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Abstract: Thematic maps of land cover and use can assist in the environmental monitoring of semiarid
regions, mainly due to the advent of climate change, such as drought, and pressures from anthropic
activities, such as the advance of urban areas. The use of geotechnologies is key for its effectiveness
and low operating cost. The objective was to evaluate and understand the spatiotemporal dynamics
of the loss and gain of land cover and use in a region of the Brazilian semiarid region, and identify
annual trends from changing conditions over 36 years (1985 to 2020), using cloud remote sensing
techniques in Google Earth Engine (GEE). Thematic maps of land cover and land use from MapBiomas
Brazil were used, evaluated by Mann–Kendall trend analysis. The Normalized Difference Vegetation
Index (NDVI) was also determined from the digital processing of about 800 orbital images (1985 to
2020) from the Landsat series of satellites. The trend analysis for land cover and use detected, over
time, the loss of forest areas and water bodies, followed by the advance of exposed soil areas and
urban infrastructure. The modification of native vegetation directly influences water availability, and
agricultural activities increase the pressure on water resources, mainly in periods of severe drought.
The NDVI detected that the period from 2013 to 2020 was most affected by climatic variability
conditions, with extremely low average values. Thematic maps of land cover and use and biophysical
indices are essential indicators to mitigate environmental impacts in the Brazilian semiarid region.

Keywords: landscape pattern; urban area; biophysical index; remote sensing; landsat

1. Introduction

Urban growth in Brazil began mainly in the 20th century, from the 1930s and 1940s,
when the urbanization was incorporated into the profound structural transformations that
Brazilian society and economy were undergoing, linked to a great cycle of expansion of
internal migrations, from the rural to the cities. In the following decades, this process
systematically increases, even becoming a generalized urban expansion for the whole
world, and in 1970, for the country as a whole, the urban population was greater than the
rural one [1–4].

The participation of the rural population continues to decline, in absolute and relative
terms, in the official counts of the Demographic Censuses of the Brazilian Institute of
Geography and Statistics (IBGE). In 2000, the urbanization rate was 81.23%, prolonging the
demographic trend that began to assert itself between the 1960 and 1970 censuses, ending
in 2010 with 84.36% of the country’s population living in urban areas [5].

According to the United Nations (UN), cities will concentrate in 2050, about 70% of the
world population, which will represent about 6.3 billion people [6]. This scenario, marked
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by high population density, often accelerated and without planning from a disorderly
development, presents itself as one of the great challenges for public power administrators,
due to insufficient infrastructure, extreme poverty, unemployment, and environmental
problems, such as climatic factors; floods; soil waterproofing; loss of vegetation cover;
overload in the drainage system; pollution and silting of water in rivers and reservoirs; and
accumulation of solid waste [7–10].

In addition, there are problems related to the urban climate, such as the generation of
heat islands, impacts from precipitation events, and atmospheric pollution. These events
are more visible in large urban agglomerations; however, in small and medium-sized
cities, there are also changes in the natural landscape, materialized in air, water, soil, and
groundwater pollution. Rivers and streams are channeled or have their courses altered,
landfills and constructions modify morphology, and vegetation is removed [9,11–13].

In the case of the Brazilian Semiarid Region, research indicates that the region is
considered one of the most populous in the world, with an estimated population of over
27 million inhabitants and a population density of 23.05 inhabitants per km2, revealing
that this population density is mainly reflected by the urbanized areas, exerts greater
pressure on water and natural resources, and energy, causing greater human interference
and changes in land use and land cover [14,15].

Therefore, it is necessary to understand the alterations and/or environmental changes
of the semiarid climate and also the possible impacts generated by human actions in
these regions, such as deforestation, soil erosion, fires, intensive farming practices, inade-
quate management of agriculture, and disordered urbanization, which contribute to the
worsening of degradation processes and consequent soil desertification [9,16–19].

