Techniques of Geoprocessing via Cloud in Google Earth Engine Applied to Vegetation Cover and Land Use and Occupation in the Brazilian Semiarid Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Orbital Data from Satellites
2.3. Coverage Trend Analysis and Land Use
2.3.1. Satellite-Derived Data (MapBiomas Brazil)
2.3.2. Mann–Kendall Test and SEN Slope Estimator
2.4. Statistical Analysis of Data
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abrantes, P.; Rocha, J.; Costa, E.M.d.; Gomes, E.; Morgado, P.; Costa, N. Modelling urban form: A multidimensional typology of urban occupation for spatial analysis. Environ. Plan. B Urban Anal. City Sci. 2019, 46, 47–65. [Google Scholar] [CrossRef]
- Chauvin, J.P.; Glaeser, E.; Ma, Y.; Tobio, K. What is different about urbanization in rich and poor countries? Cities in Brazil, China, India and the United States. J. Urban Econ. 2017, 98, 17–49. [Google Scholar] [CrossRef] [Green Version]
- Coy, P.D.M.; Sandholz, D.S.; Töpfer, D.T.; Zirkl, D.F. Metropolitan Regions: Challenges for Sustainability and Governance of Periurban Areas in Brazil. Confin. Rev. Fr.-Brésilienne De Géographie/Rev. Fr. -Bras. De Geogr. 2018, 38, 1–15. [Google Scholar] [CrossRef]
- Kühner, T.; Pinto, C.V.D.S.; Amorim, C.N.D. International urban agendas and sustainable integrated urban development in developing countries. The case of Brazil. Cid. Comunidades E Territ. 2021, Sp21, 120–138. [Google Scholar] [CrossRef]
- IPEA. O Gigante Invisível: Território e População Rural Para Além Das Convenções Oficiais; Instituto de Pesquisa Econômica Aplicada: Rio de Janeiro, Brazil, 2014. [Google Scholar]
- Organização das Nações Unidas (ONU). World Population Prospects: The 2017 Revision, Key Findings and Advance Tables; United Nations: New York, NY, USA, 2017. [Google Scholar]
- Talukder, S.; Capon, A.; Nath, D.; Kolb, A.; Jahan, S.; Boufford, J. Urban health in the post-2015 agenda. Lancet 2015, 385, 769. [Google Scholar] [CrossRef]
- Silva, C.V.F.; Schardong, A.; Garcia, J.I.B.; Oliveira, C.D.P.M. Climate change impacts and flood control measures for highly developed urban watersheds. Water 2018, 10, 829. [Google Scholar] [CrossRef] [Green Version]
- Kalantari, Z.; Ferreira, C.S.S.; Page, J.; Goldenberg, R.; Olsson, J.; Destouni, G. Meeting sustainable development challenges in growing cities: Coupled social-ecological systems modeling of land use and water changes. J. Environ. Manag. 2019, 245, 471–480. [Google Scholar] [CrossRef]
- Alves, P.B.R.; Djordjević, S.; Javadi, A.A. An integrated socio-environmental framework for mapping hazard-specific vulnerability and exposure in urban areas. Urban Water J. 2021, 18, 530–543. [Google Scholar] [CrossRef]
- Du, H.; Wang, D.; Wang, Y.; Zhao, X.; Qin, F.; Jiang, H.; Cai, Y. Influences of land cover types, meteorological conditions, anthropogenic heat and urban area on surface urban heat island in the Yangtze River Delta Urban Agglomeration. Sci. Total Environ. 2016, 571, 461–470. [Google Scholar] [CrossRef]
- Heaviside, C.; Macintyre, H.; Vardoulakis, S. The urban heat island: Implications for health in a changing environment. Curr. Environ. Health Rep. 2017, 4, 296–305. [Google Scholar] [CrossRef]
- Oliver, S.; Corburn, J.; Ribeiro, H. Challenges regarding water quality of eutrophic reservoirs in urban landscapes: A mapping literature review. Int. J. Environ. Res. Public Health 2019, 16, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ledru, M.P.; Jeske-Pieruschka, V.; Bremond, L.; Develle, A.L.; Sabatier, P.; Martins, E.S.; de Freitas Filho, M.R.; Fontenele, D.P.; Arnaud, F.; Favier, C.; et al. When archives are missing, deciphering the effects of public policies and climate variability on the Brazilian semi-arid region using sediment core studies. Sci. Total Environ. 2020, 723, 137989. [Google Scholar] [CrossRef]
- MI/SUDENE. Ministério da Integração Nacional/Superintendência do Desenvolvimento do Nordeste. Nova Delimitação da Região Semiárida do Brasil/Resolução nº 115, de 23 de Novembro de 2017. Available online: https://www.gov.br/sudene/pt-br (accessed on 4 July 2022).
