Analysis of Building Height Impact on Land Surface Temperature by Digital Building Height Model Obtained from AW3D30 and SRTM
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Building Height Extraction
2.3. Land Surface Temperature Retrieval
2.4. Vegetation and Water Coverages Removal
2.5. Relationship between Building Height and Land Surface Temperature
3. Results
3.1. Spatial Distribution of Building Height and Land Surface Temperature
3.2. Visualization of Land Surface Temperature on 3D Building Height Model
3.3. Averaged Building Height and Land Surface Temperature
3.4. Relationship between Averaged Land Surface Temperature and Building Height
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Filho, W.L.; Wolf, F.; Castro-Díaz, R.; Li, C.; Ojeh, V.; Gutiérrez, N.; Nagy, G.; Savić, S.; Natenzon, C.; Al-Amin, A.Q.; et al. Addressing the urban heat islands effect: A cross-country assessment of the role of green infrastructure. Sustainability 2021, 13, 753. [Google Scholar] [CrossRef]
- Galodha, A.; Gupta, S.K. Land surface temperature as an indicator of urban heat island effect: A google earth engine based Web-App. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2021, 44, 57–62. [Google Scholar] [CrossRef]
- Good, E.J.; Ghent, D.J.; Bulgin, C.E.; Remedios, J.J. A spatiotemporal analysis of the relationship between near-surface air temperature and satellite land surface temperatures using 17 years of data from the ATSR series. J. Geophys. Res. Atmos. 2017, 122, 9185–9210. [Google Scholar] [CrossRef]
- Sun, T.; Sun, R.; Chen, L. The trend inconsistency between land surface temperature and near surface air temperature in assessing Urban heat island effects. Remote Sens. 2020, 12, 1271. [Google Scholar] [CrossRef]
- Cai, M.; Ren, C.; Xu, Y.; Lau, K.K.L.; Wang, R. Investigating the relationship between local climate zone and land surface temperature using an improved WUDAPT methodology–A case study of Yangtze River Delta, China. Urban Clim. 2018, 24, 485–502. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhou, W.; Yan, J.; Qian, Y.; Wang, J.; Li, W. The higher, the cooler? Effects of building height on land surface temperatures in residential areas of Beijing. Phys. Chem. Earth 2019, 110, 149–156. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y. The impact of building density and building height heterogeneity on average urban albedo and street surface temperature. Build. Environ. 2015, 90, 146–156. [Google Scholar] [CrossRef]
- Alavipanah, S.; Schreyer, J.; Haase, D.; Lakes, T.; Qureshi, S. The effect of multi-dimensional indicators on urban thermal conditions. J. Clean. Prod. 2018, 177, 115–123. [Google Scholar] [CrossRef]
- Nichol, J.E. High-resolution surface temperature patterns related to urban morphology in a tropical city: A satellite-based study. J. Appl. Meteorol. 1996, 35, 135–146. [Google Scholar] [CrossRef]
- Honjo, T.; Tsunematsu, N.; Yokoyama, H.; Yamasaki, Y.; Umeki, K. Analysis of urban surface temperature change using structure-from-motion thermal mosaicing. Urban Clim. 2017, 20, 135–147. [Google Scholar] [CrossRef]
- Wang, M.; Xu, H. The impact of building height on urban thermal environment in summer: A case study of Chinese megacities. PLoS ONE 2021, 16, e0247786. [Google Scholar] [CrossRef] [PubMed]
- Guo, G.; Zhou, X.; Wu, Z.; Xiao, R.; Chen, Y. Characterizing the impact of urban morphology heterogeneity on land surface temperature in Guangzhou, China. Environ. Model. Softw. 2016, 84, 427–439. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Gong, P.; Seto, K.C.; Clinton, N. Developing a method to estimate building height from Sentinel-1 data. Remote Sens. Environ. 2020, 240, 111705. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration (NOAA) Coastal Services Center. Lidar 101: An Introduction to Lidar Technology, Data, and Applications; NOAA Coastal Service Center: Charleston, SC, USA, 2012; p. 76. [Google Scholar]
- Hummel, S.; Hudak, A.T.; Uebler, E.H.; Falkowski, M.J.; Megown, K.A. A comparison of accuracy and cost of LiDAR versus stand exam data for landscape management on the Malheur National Forest. J. For. 2011, 109, 267–273. [Google Scholar]
- Bi, S.; Yuan, C.; Liu, C.; Cheng, J.; Wang, W.; Cai, Y. A survey of low-cost 3D laser scanning technology. Appl. Sci. 2021, 11, 3938. [Google Scholar] [CrossRef]
- Alobeid, A.; Jacobsen, K.; Heipke, C. Comparison of matching algorithms for DSM generation in urban areas from Ikonos imagery. Photogramm. Eng. Remote Sens. 2010, 76, 1041–1050. [Google Scholar] [CrossRef]
- Honjo, T.; Danniswari, D.; Seo, Y.; Tsunematsu, N.; Yokoyama, H. Simple Method for Detecting Urban 3D Structure Using Open-Source Satellite Data. 2022; Manuscript submitted for publication. [Google Scholar]
- Danniswari, D.; Honjo, T.; Kato, A.; Furuya, K. Utilizing Open-Source Satellite Data for the Relationship between Building Height and Land Surface Temperature. J. Environ. Inf. Sci. 2021, 2021, 1–10. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Richards, D.; Masoudi, M.; Oh, R.R.Y.; Yando, E.S.; Zhang, J.; Friess, D.A.; Grêt-Regamey, A.; Tan, P.Y.; Edwards, P.J. Global variation in climate, human development, and population density has implications for urban ecosystem services. Sustainability 2019, 11, 6200. [Google Scholar] [CrossRef]
- United Nations, Department of Economic and Social Affairs. The World ’s Cities in 2018; United Nations: New York, NY, USA, 2018; p. 34. [Google Scholar]
- Perez, R.I.P. The historical development of the Tokyo skyline: Timeline and morphology. J. Asian Arch. Build. Eng. 2014, 13, 609–615. [Google Scholar] [CrossRef]
- Wandira, P.A.; Jongwook, K. The Influence of Tall Buildings to the Modern Urban Landscape of Jakarta City. In Proceedings of the UIA 2017 Seoul World Architects Congress, Seoul, Korea, 3–10 September 2017; pp. 0–6. [Google Scholar]
- Effendi, M.F.; Ridzqo, I.F.; Dharmatanna, S.W. An Overview of High-Rise Buildings in Jakarta since 1967 to 2020. IOP Conf. Ser. Earth Environ. Sci. 2021, 933, 012001. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 11 April 2022).