This study presents, in a simple way, the characterization and diagnosis of land use
and occupation in the Brazilian semiarid region, aiming to expand the environmental
monitoring of biophysical conditions in semiarid regions. In the need for advances in this
direction, especially in the Brazilian Northeast, it is essential to seek new tools, methods,
and practical and efficient technologies to meet demands such as the absence of large-scale
environmental and climate data in space and time.

In this context, geotechnologies associated with Geographic Information Systems
(GIS), which consist of tools for spatial analysis and data storage, have been increasingly
disseminated to quantify and analyze changes in the landscape over time, building accurate
and reliable databases. These technologies are extremely important instruments to assist
in the mapping of land use and land cover, explaining processes of urban expansion and
environmental impacts, simulating future scenarios, and serving as guidance for possible
public policies modern, decentralized, and participatory [20–22].

Recent studies with GIS, using satellite images, in the last four decades, have been
providing valuable scientific information, facilitating the understanding of the spatial
and temporal dynamics of land use [1,12,19,21,23], mainly in areas of high urban growth,
comprehending the changes imposed by man on the physical environment and its geo-
morphological implications, in ecosystem habitats, and in municipal-scale deforestation in
Batticaloa, Eastern Province of Sri Lanka [24], in Panchkula District in Haryana, one of the
fastest growing urban centers in India [25], and the Sele River Basin in Southern Italy [26].

Ref. [23] highlighted that the change in land cover and use in municipalities in rural
China is the result of the interaction between anthropic activities and biophysical processes,
where socio-economic development was the main driver of the expansion of the built-up
area, and geographic differentiation is the dominant factor in the conversion of cultivated
land, forests, and pastures. Ref. [27] also highlighted that anthropic activities are the main
source of modification of the land surface, for example, the needs of urban development.
This mainly highlights that human activities alter the biophysical attributes of the Earth’s
land surface, especially the modification of native ecosystems.

Refs. [17,19,28] highlight that the worsening of soil degradation in semiarid regions is
one of the most catastrophic results of drought events and anthropic activities. Through the
assessment of climate/environmental impacts, induced mainly by the action of man in the
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natural environment, essential information can be obtained for decision makers to mitigate
and understand the levels of environmental degradation in the Brazilian semiarid region.

The study of land use and land cover becomes highly viable when evaluated in space-
time practically and effectively, at a low operational cost. This environmental monitoring
over time is carried out through the use of geoprocessing and its geotechnologies, such as
orbital remote sensing, a tool that, through a set of geospatial techniques, evaluates the plant
biomass and the landscape pattern through indicators, such as vegetation indices and maps
of land use and land cover that quantitatively characterize changing conditions and their
relationships. The applications allow forecasting climate change, agroecological planning,
and urban infrastructure conditions, to assess and monitor the risk of environmental
degradation, especially in semiarid regions [1,27,29].

Because of the above, the objective was to understand the spatiotemporal dynamics of
the loss and gain conditions of land use and land cover, especially in the urban area, and
to identify annual trends in the conditions of change in the Brazilian semiarid region, to
relate the vegetation suppression process over 36 years (1985 to 2020), using remote sensing
techniques and digital cloud processing in Google Earth Engine (GEE).

2. Materials and Methods
2.1. Study Area

The study area, the municipality of Campina Grande, is located in the state of Paraiba,
in the Brazilian semiarid region, located more specifically between the parallels of 07◦8′ S
and 07◦28′ S, and between the meridians of 35◦44′ W and 36◦8′ W, at an average altitude of
555 m (Figure 1).
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Figure 1. The spatial location of the study area is the municipality of Campina Grande, Paraiba, Brazil.

The municipality has an absolute surface of 591,658 km2, and an estimated population
of 413,830 inhabitants [30]. It is characterized by a predominant vegetation cover of the
Caatinga biome and has a tropical climate of altitude with a rainy season starting in March



Geographies 2022, 2 596

and ending in August, with a total annual rainfall of 773.5 mm (from 1911 to 2011), and
maximum temperatures throughout the year between 30 ◦C (summer) and 25 ◦C (winter),
and minimum temperatures between 20 ◦C (summer) and 18 ◦C (winter) [31].