- Palácio, H.A.Q.; Andrade, E.M.d.; Santos, J.C.N.; Araújo Neto, J.R.; Brasil, P.P. Emergy evaluation of semi-arid watersheds under different management strategies. Trans. ASABE 2013, 56, 1357–1363. [Google Scholar] [CrossRef]
- Gutiérrez, A.P.A.; Engle, N.L.; De Nys, E.; Molejón, C.; Martins, E.S. Drought preparedness in Brazil. Weather. Clim. Extrem. 2014, 3, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Marengo, J.A.; Alves, L.M.; Alvala, R.; Cunha, A.P.; Brito, S.; Moraes, O.L. Climatic characteristics of the 2010–2016 drought in the semiarid Northeast Brazil region. An. Da Acad. Bras. De Ciências 2018, 90 (Suppl. 1), 1973–1985. [Google Scholar] [CrossRef] [PubMed]
- Mariano, D.A.; Santos, C.A.; Wardlow, B.D.; Anderson, M.C.; Schiltmeyer, A.V.; Tadesse, T.; Svoboda, M.D. Use of remote sensing indicators to assess effects of drought and human-induced land degradation on ecosystem health in Northeastern Brazil. Remote Sens. Environ. 2018, 213, 129–143. [Google Scholar] [CrossRef]
- Novais, J.J.; Lacerda, M.P.; Sano, E.E.; Demattê, J.A.; Oliveira Jr, M.P. Digital soil mapping using multispectral modeling with landsat time series cloud computing based. Remote Sens. 2021, 13, 1181. [Google Scholar] [CrossRef]
- Mesquita, M.R.; Agarwal, S.; Morais Lima, L.H.G.d.; Soares, M.R.A.; Silva, V.C.; Werneck, G.L.; Costa, C.H.N. The use of geotechnologies for the identification of the urban flora in the city of Teresina, Brazil. Urban Ecosyst 2022, 25, 523–534. [Google Scholar] [CrossRef]
- Nascimento, D.M.d.; Sales, A.T.; Souza, R.; Silva, A.S.A.d.; Sampaio, E.V.d.S.B.; Menezes, R.S.C. Development of a methodological approach to estimate vegetation biomass using remote sensing in the Brazilian semiarid NE region. Remote Sens. Appl. Soc. Environ. 2022, 27, 100771. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Liu, Y. Land use change and driving factors in rural China during the period 1995-2015. Land Use Policy 2020, 99, 105048. [Google Scholar] [CrossRef]
- Zahir, I.L.M.; Thennakoon, S.; Sangasumana, R.P.; Herath, J.; Madurapperuma, B.; Iyoob, A.L. Spatiotemporal Land-Use Changes of Batticaloa Municipal Council in Sri Lanka from 1990 to 2030 Using Land Change Modeler. Geographies 2021, 1, 166–177. [Google Scholar] [CrossRef]
- Kanga, S.; Singh, S.K.; Meraj, G.; Kumar, A.; Parveen, R.; Kranjčić, N.; Đurin, B. Assessment of the Impact of Urbanization on Geoenvironmental Settings Using Geospatial Techniques: A Study of Panchkula District, Haryana. Geographies 2022, 2, 1–10. [Google Scholar] [CrossRef]
