 | 1.68 | |
CV | 0.77 | 0.63 | 1.36 | 0.21 | 0.02 | 0.39 | 0.28 | 1.00 | |
Mean | 125.51 | 3.82 | 5962.58 | 67.19 | 95.79 | 154.64 | 149.23 | 3.00 | Flooded Cells, 1000 m grid |
St.dev. | 53.27 | 2.93 | 13,050.30 | 21.27 | 3.35 | 46.36 | 40.89 | 3.74 | |
CV | 0.42 | 0.77 | 2.19 | 0.32 | 0.03 | 0.30 | 0.27 | 1.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feloni, E.; Anayiotos, A.; Baltas, E. A Spatial Analysis Approach for Urban Flood Occurrence and Flood Impact Based on Geomorphological, Meteorological, and Hydrological Factors. Geographies 2022, 2, 516-527. https://doi.org/10.3390/geographies2030031
Feloni E, Anayiotos A, Baltas E. A Spatial Analysis Approach for Urban Flood Occurrence and Flood Impact Based on Geomorphological, Meteorological, and Hydrological Factors. Geographies. 2022; 2(3):516-527. https://doi.org/10.3390/geographies2030031
Chicago/Turabian StyleFeloni, Elissavet, Andreas Anayiotos, and Evangelos Baltas. 2022. "A Spatial Analysis Approach for Urban Flood Occurrence and Flood Impact Based on Geomorphological, Meteorological, and Hydrological Factors" Geographies 2, no. 3: 516-527. https://doi.org/10.3390/geographies2030031
APA StyleFeloni, E., Anayiotos, A., & Baltas, E. (2022). A Spatial Analysis Approach for Urban Flood Occurrence and Flood Impact Based on Geomorphological, Meteorological, and Hydrological Factors. Geographies, 2(3), 516-527. https://doi.org/10.3390/geographies2030031