2.2. Orbital Data from Satellites

The research was developed from a robust analysis, using orbital images from the
Landsat-5 sensor Thematic Mapper (TM), Landsat-7 sensor Enhanced Thematic Mapper
(ETM+), and Landsat-8 sensor Operational Land Imager (OLI), between 1 January 1985 to
31 December 2020.

The images were made available by the National Aeronautics and Space Adminis-
tration (NASA) via the United States Geological Survey (USGS) (https://www.usgs.gov/
landsat-missions/landsat-satellite-missions—accessed on 29 August 2022); processed digi-
tally in Google Earth Engine (GEE) software (https://earthengine.google.com/—accessed
on 2 September 2022). The GEE provides a library with multiple mathematical analysis
functions, highlighting computational modeling and statistical analysis, with machine
learning operations based on specific algorithms, efficient in processing satellite images
and calculating different biophysical parameters at the surface [32].

Specifically, Google Earth Engine provides a range of processing methods/algorithms
for the Landsat series of satellites. From methods to calculate the radiance in sensors, as
well as the reflectance at the top of the atmosphere (TOA), and also, as used in the present
study, the surface reflectance (SR). Furthermore, the platform especially highlights models
for scoring clouds and cloud-free composites.

In this study, a digital processing script was used in the GEE, with the following
datasets/collections—GEE ID: Landsat-5 TM (“LANDSAT/LT05/C02/T1_L2”); Landsat-7
ETM+ (“LANDSAT/LE07/C02/T1_L2”); and Landsat-8 OLI (“LANDSAT/LC08/C02/T1_L2”),
with the availability of geospatial data from the year 1985 to the present. Over 36 years
(1985–2020), at least 800 satellite images were digitally processed.

Regarding cloud problems, one of the criteria adopted for Landsat image processing
was to develop a digital processing script for cloud mask and their shadows from a specific
band for both satellites/sensors. The script was adapted according to the indications
of the rudimentary GEE ID algorithm: (for example: https://code.earthengine.google.
com/54aabb24979858b32a59aaebe8ba125c?noload=true—accessed on 2 September 2022).
Indications of these processing methods/algorithms as a function of Landsat sensors can
be found in the following GEE repository (https://developers.google.com/earth-engine/
guides/landsat—accessed on 2 September 2022).

For the proper application and effective use of Landsat images on the GEE platform,
atmospheric correction/calibration factors, multiplier (0.0000275), and additive factors
(−0.2) were applied for each multispectral band used of the surface reflectance product,
collection two [33]. The surface reflectance product for the Landsat-5/TM, 7/ETM+, and
8/OLI satellites/sensors, presents temporal resolution between 14 and 16 days; spatial
resolution of 30 m and radiometric resolution of 16 bits [34].

From the multispectral reflective bands of the satellite images, the Normalized Differ-
ence Vegetation Index (NDVI) was determined, which is able to characterize, in addition to
the conditions of green vegetation and agricultural areas, other land uses, such as urban
infrastructure and exposed soil areas. The NDVI is estimated as a function of the ratio
between the difference between the multispectral bands of the near-infrared reflectance
(rNIR1) and the red band (rRED) by their sum [35–37], according to Equation (1).

NDVI =
rNIR1 − rRED

rNIR1+rRED
, (1)

where, rNIR1 and rRED correspond to the reflectances of the multispectral bands of the TM
and ETM+ sensors in the wavelengths (0.77–0.90 µm) and (0.63–0.69 µm), and OLI sensor
(0.851–0.879 µm) and (0.636–0.673 µm).

https://www.usgs.gov/landsat-missions/landsat-satellite-missions
https://www.usgs.gov/landsat-missions/landsat-satellite-missions
https://earthengine.google.com/
https://code.earthengine.google.com/54aabb24979858b32a59aaebe8ba125c?noload=true
https://code.earthengine.google.com/54aabb24979858b32a59aaebe8ba125c?noload=true
https://developers.google.com/earth-engine/guides/landsat
https://developers.google.com/earth-engine/guides/landsat