- Magliulo, P.; Cusano, A.; Russo, F. Land-Use Changes in the Sele River Basin Landscape (Southern Italy) between 1960 and 2012: Comparisons and Implications for Soil Erosion Assessment. Geographies 2021, 1, 315–332. [Google Scholar] [CrossRef]
- Becker, W.R.; Ló, T.B.; Johann, J.A.; Mercante, E. Statistical features for land use and land cover classification in Google Earth Engine. Remote Sens. Appl. Soc. Environ. 2021, 21, 100459. [Google Scholar] [CrossRef]
- D’Odorico, P.; Bhattachan, A.; Davis, K.F.; Ravi, S.; Runyan, C.W. Global desertification: Drivers and feedbacks. Adv. Water Resour. 2013, 51, 326–344. [Google Scholar] [CrossRef]
- Vorovencii, I. Assessing and monitoring the risk of desertification in Dobrogea, Romania, using Landsat data and decision tree classifier. Environ. Monit. Assess. 2015, 187, 204. [Google Scholar] [CrossRef]
- Instituto Brasileiro de Geografia e Estatística (IBGE). Diretoria de Pesquisas—DPE—Coordenação de População e Indicadores Sociais—COPIS; Estimativas da população: 2021: Nota metodológica n. 01: Estimativas da população residente para os municípios e para as unidades da federação brasileiros, com data de referência em 1º de julho de 2021; IBGE: Rio de Janeiro, Brazil, 2022; 119p.
- Ávila, P.L.R.; Brito, J.I.B. Relação entre a Oscilação Decadal do Pacífico e a variabilidade de precipitação de Campina Grande, PB. Ciência E Nat. 2015, 37, 159–162. [Google Scholar] [CrossRef] [Green Version]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Plane-tary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- USGS/NASA. United States Geological Survey/National Aeronautics and Space Administration. Landsat Satellite Missions. Available online: https://www.usgs.gov/land-resources/nli/landsat/landsat-satellite-missions (accessed on 2 August 2022).
- Huete, A.R. A soil adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Huete, A.R.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and bi-ophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Barbosa, H.A.; Huete, A.R.; Baethgen, W.E. A 20-year study of NDVI variability over the Northeast Region of Brazil. J. Arid Environ. 2006, 67, 288–307. [Google Scholar] [CrossRef]
- Pontius Jr, R.G.; Millones, M. Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [Google Scholar] [CrossRef]
- MapBiomas Brazil Project—Collection [6.0] of the Annual Series of Land Use and Land Cover Maps of Brazil. Available online: http://mapbiomas.org/colecoes-mapbiomas-1?cama_set_language=pt-BR (accessed on 2 August 2022).