- Tadono, T.; Nagai, H.; Ishida, H.; Oda, F.; Naito, S.; Minakawa, K.; Iwamoto, H. Generation of the 30 M-MESH global digital surface model by alos prism. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2016, 41, 157–162. [Google Scholar] [CrossRef]
- Santillan, J.R.; Makinano-Santillan, M. Vertical accuracy assessment of 30-M resolution ALOS, ASTER, and SRTM global DEMS over Northeastern Mindanao, Philippines. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2016, 41, 149–156. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef]
- Mukul, M.; Srivastava, V.; Jade, S.; Mukul, M. Uncertainties in the Shuttle Radar Topography Mission (SRTM) Heights: Insights from the Indian Himalaya and Peninsula. Sci. Rep. 2017, 7, 41672. [Google Scholar] [CrossRef] [PubMed]
- Hulley, G.; Shivers, S.; Wetherley, E.; Cudd, R. New ECOSTRESS and MODIS land surface temperature data reveal fine-scale heat vulnerability in cities: A case study for Los Angeles County, California. Remote Sens. 2019, 11, 2136. [Google Scholar] [CrossRef]
- Ermida, S.L.; Soares, P.; Mantas, V.; Göttsche, F.M.; Trigo, I.F. Google earth engine open-source code for land surface temperature estimation from the landsat series. Remote Sens. 2020, 12, 1471. [Google Scholar] [CrossRef]
- El-Gammal, M.I.; Ali, R.R.; Samra, R.M.A. NDVI Threshold Classification for Detecting Vegetation Cover in Damietta Governorate, Egypt. J. Am. Sci. 2014, 10, 108–113. [Google Scholar] [CrossRef]
- Liu, Y. Why NDWI threshold varies in delineating water body from multitemporal images? In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 4375–4378. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y.; Luo, Z.; Chan, P.W. The urban cool island phenomenon in a high-rise high-density city and its mechanisms. Int. J. Clim. 2017, 37, 890–904. [Google Scholar] [CrossRef]
- Erell, E.; Williamson, T. Intra-urban differences in canopy layer air temperature at a mid-latitude city. Int. J. Clim. 2006, 27, 1243–1255. [Google Scholar] [CrossRef]
- Feng, X.; Myint, S.W. Exploring the effect of neighboring land cover pattern on land surface temperature of central building objects. Build. Environ. 2016, 95, 346–354. [Google Scholar] [CrossRef]
Name | Band | Resolution | Acquisition Period | Version |
---|---|---|---|---|
AW3D30 | AVE_DSM | 1 arcsec (≈30 m) | 2006–2011 | Ver. 2.2, April 2019 |
SRTM | elevation | 1 arcsec (≈30 m) | 2000 | Ver. 3, 2007 |
Area | Path/Row | Dates | |
---|---|---|---|
Warm Season | Cool Season | ||
Tokyo (Landsat acquisition time around 10:15) | 107/35 | 16/10/2006, 12/05/2007, 21/10/2008, 11/10/2010, 05/04/2011, 10/07/2011 | 05/02/2007, 21/02/2007, 22/11/2008, 25/01/2009, 10/02/2009, 28/11/2010 |
Jakarta (Landsat acquisition time around 10:00) | 122/64 | 18/05/2006, 19/06/2006, 06/08/2006, 26/09/2007, 29/07/2009 | - |
Area | Equation | Adjusted R2 |
---|---|---|
Tokyo Warm Season | LST = −0.104 × DBHM + 30.742 | 0.123 *** |
Tokyo Cool Season | LST = −0.065 × DBHM + 13.376 | 0.121 *** |
Jakarta | LST = −0.127 × DBHM + 42.590 | 0.099 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Danniswari, D.; Honjo, T.; Furuya, K. Analysis of Building Height Impact on Land Surface Temperature by Digital Building Height Model Obtained from AW3D30 and SRTM. Geographies 2022, 2, 563-576. https://doi.org/10.3390/geographies2040034
Danniswari D, Honjo T, Furuya K. Analysis of Building Height Impact on Land Surface Temperature by Digital Building Height Model Obtained from AW3D30 and SRTM. Geographies. 2022; 2(4):563-576. https://doi.org/10.3390/geographies2040034
Chicago/Turabian StyleDanniswari, Dibyanti, Tsuyoshi Honjo, and Katsunori Furuya. 2022. "Analysis of Building Height Impact on Land Surface Temperature by Digital Building Height Model Obtained from AW3D30 and SRTM" Geographies 2, no. 4: 563-576. https://doi.org/10.3390/geographies2040034
APA StyleDanniswari, D., Honjo, T., & Furuya, K. (2022). Analysis of Building Height Impact on Land Surface Temperature by Digital Building Height Model Obtained from AW3D30 and SRTM. Geographies, 2(4), 563-576. https://doi.org/10.3390/geographies2040034