Geographies 2022, 2 597

2.3. Coverage Trend Analysis and Land Use
2.3.1. Satellite-Derived Data (MapBiomas Brazil)

The MapBiomas Brazil project is based on geospatial data, derived from the Landsat
series of satellites, for the development of thematic maps of land use and land cover. The
spatiotemporal monitoring of the natural environment of Brazilian biomes was driven by
the implementation of a low-cost, open-access methodology. It is worth noting that annual
thematic maps contain up to 105 layers of information. Thus, to generate a single land
cover and land use map for each year, so-called prevalence rules apply. In this case, it is
when the same pixel is classified in two maps of different classes, in order to define which
class it belongs to in the final map. Additionally, at the end of all digital processing, these
are carefully evaluated/validated as to their statistical quality through accuracy analysis,
with estimates of the general accuracy rates and also of accuracy and error for each of the
cross-sectional themes mapped [38,39].

The public availability and consistency of these data had a high impact on Earth science
studies and promoted the development of even more detailed research on the changing
conditions of land uses over time. The studies mainly cover the monitoring of areas of
native vegetation (mapping of the loss and/or resilience of the natural vegetation cover
of the biomes), pasture (quality and degradation), agriculture (evolution of irrigation and
mapping of different cultures), water resources (condition water supply of rivers, streams,
lakes, ponds, and strategic reservoirs), urban infrastructure, among other cross-cutting
themes (for example, [40–46]).

2.3.2. Mann–Kendall Test and SEN Slope Estimator

Trend analysis is responsible for quantifying the patterns of changes and trends of
different land uses and land cover over the 36-year time series (1985–2020).

Information on annual trends of loss and gain brings significant benefits to under-
standing the dimensions of the climate variability framework and pressures from anthropic
activities, generating results for adequate planning and management of adaptation of water
and natural resources in semiarid regions (for example, [47,48]).

From the 6.0 collection of thematic classifications of the annual maps of the land use
and land cover of MapBiomas Brazil, a trend analysis of land uses for the study area was
carried out, using the Mann–Kendall nonparametric statistical test, highlighting areas with
forest cover, non-forest natural formation, agriculture, urban infrastructure, and water
bodies [49,50]. The Mann–Kendall (S) test statistic is described by Equation (2):

S =∑n−1
i=1 ∑n

j=i+1 Sgn
(
xj − xi

)
, (2)

where, n corresponds to the number of data points; xi and xj are given in the time series i
and j (j > i), respectively, and Sgn (xj−xi) is defined by Equation (3).

Sgn
(
xj − xi

)
=


1, if

(
xj − xi

)
> 0

0, if
(
xj − xi

)
= 0

−1, if
(
xj − xi

)
< 0

, (3)

Since the data set is distributed identically and independently, the mean of S is zero
and the variance of S is given according to Equation (4):

Var(S) =

[
n(n− 1)(2n + 5)−∑

q
i=1 ti(ti − 1)(2ti+5)

]
18

, (4)

where, n—dataset number; ti—number of values in the i-th group; q—number of groups
containing repeated values.
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During the time series of 36 years of data, the statistical value S can be transformed
into ZS, according to the following conditions given by Equation (5):

ZS =


S−1√
Var(S)

, if S > 0

0, if S = 0
S+1√
Var(S)

, if S < 0
, (5)

where, the ZS value characterizes if there is a tendency in the Mann–Kendall test. Positive
ZS values indicate an increasing trend, whereas negative ZS values indicate a downward
trend, and if the ZS value is 0, there is no trend. The trend is significant at the 90% confidence
level if |Z| > 1.64, at the 95% confidence level if |Z| > 1.96, and at the 99% confidence
level if |Z| > 2.58.