- Alencar, A.; Shimbo, J.Z.; Lenti, F.; Balzani Marques, C.; Zimbres, B.; Rosa, M.; Arruda, V.; Castro, I.; Fernandes Márcico Ribeiro, J.P.; Varela, V.; et al. Mapping Three Decades of Changes in the Brazilian Savanna Native Vegetation Using Landsat Data Processed in the Google Earth Engine Platform. Remote Sens. 2020, 12, 924. [Google Scholar] [CrossRef] [Green Version]
- Fendrich, A.N.; Barretto, A.; Faria, V.G.d.; Bastiani, F.d.; Tenneson, K.; Pinto, L.F.G.; Sparovek, G. Disclosing contrasting scenarios for future land cover in Brazil: Results from a high-resolution spatiotemporal model. Sci. Total Environ. 2020, 742, 140477. [Google Scholar] [CrossRef]
- Saraiva, M.; Protas, É.; Salgado, M.; Souza Jr, C. Automatic mapping of center pivot irrigation systems from satellite images using deep learning. Remote Sens. 2020, 12, 558. [Google Scholar] [CrossRef] [Green Version]
- Souza, C.M., Jr.; Shimbo, J.Z.; Rosa, M.R.; Parente, L.L.; Alencar, A.A.; Rudorff, B.F.T.; Hasenack, H.; Matsumoto, M.; Ferreira, L.G.; Souza-Filho, P.W.M.; et al. Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine. Remote Sens. 2020, 12, 2735. [Google Scholar] [CrossRef]
- Arruda, V.L.; Piontekowski, V.J.; Alencar, A.; Pereira, R.S.; Matricardi, E.A. An alternative approach for mapping burn scars using Landsat imagery, Google Earth Engine, and Deep Learning in the Brazilian Savanna. Remote Sens. Appl. Soc. Environ. 2021, 22, 100472. [Google Scholar] [CrossRef]
- Diniz, C.; Cortinhas, L.; Pinheiro, M.L.; Sadeck, L.; Fernandes Filho, A.; Baumann, L.R.F.; Adami, M.; Souza-Filho, P.W.M. A Large-Scale Deep-Learning Approach for Multi-Temporal Aqua and Salt-Culture Mapping. Remote Sens. 2021, 13, 1415. [Google Scholar] [CrossRef]
- Rosa, M.R.; Brancalion, P.H.; Crouzeilles, R.; Tambosi, L.R.; Piffer, P.R.; Lenti, F.E.; Hirota, M.; Santiami, E.; Metzger, J.P. Hidden destruction of older forests threatens Brazil’s Atlantic Forest and challenges restoration programs. Sci. Adv. 2021, 7, eabc4547. [Google Scholar] [CrossRef]
- Silva, R.M.; Santos, C.A.; Moreira, M.; Corte-Real, J.; Silva, V.C.; Medeiros, I.C. Rainfall and river flow trends using Mann–Kendall and Sen’s slope estimator statistical tests in the Cobres River basin. Nat. Hazards 2015, 77, 1205–1221. [Google Scholar] [CrossRef]
- Santos, C.A.; do Nascimento, T.V.; da Silva, R.M. Analysis of forest cover changes and trends in the Brazilian semiarid region between 2000 and 2018. Environ. Earth Sci. 2020, 79, 418. [Google Scholar] [CrossRef]
- Mann, H.B. Non-parametric test against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin: London, UK, 1975; 199p. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Warrick, A.W.; Nielsen, D.R. Spatial variability of soil physical properties in the field. In Applications of Soil Physics; Hillel, D., Ed.; Academic Press: Cambridge, MA, USA, 1980; 350p. [Google Scholar]
- ANA. Agência Nacional das Águas e Saneamento Básico. HidroWeb Portal: Collection of Hydrological Data. Historical Series of Seasons. 2022. Available online: https://www.snirh.gov.br/hidroweb/serieshistoricas (accessed on 2 August 2022).