So, right after identifying trends by the Mann–Kendall (ZS) test for different land uses,
an analysis of the magnitude of the trend was performed using the Sen (Q) slope test [51],
aiming to estimate the true slope of the given annual trend (ZS), by a linear trend estimation
model, according to Equation (6):

Qi =

(
xj −xk

j− k

)
, para i = 1, 2, 3, . . ..N, (6)

where, xj and xk—are the values given at times j and k (j > k), respectively. If there are n
values of x in the time series, N = n (n− 1)/2 slope estimates Qi are obtained. The N values
of Qi are ranked from smallest to largest, and the slope estimator of Sen is the median of N
values of Qi (for example, [47,48]).

2.4. Statistical Analysis of Data

The Mann–Kendall statistical tests [49,50] and Sen’s slope estimator [51] were used to
compute the sloping trend of the land cover and land use time series, between 1985 and
2020. Trend analyzes were performed using the R software, version 3.6.1 [52].

The main results of the NDVI thematic maps were evaluated in terms of descrip-
tive statistics, through measures of central tendency (average) and measures of disper-
sion (minimum; maximum; standard deviation—SD; and coefficient of variation—CV).
The NDVI maps were also evaluated for their spatiotemporal variability through CV
values (%), according to the classification criteria of [53]: CV < 12%—low variability;
12% < CV < 60%—medium variability; and CV > 60%—high variability.

3. Results and Discussion

Figure 2 represents the spatiotemporal map of land use and land cover of the study
area, municipality of Campina Grande, in the Brazilian semiarid region, between 1985
and 2020. This monitoring based on thematic classifications was developed using data
geospatial from the Landsat series of satellites, made available by the annual mapping
project of land cover and use in Brazil [39].

The semiarid region of study presents different uses and occupations of the soil, with
areas directed to agricultural activities, as well as water resources, areas of vegetation of the
Caatinga biome, highlighting areas of natural and unnatural forest formation, in addition to
the predominance of a savanna formation and, also, mainly, the highlight of the conditions
of exposed soil areas and urban infrastructure (Figure 2).

Over time, a reduction in forest areas is observed, highlighted by the spectral condition
of the vegetation cover of the Caatinga. The significant reduction in natural vegetation in
the semiarid environment is evidenced by the increase in agricultural areas (agriculture and
pasture) and urban infrastructure over the last three decades. Such ones were strengthened
mainly by livestock, with an expansion of pasture areas in all regions of the municipality,
as well as by the boosting of civil construction in the central region, mainly in the midwest
and southwest regions (Figure 2).
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Grande−PB, between 1985 and 2020. Data source: MapBiomas Brazil—Collection 6.0.

The municipality of Campina Grande in the Brazilian semiarid region, the object of
this study, is considered a growing urban area, according to the IBGE, between 1996 and
2010 the population increased from 343,196 to 385,213 inhabitants. In 2021, the estimated
population is 413,830 inhabitants, an increase of 28.617 inhabitants compared to 2010.
However, research shows that this urban growth has been occurring without adequate
planning. During rainy periods, failures in the drainage system were observed in some
neighborhoods with high population density, causing frequent flooding [10].
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Table 1 presents the total annual amount of land cover and use specifically for the years
1985 and 2020, highlighting the loss and gain conditions of the study area. Additionally,
Table 1 presents the statistical data of accuracy by classes and general accuracy.

Table 1. Annual quantification of the different uses and land cover in the years of 1985 and 2020 for
the semiarid region of Campina Grande−PB, Brazil.

Territory Thematic Class

Total Annual Quantification of Land Uses

1985 (km2) 1985 (%) Overall
Accuracy (%) 2020 (km2) 2020 (%) Overall

Accuracy (%)

Municipality of
Campina Grande,

PB, Brazil

Forest (forest formation and
savanna formation) 334.16 56.48 90.00 218.80 36.98 88.05

Non-forest natural
formation (grassland) 6.62 1.12 17.89 6.31 1.07 19.48

Farming (agriculture
and pasture) 238.57 40.32 67.16 287.92 48.66 82.27

Non-vegetated area (urban area
and other non-vegetated areas) 9.30 1.57 80.63 77.31 13.07 86.08

Water 3.01 0.51 93.59 1.33 0.23 93.68

Total 591,659 100 - 591,659 100 -

Overall accuracy (1985–2020) 81.80%

Source: Ref. [39].

Between 1985 and 2020, the municipality of Campina Grande−PB, in the Brazilian
semiarid region, highlighted the loss of native vegetation, around 20% (115 km2), among
the forest areas (specifically in thematic classes of forest formation and savanna formation),
with a statistical accuracy of 90% (1985) and 88.05% (2020), and non-forest natural formation
(specifically in thematic class of grassland), with an accuracy of 17.89% (1985) and 19.48%
(2020), with this being a class of low statistical precision; however, it is worth mentioning
that its representativeness in the sample is only 1% (Table 1).

On the other hand, the farming (specifically in thematic classes of agriculture and
pasture), with an accuracy of 67.16% (1985) and 82.27% (2020), and non-vegetated area
(specifically in thematic classes of urban area and other non-vegetated areas), with an
accuracy of 80.63% (1985) and 86.08% (2020), showed a percentage gain over time, around
12% and 8%, respectively (Table 1).

The water area of the semiarid region of study also highlighted the loss of water
availability over time, with a significant accuracy of 93.59% (1985) and 93.68% (2020). Thus,
it was observed through the thematic classes, in the period from 1985 to 2020, a general
accuracy of 81.80% (Table 1).

Figure 3 shows the trend analysis of the annual amount of land cover and land use in
the semiarid region of Campina Grande−PB, based on the thematic classifications of land
uses, between 1985 and 2020, according to the Mann–Kendall (Zs) test and the Sen (Q) slope
estimator. As a function of the Zs and Q statistical parameters, highlighting the probability
values (p-value), with a trend significance at the level of 1% (p < 0.01), 5% (p < 0.05), and
10% (p < 0.10), helps identify increasing or decreasing trends in the time series.

In the forest area (Figure 3a), it is noteworthy that 92.79% of the vegetation cover is
savannah while only 7.21% has a dense forest formation [39]. In view of this, it is worth
noting that the vegetation of the Caatinga biome is characterized by its high resilience
power, which favors the rapid formation of plant biomass soon after the rainy events, rain
being a dominant and controlling factor in this semiarid environment. This helps to explain
some vegetation resilience peaks such as, for example, the significant increase in vegetation
cover in 1995. This year presented an annual rainfall of around 984.1 mm, and the previous
year, 1994, was also very rainy, 1028.5 mm [54]. That is, both presenting rainfall above the
annual historical average (773.5 mm) of the study area.
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On the other hand, as this ecosystem is highly dynamic, it is also highlighted that
from the events of severe drought (accentuated water deficit), a drastic reduction in the
vegetation of the Caatinga is observed from the loss of the leaf canopy and the condition of
the plant biomass, which is a physiological defense characteristic of this biome [55,56].

Statistically, the time series of the forest area does not present a statistically significant
trend, according to the negative Zs value = −1.51; however, it highlights a decrease, as a
function of the true magnitude of the trend, by the Q test, which estimated an annual loss
of these areas around 1.08 km2, mainly alerting to the increase in deforestation (Figure 3a).

The time series of the area of non-forest natural formation (grassland) also did not
show a statistically significant trend, according to the characterization of the statistical
values of positive Zs = 0.45. The true magnitude of the trend, by the Q test, only estimated
an annual gain of 0.00193 km2 (Figure 3b).

The farming area (agriculture and pasture) also did not show a statistically significant
trend, with negative Zs = −1.08. However, it is observed that the true magnitude of the
trend, by the Q test, detected an annual loss of 0.45 km2 (Figure 3c). Here, it is worth
noting that within this area, agriculture lost strength and/or a reduction was observed over
time. Especially between 2011 and 2020, which did not show recovery power due to the
severe effects of drought in this period (Figure 3c). The pasture, predominant in the study
area, remained stable, however, in this period, it also highlighted the loss. In this sense,
it is highlighted that the drought and the pressures of anthropic activities are promoting
intensified vulnerabilities to the natural environment in the study area.