- da Silva, J.L.; de Albuquerque Moura, G.B.; de França, Ê.F.; Lopes, P.M.; da Silva, T.T.; Lins, F.A.; de Oliveira Silva, D.A.; Ortiz, P.F. Spatial-temporal dynamics of the Caatinga vegetation cover by remote sensing in municipality of the Brazilian semi-arid. Rev. Bras. De Ciências Agrárias 2019, 14, 1–10. [Google Scholar] [CrossRef] [Green Version]
- da Silva, J.L.; de Albuquerque Moura, G.B.; da Silva, M.V.; Lopes, P.M.; de Souza Guedes, R.V.; e Silva, Ê.F.; Ortiz, P.F.; de Moraes Rodrigues, J.A. Changes in the water resources, soil use and spatial dynamics of Caatinga vegetation cover over semiarid region of the Brazilian Northeast. Remote Sens. Appl. Soc. Environ. 2020, 20, 100372. [Google Scholar] [CrossRef]
- Brandt, M.; Romankiewicz, C.; Spiekermann, R.; Samimi, C. Environmental change in time series–An inter-disciplinary study in the Sahel of Mali and Senegal. J. Arid Environ. 2014, 105, 52–63. [Google Scholar] [CrossRef]
- Campos, S.; Mendes, K.R.; Da Silva, L.L.; Mutti, P.R.; Medeiros, S.S.; Amorim, L.B.; Dos Santos, C.A.; Perez-Marin, A.M.; Ramos, T.M.; Marques, T.V.; et al. Closure and partitioning of the energy balance in a preserved area of a Brazilian seasonally dry tropical forest. Agric. For. Meteorol. 2019, 271, 398–412. [Google Scholar] [CrossRef]
- Coulibaly, B.; Li, S. Impact of agricultural land loss on rural livelihoods in peri-urban areas: Empirical evidence from Sebougou, Mali. Land 2020, 9, 470. [Google Scholar] [CrossRef]
Territory | Thematic Class | Total Annual Quantification of Land Uses | |||||
---|---|---|---|---|---|---|---|
1985 (km2) | 1985 (%) | Overall Accuracy (%) | 2020 (km2) | 2020 (%) | Overall Accuracy (%) | ||
Municipality of Campina Grande, PB, Brazil | Forest (forest formation and savanna formation) | 334.16 | 56.48 | 90.00 | 218.80 | 36.98 | 88.05 |
Non-forest natural formation (grassland) | 6.62 | 1.12 | 17.89 | 6.31 | 1.07 | 19.48 | |
Farming (agriculture and pasture) | 238.57 | 40.32 | 67.16 | 287.92 | 48.66 | 82.27 | |
Non-vegetated area (urban area and other non-vegetated areas) | 9.30 | 1.57 | 80.63 | 77.31 | 13.07 | 86.08 | |
Water | 3.01 | 0.51 | 93.59 | 1.33 | 0.23 | 93.68 | |
Total | 591,659 | 100 | - | 591,659 | 100 | - | |
Overall accuracy (1985–2020) | 81.80% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, J.L.B.; Refati, D.C.; da Cunha Correia Lima, R.; de Carvalho, A.A.; Ferreira, M.B.; Pandorfi, H.; da Silva, M.V. Techniques of Geoprocessing via Cloud in Google Earth Engine Applied to Vegetation Cover and Land Use and Occupation in the Brazilian Semiarid Region. Geographies 2022, 2, 593-608. https://doi.org/10.3390/geographies2040036
da Silva JLB, Refati DC, da Cunha Correia Lima R, de Carvalho AA, Ferreira MB, Pandorfi H, da Silva MV. Techniques of Geoprocessing via Cloud in Google Earth Engine Applied to Vegetation Cover and Land Use and Occupation in the Brazilian Semiarid Region. Geographies. 2022; 2(4):593-608. https://doi.org/10.3390/geographies2040036
Chicago/Turabian Styleda Silva, Jhon Lennon Bezerra, Daiana Caroline Refati, Ricardo da Cunha Correia Lima, Ailton Alves de Carvalho, Maria Beatriz Ferreira, Héliton Pandorfi, and Marcos Vinícius da Silva. 2022. "Techniques of Geoprocessing via Cloud in Google Earth Engine Applied to Vegetation Cover and Land Use and Occupation in the Brazilian Semiarid Region" Geographies 2, no. 4: 593-608. https://doi.org/10.3390/geographies2040036
APA Styleda Silva, J. L. B., Refati, D. C., da Cunha Correia Lima, R., de Carvalho, A. A., Ferreira, M. B., Pandorfi, H., & da Silva, M. V. (2022). Techniques of Geoprocessing via Cloud in Google Earth Engine Applied to Vegetation Cover and Land Use and Occupation in the Brazilian Semiarid Region. Geographies, 2(4), 593-608. https://doi.org/10.3390/geographies2040036