The time series for the urban area highlighted a significant increasing trend, with
positive Zs = 8.57. The true magnitude of the trend, by the Q test, estimated an annual gain
of 0.91 km2, with trend significance at the level of 1% (p < 0.01) (Figure 3d). The rise of the
urban area over time directly affected the condition of reservoirs in the central region of the
study area.

Other non-vegetated areas highlighted a significant upward trend in the time series,
with positive Zs = 6.03. The Q test estimated an annual gain of 0.12 km2, at a level of 1%
(p < 0.01) (Figure 3e). This behavior is linked to the behavior pattern of farming (agriculture
and pasture). Ref. [49] observed that undisciplined anthropic activities also contribute to
the increase in exposed soil areas in the semiarid region, because deforestation and the
burning of Caatinga vegetation for agricultural purposes is common.

The water coverage area highlights a decreasing trend, with negative Zs = −3.04. The
magnitude of the trend by the Q test estimated a quantitative annual loss of −0.04 km2 at
the 1% level (p < 0.01) (Figure 3f). So that, in addition to the effects of climate change such
as severe drought events, rainfall variability in space and time affects water availability in
rivers, lakes, and reservoirs in the study area.

In Panchkula District, Haryana, India, between 1980 and 2020, agricultural land classes
increased by 73.71%, built-up areas by 84.66%, and forest by 4.07%, whereas river beds
reduced by 50.86%, in spatial extent. Additionally, all these changes are strongly associated
with industrial activities and buildings [25]. In Batticaloa Municipality, Eastern Province of
Sri Lanka, between 1990–2020, there was a decrease in agricultural land use from 26.9% to
21.9% [24].

The NDVI thematic maps showed a quantitative and spatiotemporal behavior of
medium variability, according to the criteria proposed by [53], confirmed by the CV values
between 19.05% and 41.94%.

The NDVI effectively detected the spatiotemporal variability of the vegetation cover
of the Caatinga, among other land uses, detecting the changing conditions and climatic
variability in the semiarid region. It is also worth mentioning that the urban area was
characterized in the range of NDVI values, between −1.00 and −0.01. Over the years, one
can notice the spectral behavior of urban infrastructure in the central region of the surface
thematic maps (Figure 4). Figure 4 shows the spatiotemporal distribution of the NDVI
vegetation index, from surface thematic maps, in the period 1985 and 2020. NDVI map
results range from −1.00 to 1.00.
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Class 1 (−1.00 and −0.01) corresponds to the spatiotemporal distribution of urban
infrastructure areas, especially in the central region of the thematic maps, which highlights
the city of Campina Grande-PE. It is worth mentioning in this sense that some pixels in
other regions of the study area, with the same characteristics of values, are over clouds
(Figure 4).

Classes 2 (0.00 and 0.26) and 3 (0.27 and 0.35) highlight the spatiotemporal distribution
of regions that have areas of exposed soil and sparse Caatinga vegetation. These values are
present in most of the analysis (Figure 4). This pattern of spectral behavior is linked to the
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variation of water availability, which is mainly related to a long dry season (up to 8 months),
a time that has a high water deficit, that is, low soil moisture over semiarid regions, causing
changes and a decrease in leaf canopy and vegetation biomass condition [49].

On the other hand, classes 4 (0.36 and 0.44) and 5 (0.45 and 0.53) highlight areas of
Caatinga that have a greater capacity to recover vegetative vigor due to rain events. Class 6
(0.54 and 1.00) highlights the spatiotemporal distribution of areas with dense vegetation
cover (Figure 4). For the most part, this pattern of behavior prevails mainly when rainfall
amounts are above the historical average for the region.

The spatiotemporal distribution of the NDVI, together with the quantification and
characterization of the results for the semiarid region of Campina Grande−PB, show to be
an effective part of an important environmental monitoring for planning and management
in decision-making on the assessment of environmental impacts, which may extend to the
entire Brazilian semiarid region.

Ref. [57] also studied environmental changes by remote sensing in semiarid regions
in Senegal and Mali, and highlighted that climate change and anthropic activities caused
changes in the natural environment. The authors highlighted mainly drought events, from
low rainfall regimes and high temperatures, driven by increased pressures from human
actions in dry seasons, favoring the acceleration of environmental degradation processes
over time.

The statistical parameter of the average pixel of the NDVI is presented in Figure 5,
varying between 0.18 and 0.53, spectral distribution behavior related to several factors, such
as the dry period, which favors the accentuation of water deficit conditions in semiarid
regions, especially in the study area, thus promoting leaf canopy loss [55]. This behavior
can be observed practically in the entire region, and more emphatically in the regions with
the ranges of values between 0.00–0.26 and 0.27–0.35 (Figure 3).
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Ref. [58] highlighted that during the rainy season, the NDVI reached a maximum value
of 0.80 due to the increase in plant biomass productivity. However, in the dry season, when
leaves fall and leaf canopy loss occurs, a remarkable defense mechanism of the Caatinga
vegetation, the NDVI reduced to the value of 0.30, in response to the accentuated water
deficit in the region, which favors the reduction in photosynthetic activities. This condition
of low NDVI values was detected between the years 2013 and 2020 of this study.

Figure 5 presents the time series with the annual mean pixel value of the NDVI, for
the semiarid region, between the years 1985 and 2020.

However, it is worth noting that in addition to climate variability events, the decrease
in NDVI values, especially in the period from 2013 to 2020, is also linked to the pressures of
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anthropic activities on land use in the study region, mainly due to deforestation, disorderly
civil construction, favoring the increase in exposed soil areas and waterproofed areas,
which directly affect hydrological conditions and soil properties, resulting in the general
loss of ecosystem services. In this regard, threats to sustainable livelihoods in the semiarid
region are highlighted from the processes of soil degradation and desertification over
time [13,28,59].

Studies in Brazil and around the world warn of the worsening of soil degradation
in semiarid regions, highlighting this process as one of the most catastrophic results of
long-term drought events and anthropic activities. These researches highlight that through
the assessment of climate impacts, induced mainly by the action of man in the semiarid
environment, essential information can be obtained for decision makers, essentially the
public power, aiming to fundamentally mitigate environmental degradation in the semiarid
environment [17–19,28].

4. Conclusions

Environmental monitoring based on the characterization of thematic maps of land use
and land cover and biophysical indicators at the surface is a significant instrument for prior
planning and management in decision-making in an appropriate manner.

From the significant growth of the urban area in recent decades, studies of the charac-
terization of the land uses need to be updated, aiming at mitigating environmental impacts
on the natural environment and the population. In this sense, we must highlight the use of
these indicators in the form of maps.

For 36 years, the advance of exposed soil and urban areas in the semiarid region of
Campina Grande−PB showed an increasing annual trend, highlighting an expansion of
about 10%. The average NDVI highlighted a reduction in vegetation cover mainly in the
period from 2013 to 2020. Highlighting the low resilience capacity of vegetation over time,
which can favor environmental degradation and soil desertification.

Water resources highlighted a decreasing annual trend, due to the high climatic
variability of the semiarid environment. However, it is worth noting that the changing
conditions of native vegetation influence water availability, in addition to the pressures
exerted by anthropic activities, especially in periods of a long drought and severe drought.

The spatiotemporal monitoring of the Caatinga vegetation through the NDVI, in the
development of surface thematic maps, also originated responses of the behavior pattern of
the different land uses in the semiarid region, in addition to the conditions of loss and gain
of vegetation cover, mainly highlighting the changing conditions of the spectral condition
of the urban area over time.

The use of geoprocessing and sets of orbital remote sensing techniques, based on the
standardization of a technical and scientific methodology, with a digital cloud processing
script in Google Earth Engine, allowed for the identification of patterns of changes in
space and time of land cover and climate variability in the semiarid region of Campina
Grande−PB.
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